Ελεύθερη πτώση και στροφορμή

Δύο μικρές όμοιες σφαίρες Α και Β μάζας m, είναι στερεωμένες στα άκρα μιας αβαρούς ράβδου μήκους d, δημιουργώντας έτσι το σώμα S1, το οποίο ηρεμεί σε οριζόντια διεύθυνση. Η ράβδος μπορεί να στρέφεται ελεύθερα γύρω από οριζόντιο άξονα που διέρχεται από άρθρωση στο μέσον της Ο. Μια άλλη σφαίρα Γ μάζας επίσης m αφήνεται ελεύθερη από ύψος κατακόρυφα πάνω από τη σφαίρα Β και συγκρούεται με αυτήν κεντρικά και πλαστικά. Δημιουργείται έτσι ένα στερεό S2 , που στρέφεται περί το σημείο Ο. Η χρονική διάρκεια της κρούσης θεωρείται dt → 0 και επίπεδο αναφοράς βαρυτικής δυναμικής ενέργειας παίρνουμε το οριζόντιο επίπεδο της ράβδου ΑΒ.

  i) Η στροφορμή του συστήματος, ως προς το σημείο Ο, αμέσως πριν την κρούση έχει μέτρο

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Ποια είναι η στροφορμή του χαλικιού;

Στο λάστιχο ενός τροχού αυτοκινήτου έχει σφηνώσει ένα χαλίκι Λ, μάζας m =10g. Η διάμετρος του ελαστικού είναι δ = 15,8 inch ≈ 40cm, το αυτοκίνητο κινείται με ταχύτητα υ = 72km/h και ο τροχός κυλίεται χωρίς ολίσθηση.

i) Αν ο τροχός θεωρηθεί επίπεδος δίσκος, ποια είναι η στροφορμή του χαλικιού ως προς το κέντρο Ο του τροχού; Σχεδιάστε το διάνυσμα. Αν το αυτοκίνητο κινείται προς την Ανατολή, ποιον προσανατολισμό έχει το διάνυσμα;

ii) α) Ποια είναι η στροφορμή ως προς τον άξονα Ζ΄Ζ περιστροφής του δίσκου;

β) Θεωρείστε ένα σημείο Α του άξονα, που απέχει από το Ο απόσταση ΟΑ = 15cm. Υπολογίστε τη στροφορμή του χαλικιού ως προς αυτό το σημείο και σχεδιάστε το διάνυσμά της. Τι συμπεραίνετε; Η στροφορμή είναι ίδια ως προς οποιοδήποτε σημείο του άξονα;

iii) Υπολογίστε την προβολή του διανύσματος του ερωτήματος (iiβ), πάνω στον άξονα Z΄Z. Τι παρατηρείτε;

iv) Κάποια στιγμή t1, που το χαλίκι διέρχεται από την ανώτερη θέση, χάνει την επαφή του με το λάστιχο και εκτοξεύεται οριζόντια. Για τη χρονική στιγμή t1 + dt, όπου dt → 0, χαρακτηρίστε παρακάτω προτάσεις ως σωστές ή λανθασμένες:

α) Το χαλίκι δεν κάνει πλέον κυκλική κίνηση, άρα αμέσως μετά την εκτόξευση η στροφορμή του μηδενίζεται.

β) Δεν έχει στροφορμή ένα υλικό σημείο, που εκτελεί μεταφορική κίνηση.

γ) Η στροφορμή του χαλικιού δεν «χάνεται» ξαφνικά, έτσι αμέσως μετά την αποκόλληση είναι ίδια με αμέσως πριν.

v) Τη χρονική στιγμή t1 χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες:

α) Η στροφορμή του χαλικιού είναι 0,04kgm2/s.

β) Η στροφορμή του χαλικιού ως προς το σημείο Ο ή ως προς τον άξονα Ζ΄Ζ είναι 0,04kgm2/s.

γ) Η στροφορμή του χαλικιού ως προς το σημείο Ο ή ως προς τον άξονα Ζ΄Ζ έχει μέτρο 0,04kgm2/s.

