Χρησιμοποιώντας λεπτό σύρμα, φτιάχνουμε ένα κυκλικό στεφάνι αμελητέου πάχους, με Ν = 10σπείρες και ακτίνα r = 2 / √π m. Το σύρμα έχει αντίσταση ανά μονάδα μήκους R* = 0,5 / √π Ω/m. Στα άκρα του συνδέουμε λαμπτήρα αντίστασης R = 80Ω, ο οποίος όταν λειτουργεί κανονικά αποδίδει θερμική ισχύ P = 51,2W. Ενεργοποιούμε ένα ομογενές μαγνητικό πεδίο, ώστε οι δυναμικές γραμμές να διέρχονται από όλη την επιφάνεια του στεφανιού, σχηματίζοντας γωνία θ = 530, με αυτήν, όπως φαίνεται στο σχήμα 1. Η ένταση του μαγνητικού πεδίου μεταβάλλεται στη συνέχεια σύμφωνα με τη γραφική παράσταση του σχήματος 2. Το στεφάνι παραμένει ακίνητο, το εμβαδικό διάνυσμα έχει τη φορά του σχήματος 1 και δίνεται ημ530 = 0,8.
α) Να γράψετε τις χρονικές εξισώσεις της μαγνητικής ροής που διέρχεται από την επιφάνεια μίας σπείρας του στεφανιού.
β) Να βρείτε τη χρονική εξέλιξη της ΗΕΔ που αναπτύσσεται στο στεφάνι και να κάνετε την αντίστοιχη γραφική παράσταση σε βαθμολογημένους άξονες. Θα χαρακτηρίζατε την παραγόμενη ΗΕΔ ως συνεχή ή εναλλασσόμενη;
γ) Να κάνετε τη γραφική παράσταση της έντασης του ρεύματος που διαρρέει το κύκλωμα και να υπολογίσετε την ενεργό τιμή της.
δ) Να εξετάσετε αν ο λαμπτήρας λειτουργεί κανονικά.
ε) Βρείτε το ηλεκτρικό φορτίο που θα περάσει από μια διατομή του κυκλώματος αλγεβρικά με βάση τη φορά του ρεύματος και το κατά απόλυτη τιμή ηλεκτρικό φορτίο που θα διακινηθεί ανεξάρτητα της φοράς του ρεύματος. Ποιο από τα δύο μας δίνει ο νόμος Newman αν εφαρμοστεί για όλο το χρονικό διάστημα των 3s;
στ) Κοιτώντας το στεφάνι από ψηλά (κάτοψη), σχεδιάστε και δικαιολογείστε τη φορά του επαγωγικού ρεύματος.