Δύο ευθύγραμμοι μεταλλικοί αγωγοί Σ1 και Σ2 αμελητέας αντίστασης, συγκολλούνται μεταξύ τους στο ένα τους άκρο και τοποθετούνται σε οριζόντιο τραπέζι ώστε να είναι ακλόνητοι, με τη γωνία xAy = 900. Ένας τρίτος αγωγός Σ3 μήκους L = 2m, κινείται με σταθερή ταχύτητα και βρίσκεται κάθε στιγμή σε αγώγιμη επαφή με τους δύο σταθερούς αγωγούς, έτσι ώστε το ορθογώνιο τρίγωνο που σχηματίζεται από τους τρεις αγωγούς να είναι ισοσκελές. Τη χρονική στιγμή t = 0s το μέσον Μ του αγωγού Σ3 διέρχεται από το σημείο Α. H ταχύτητα του αγωγού Σ3 έχει μέτρο υ = (√2/4)m/s, διεύθυνση παράλληλη προς τον αγωγό Σ1, όπως στο σχήμα και επιτυγχάνεται με την εξάσκηση κατάλληλης δύναμης . Κάθετα στο επίπεδο του τριγώνου διέρχονται οι δυναμικές γραμμές ομογενούς μαγνητικού πεδίου έντασης μέτρου Β = 1Τ .
α) Εξηγείστε γιατί δημιουργείται επαγωγικό ρεύμα στο τριγωνικό πλαίσιο που δημιουργείται από τους τρεις αγωγούς και προσδιορίστε τη φορά του.
β) Υπολογίστε την ΗΕΔ επαγωγής που αναπτύσσεται στο πλαίσιο σε συνάρτηση με το χρόνο και κάνετε την αντίστοιχη γραφική παράσταση σε βαθμολογημένους άξονες, μέχρι τη χρονική στιγμή t1 που θα χάσει ο αγωγός Σ3 την επαφή του με τους Σ1, Σ2.
γ) Αν η αντίσταση ανά μονάδα μήκους του πλαισίου είναι R*= 0,125Ω/m, υπολογίστε το επαγωγικό ρεύμα που διαρρέει το πλαίσιο σε συνάρτηση με το χρόνο.
δ) Βρείτε τη χρονική εξίσωση της εξωτερικής δύναμης που ασκούμε για να κινείται ο αγωγός με σταθερή ταχύτητα.
ε) Βρείτε τη χρονική εξίσωση της παρεχόμενης ισχύος από τη δύναμη και από την αντίστοιχη γραφική παράσταση υπολογίστε το έργο της δύναμης μέχρι τη χρονική στιγμή t1.
στ) Να βρείτε όλους τους μετασχηματισμούς της ενέργειας ανά μονάδα χρόνου και να επαληθεύσετε την Διατήρηση της Ενέργειας, μέχρι τη χρονική στιγμή t1.