δ) Η στροφορμή του χαλικιού, ως προς ένα τυχαίο σημείο Γ του εδάφους, που βρίσκεται στο ίδιο κατακόρυφο επίπεδο με το χαλίκι, έχει μέτρο 0,16kgm2/s.

vi) Τι κίνηση θα κάνει το χαλίκι μέχρι να φτάσει στο έδαφος και ποιος είναι ο ρυθμός μεταβολής της στροφορμής του ως προς το σημείο Γ του εδάφους, όταν βρίσκεται σε ύψος h = R από το έδαφος; Δίνεται g = 10m/s.2

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Δυο αστροναύτες κρατιούνται από μια ράβδο

Μετά από μια έκρηξη στο διαστημόπλοιό τους δυο αστροναύτες Α1 και Α2 με ίσες μάζες m1 = m2 = 80kg βρέθηκαν στο βαθύ διάστημα, να κρατιούνται στα άκρα μιας ράβδου αμελητέας μάζας, μήκους d1 = 3m, περιστρεφόμενοι με γωνιακή ταχύτητα  ω1 = 2rad/s, όπως φαίνεται στο σχήμα.

α) Αφού εξηγήσετε ποια είναι η ακτίνα της κυκλικής τροχιάς που εκτελεί κάθε αστροναύτης,

υπολογίστε τη στροφορμή του κάθε αστροναύτη και τη στροφορμή του συστήματος, ως προς το κέντρο μάζας C του συστήματος.

Κάποια στιγμή αποφάσισαν να πλησιάσουν ο ένας τον άλλο, οπότε τραβώντας ο καθένας τη ράβδο προς το μέρος του, διήνυσαν ταυτόχρονα, απόσταση d = 1m ο καθένας.

β) Τι τροχιά διαγράφει κάθε αστροναύτης ως προς έναν ακίνητο παρατηρητή;

γ) Υπολογίστε την νέα γωνιακή ταχύτητα περιστροφής.

δ) Υπολογίστε τη μεταβολή της στροφορμής του κάθε αστροναύτη.

ε) Υπολογίστε τη μεταβολή της κινητικής ενέργειας του συστήματος. Πως εξηγείται αυτή η μεταβολή;

Θεωρούμε τους αστροναύτες υλικά σημεία και αμελητέα κάθε βαρυτική έλξη.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Το πρόβλημα των εξετάσεων SAT (Scholastic Assessment Test) 1982

ο δίσκος Α κυλίεται ομαλά χωρίς να ολισθαίνει γύρω από τον δίσκο Β, ο οποίος συγκρατείται ακίνητος. Μετά από πόσες στροφές του δίσκου Α, θα βρεθεί αυτός στην αρχική του θέση;

α. 3/2                β. 3                  γ. 6                   δ. 9/2                            ε. 9

ΠΡΟΣΟΧΗ! Στις απαντήσεις που δόθηκαν δεν υπάρχει η σωστή!

Σωστή απάντηση 

Σωστή απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Στροφορμή. Μερικές όψεις…

του Διονύση Μάργαρη.

Ένα φυλλάδιο θεωρίας και μερικών εφαρμογών.

Με βάση το σχολικό μας βιβλίο, ορίζουμε τη στροφορμή ενός υλικού σημείου το οποίο εκτελεί κυκλική κίνηση κέντρου  Ο,  το διάνυσμα L το οποίο είναι κάθετο στο επίπεδο της κυκλικής τροχιάς, στο κέντρο Ο και έχει μέτρο L=mυr, ενώ η φορά της προσδιορίζεται με τον κανόνα του δεξιού χεριού. Αλλά η παραπάνω τοποθέτηση, αφήνει στο μυαλό του μαθητή την αντίληψη ότι για έχει ένα υλικό σημείο στροφορμή, θα πρέπει να εκτελεί κυκλική κίνηση, πράγμα που προφανώς δεν είναι σωστό. Αρκεί να δούμε την περίπτωση του παρακάτω σχήματος:

κάτοψη

Το υλικό σημείο μάζας m διαγράφει την οριζόντια κυκλική τροχιά του σχήματος και τη στιγμή που διέρχεται από το σημείο Α, το νήμα κόβεται. Τι θα κάνει; Προφανώς θα κινηθεί ευθύγραμμα.

Πόση είναι η στροφορμή του ως προς το σημείο Ο, ελάχιστα πριν κοπεί το νήμα και πόση αμέσως μετά; Πόση είναι η στροφορμή του ως προς το σημείο Ο, τη στιγμή που περνά από το σημείο Β; Ασκήθηκε κάποια ροπή στο σώμα που του άλλαξε τη στροφορμή στη θέση Α; Προφανώς όχι. Οπότε αν, πριν κοπεί το νήμα το υλικό σημείο έχει στροφορμή ως προς το σημείο Ο, κάθετη στο επίπεδο του σχήματος με φορά προς τον αναγνώστη και μέτρο L=mυr, τότε και μετά το κόψιμο του νήματος και στη θέση Β, θα έχει την ίδια στροφορμή.

