Στο σχήμα έχουμε μια διάταξη που περιλαμβάνει ράβδο ΓΔ μάζας M=8kg και μήκους L , που ακουμπάει στο δάπεδο σχηματίζοντας γωνία φ με ημφ=0.8 και συνφ=0.6 ,ενώ το άκρο της Δ συνδέεται με αβαρές μη ελαστικό νήμα μέσω της τροχαλίας αμελητέας μάζας, με σώμα Σ μάζας m=1kg που είναι δεμένο με κατακόρυφο ιδανικό ελατήριο σταθεράς k=100 N/m, που το κάτω άκρο είναι στερεωμένο στο δάπεδο. Το όλο σύστημα ισορροπεί. Δίνεται g=10 m/s^2
Υπολογίστε:
1.i. την στατική τριβή Ts που δέχεται η ράβδος από το δάπεδο
ii. τον ελάχιστο συντελεστή τριβής μ του δαπέδου με τη ράβδο.
iii. την παραμόρφωση Δlo (επιμήκυνση ή συσπείρωση) του ελατηρίου (3+2+2=7 μον.)
Κόβουμε το νήμα που συνδέει τη ράβδο με το σώμα Σ, οπότε αυτό αρχίζει τη χρονική στιγμή to=0 να κάνει απλή αρμονική ταλάντωση.
2. Να γράψετε την εξίσωση απομάκρυνσης x=f(t) του Σ, θεωρώντας ως θετική φορά προς τα πάνω. 6 μον.
3. Υπολογίστε το λόγο της δυναμικής ενέργειας του ελατηρίου προς την κινητική ενέργεια του σώματος Σ, τη στιγμή t=T/6 όπου T η περίοδος της ταλάντωσης. 6 μον.
4. Σε ποια θέση πρέπει να συγκρουστεί πλαστικά το σώμα Σ ,με άλλο σώμα ίσης μάζας, ώστε να ακινητοποιηθεί το σύστημά τους μόνιμα.
Πόση μηχανική ενέργεια θα χαθεί κατά την κρούση; 6 μον.
Θέματα σε wordκαι σε pdf
Απαντήσεις pdf
Αφιερωμένο σε όσους μοχθούν κυνηγώντας το όνειρό τους