Η τριβή ολίσθησης επιταχύνει το σώμα

Πάνω σε λείο οριζόντιο επίπεδο ηρεμεί το σύστημα των σωμάτων Σ1(σανίδα) και Σ2(κύβος) του σχήματος, με μάζες m1 = 3kg και m2 = 2kg αντίστοιχα, όπως φαίνεται στο σχήμα 1. Ασκούμε στο Σ1 οριζόντια δύναμη και μελετάμε τη συμπεριφορά του συστήματος.Α) Αν μεταξύ των σωμάτων δεν εμφανίζεται τριβή, τι κίνηση θα εκτελέσει κάθε σώμα;
Β) Αν μεταξύ των σωμάτων υπάρχει τριβή, με συντελεστές τριβής μ = μσ = 0,3 ποια είναι η μέγιστη τιμή της κοινής επιτάχυνσης των δύο σωμάτων ώστε να μην υπάρξει ολίσθηση του σώματος Σ2, πάνω στο Σ1; Ποια είναι η αντίστοιχη μέγιστη τιμή στο μέτρο F της ασκούμενης δύναμης;
Γ) Επαναλαμβάνουμε το πείραμα, με μέτρο δύναμης F = 18N.
α) Τι κίνηση θα εκτελέσει κάθε σώμα;
β) Ποια θα είναι τα μέτρα των επιταχύνσεων των σωμάτων;
γ) Να κάνετε στους ίδιους βαθμολογημένους άξονες, τις γραφικές παραστάσεις μετατόπισης – χρόνου για τα δύο σώματα από t0 = 0, μέχρι t = 2s.
δ) Πόσο είναι το ελάχιστο μήκος της σανίδας Σ1, ώστε το σώμα Σ2 να παραμείνει πάνω της, μέχρι τη χρονική στιγμή t = 2s, αν η αρχική θέση του Σ2 είναι αυτή του σχήματος 1; Δίνεται η πλευρά του κύβου d = 0,5m.
Δίνεται g = 10m/s2.

Απάντηση(Word)-Κατεβάστε το για σωστή εμφάνιση

Απάντηση (Pdf)

Στροφορμή υλικού σημείου – Στροφορμή στερεού – Διατήρηση

του Θοδωρή Παπασγουρίδη



Λήψη αρχείου

Δυναμική του γαλαξία μας

Θα παραθέσω μία άσκηση για την κίνηση του ήλιου μας στον γαλαξία, απλά για να δούμε τάξεις μεγέθους. Η πραγματικότητα είναι εξαιρετικά πολύπλοκη λόγω δύο δεδομένων.

Α) Ο γαλαξίας μας όπως ο ήλιος και οι αέριοι γίγαντες του ηλιακού μας συστήματος Δίας και Κρόνος που δεν είναι συμπαγή στερεά περιστρέφονται διαφορικά, δηλαδή περιστρέφονται ταχύτερα στον ισημερινό και πιο αργά όσο απομακρυνόμαστε απο αυτόν.

Β) Ένα σοβαρό πρόβλημα όμως είναι το γεγονός ότι οι ταχύτητες καθώς πλησιάζουμε στα όρια του γαλαξία μας είναι σημαντικά μεγαλύτερες απο τις αναμενόμενες όπως βλέπουμε στο παρακάτω διάγραμμα. Η κόκκινη γραμμή είναι οι μετρούμενες ταχύτητες και οι μπλέ διακεκομένες οι αναμενόμενες αν ο γαλαξίας μας αποτελούνταν μόνο απο συνηθισμένη βαρυονική ύλη.

Πάντως αν ο γαλαξίας μας αποτελούνταν μόνο απο βαρυονική ύλη θα είχε αυτοδιαλυθεί δεδομένου ότι τα αστέρια στις παρυφές του θα ήταν χαλαρά συνδεδεμένα βαρυτικά με τον πυρήνα. Η μόνη εξήγηση που προκρίνεται σήμερα για τα παραπάνω είναι η παρουσία σκοτεινής ύλης σε μία άλω γύρω απο τον πυρήνα και σε ποσοστό που αγγίζει το 90% της συνολικής μάζας. Η παρουσία σκοτεινής ύλης λύνει και άλλα ζητήματα όπως η συνοχή σμηνών και υπερσμηνών γαλαξιών καθώς και η  παρατηρούμενη εικόνα απο βαρυτικούς φακούς.Η σκοτεινή ύλη δεν εκπέμπει καμία ακτινοβολία σε κανένα μήκος κύματος εξ ου και αόρατη. Αλληλεπιδρά όμως βαρυτικά με τη βαρυονική ύλη. Ζητούμενο επομένως είναι να προσδιοριστεί η φύση της ή να βρεθεί κάτι άλλο στη θέση της. Μια μειοψηφία αστροφυσικών προτείνει μια τροποποιημένη Νευτώνεια βαρύτητα που θα απαντά στα παραπάνω ζητήματα. Όπως και να έχει η πιο οικεία μας δύναμη η βαρύτητα, μας δημιουργεί τα πιο σοβαρά προβλήματα(ας μην ξεχνάμε και την επιταχυνόμενη διαστολή του σύμπαντος), παρά το γεγονός ότι έχουμε δύο θεωρίες για τη βαρύτητα που και οι δύο είναι …σωστές. Ακολουθεί η άσκηση.

milky-way

Και αν πάρουμε το μισό δίσκο;

Μια άσκηση του Διονύση Μάργαρη.

 

Διαθέτουμε ένα στερεό το οποίο αποτελείται από μια ομογενή ράβδο ΟΚ, μήκους l=2m και μάζας m=15kg, και, έναν ομογενή δίσκο μάζας Μ=40kg και ακτίνας R=1m απόλυτα συνδεδεμένο με τη ράβδο, με το άκρο Κ της ράβδου να είναι και το κέντρο του δίσκου. Το στερεό S μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα ο οποίος διέρχεται από το άκρο Ο της ράβδου, ενώ συγκρατείται με την ράβδο σε οριζόντια θέση, όπως στο σχήμα.

i) Σε μια στιγμή αφήνουμε ελεύθερο το στερεό να περιστραφεί.

α) Να υπολογιστεί η ροπή αδράνειας του στερεού S, ως προς τον άξονα περιστροφής.

β) Να υπολογιστεί η αρχική γωνιακή επιτάχυνση του στερεού S, καθώς και  η επιτάχυνση του κέντρου Κ του δίσκου.

ii) Κόβουμε και απομακρύνουμε τον μισό δίσκο, οπότε παίρνουμε το στερεό S1, όπως φαίνεται στο δεύτερο σχήμα.

α) Στηριζόμενοι στον ορισμό της ροπής αδράνειας, να υπολογίσετε  τη ροπή αδράνειας Ι1 του στερεού S1, ως προς τον άξονα περιστροφής στο Ο, εκμεταλλευόμενοι την ροπή αδράνειας του στερεού S.

β) Αν αφήσουμε το στερεό S1 να κινηθεί ξανά, από την θέση που η ράβδος είναι οριζόντια, να υπολογιστούν η αρχική γωνιακή επιτάχυνση του στερεού και η αρχική επιτάχυνση του σημείου Κ.

Δίνεται η ροπή αδράνειας ενός ομογενούς δίσκου ως προς κάθετο άξονα ο οποίος περνά από το κέντρο του Ι1=1/2 ΜR2 και η αντίστοιχη ροπή αδράνειας για την ομογενή ράβδο Ι2= ml2/12 και g=10m/s2.

Απάντηση:

ή

Μια σταθερή και μια κινητή τροχαλία

Η τροχαλία είναι μια απλή μηχανή, που μπορεί να βοηθήσει μια εργασία, με την αλλαγή διεύθυνσης ή της μείωσης του μέτρου της απαιτούμενης δύναμης. Χρησιμοποιώντας τη σταθερή (πάγια) τροχαλία Ρ1, την κινητή τροχαλία Ρ2 και δυο νήματα, πετυχαίνουμε αντίστοιχα τα παραπάνω. Το νήμα ν1 δένεται στο σώμα Α, περνάει από το αυλάκι της σταθερής τροχαλίας Ρ1, τυλίγεται γύρω από το αυλάκι της κινητής τροχαλίας Ρ2 και καταλήγει στον άξονα της σταθερής τροχαλίας Ρ1, σε ακλόνητο σημείο,  όπως φαίνεται στο παρακάτω σχήμα.
Το νήμα ν2 δένεται στο σώμα Σ και καταλήγει στον άξονα της κινητής τροχαλίας Ρ2.
Με αυτή τη διάταξη θέλουμε να σύρουμε το σώμα Σ, μάζας mΣ = 400kg πάνω στο κεκλιμένο επίπεδο, γωνίας κλίσης  θ με ημθ = 0,6 και συνθ = 0,8. Το αντίβαρο Α που θα χρησιμοποιήσουμε έχει μάζα mΑ = 300kgοι τροχαλίες είναι αμελητέας μάζας, δεν εμφανίζονται τριβές στους άξονές τους, τα νήματα αβαρή, μη εκτατά και δε γλιστράνε στα αυλάκια των τροχαλιών. Ο συντελεστής τριβής ολίσθησης μεταξύ του σώματος Σ και του κεκλιμένου επιπέδου είναι μ = 0,5 και η επιτάχυνση της βαρύτητας g = 10m/s2.
i) Αν το αντίβαρο Α κατέλθει κατά Δxτο σώμα Σ μετατοπίζεται κατά
α) Δx                β) Δx/2             γ) x
Βρείτε και δικαιολογείστε τη σωστή απάντηση.
ii) Αν η επιτάχυνση με την οποία κατέρχεται το Α έχει μέτρο α, το σώμα Σ αποκτά επιτάχυνση μέτρου
α) α                  β)                 γ) α/2
Βρείτε και δικαιολογείστε τη σωστή απάντηση.
iii) Υπολογίστε το μέτρο της επιτάχυνσης κάθε σώματος.
iv) Ποιο είναι το μέτρο της τάσης κάθε νήματος;
v) Αν το σώμα Α απέχει αρχικά από το οριζόντιο έδαφος απόσταση h = 5mποιο θα είναι το μέτρο της ταχύτητας με την οποία θα χτυπήσει στο έδαφος;

Απάντηση(Word) (Κατεβάστε το για σωστή προβολή)

Απάντηση(Pdf)

Η γωνία απόκλισης του εκκρεμούς και η επιτάχυνση

Θέλουμε να μετρήσουμε την επιτάχυνση του συστήματος των σωμάτων Σ1 και Σ2, που ηρεμούν πάνω σε οριζόντιο πάγκο, μεγάλου μήκους. Το Σ1 συνδέεται με το Σ2 μέσω νήματος μη εκτατού αμελητέας μάζας, που διέρχεται από το αυλάκι αβαρούς τροχαλίας. Το Σ2 περιλαμβάνει και εκκρεμές, με ελαφριά μπαλίτσα Μ και το στήριγμα Σ του εκκρεμούς αμελητέας μάζας. Αφήνουμε το σύστημα ελεύθερο και πριν το Σ2 φτάσει στην άκρη του πάγκου, φωτογραφίζουμε τη διάταξη και παίρνουμε το στιγμιότυπο του σχήματος. Τριβές δεν υπάρχουν και g = 10m/s2.
α) Ποια σχέση έχει το μέτρο α της επιτάχυνσης με τη γωνία θ, που σχηματίζει το νήμα με την κατακόρυφο;
β) Αν οι μάζες των σωμάτων Σ1 και Σ2 είναι αντίστοιχα m1 = 2kg, m2 = 8kg, ποια είναι η γωνία θ;
γ) Υπολογίστε το μέτρο της τάσης του νήματος, που συνδέει τα σώματα Σ1 και Σ2 και τη μετατόπιση του Σ2 κατά τη διάρκεια του 6ου δευτερολέπτου.
δ) Αν μπορούμε να μεταβάλλουμε τις μάζες m1 και m2 ποια είναι η μέγιστη γωνία θ που μπορούμε να επιτύχουμε; Εξηγείστε πως πρέπει να επιλέξουμε τότε τις μάζες.

Απάντηση(Word) (Κατεβάστε το για να φαίνεται σωστά)

Απάντηση (Pdf)

Kατηγορίες

Πρόσφατα άρθρα

Σαν σήμερα

2/1/1910: Η Κυριακή καθιερώνεται με νόμο στην Ελλάδα ως αργία.
   - Σχετικές αναρτήσεις

Άνοιγμα μενού
Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση
Μετάβαση σε γραμμή εργαλείων