Αλλά τότε θα ήταν πολύ προτιμότερο, να ορίζαμε τη στροφορμή υλικού σημείου ως προς σημείο Ο, με βάση το διπλανό σχήμα, ως το διάνυσμα το κάθετο στο επίπεδο που ορίζουν το σημείο Ο και ο φορέας της ταχύτητας (ευθεία ε) και r η απόσταση του Ο από την (ε).

Αλλά πέρα από ορισμούς και συμβάσεις, ας εξετάσουμε και δυο περιπτώσεις για δούμε πόσο κατανοούμε την αναγκαιότητα «ανοίγματος» του ορισμού του βιβλίου μας.

Στο παρακάτω σχήμα το υλικό σημείο (1) εκτελεί κυκλική κίνηση κέντρου Ο, ενώ το (2) κινείται ευθύγραμμα από τη θέση Α μέχρι τη θέση Β.

Για έναν παρατηρητή στο Ο και τα δυο υλικά σημεία στρέφονται γύρω από το Ο,  αφού θα πρέπει να «στρίψει» το πρόσωπό του, για να παρακολουθήσει, τόσο την μετακίνηση του κινητού (1) όσο και του κινητού (2).

Αλλά ας έρθουμε τώρα σε μια ράβδο (ένα στερεό) που εκτελεί μεταφορική κίνηση, κινούμενο ευθύγραμμα όπως στο σχήμα.

Για ένα παρατηρητή που βρίσκεται στο σημείο Ο «βλέπει» τη ράβδο να «στρέφεται» κατά γωνία θ παρότι αυτή δεν αλλάζει προσανατολισμό, οπότε υπολογίζει στροφορμή οφειλόμενη στη μεταφορική κίνηση με μέτρο Lο=Μυcm∙d. Αντίθετα για έναν παρατηρητή Κ στον φορέα της ταχύτητας, δεν υπάρχει καμιά «στροφή» συνεπώς η στροφορμή είναι μηδενική.

Η συνέχεια…

ή

 Στροφορμή. Μερικές όψεις…

Στιγμιότυπο στην κίνηση μιας ράβδου

Μια ομογενής λεπτή ράβδος ΑΒ με μήκος L = 2m, τη χρονική στιγμή t0s, έχει τη διεύθυνση του άξονα Οx, ενός συστήματος xOy ορθογωνίων αξόνων, με το μέσον – και κέντρο μάζας – C, να συμπίπτει με την αρχή Ο των αξόνων. Κάποια χρονική στιγμή t1 βρίσκεται για πρώτη φορά στη θέση του διπλανού σχήματος, έχοντας στραφεί αντιωρολογιακά κατά Δθ = 300.

Οι συνιστώσες της ταχύτητας του άκρου Α, έχουν αλγεβρικές τιμές υΑx =+ 2m/s και υAy = -6m/για κάθε άξονα, ενώ η γωνιακή ταχύτητα της ράβδου έχει σταθερό μέτρο ω = 12rad/s, με αντιωρολογιακή φορά.

Θεωρείστε την κίνηση της ράβδου σύνθετη: Ομαλή Στροφική, γύρω από άξονα κάθετο στο επίπεδο xOy που διέρχεται από το κέντρο μάζας C της ράβδου και ευθύγραμμη ομαλή μεταφορική με την ταχύτητα του κέντρου μάζας C. Για τη χρονική στιγμή t1:

α) Υπολογίστε την ταχύτητα του κέντρου μάζας.

β) Υπολογίστε την ταχύτητα του άκρου Β.

γ) Υπολογίστε τη χρονική στιγμή t1 και βρείτε τη θέση του σημείου Α ως προς το δοσμένο σύστημα αξόνων.

Απάντηση 

Δύο κέρματα σε επαφή

Δύο κέρματα (α) και (β) των δύο ευρώ ηρεμούν πάνω σε οριζόντιο δάπεδο.

Τα επίπεδα των νομισμάτων είναι οριζόντια και  τα νομίσματα εφάπτονται το ένα στο άλλο όπως στο σχήμα 1.
Κρατάμε το κέρμα (α)  ακίνητο και αρχίζουμε να περιστρέφουμε το (β) αριστερόστροφα έτσι ώστε να κυλίεται χωρίς να ολισθαίνει παραμένοντας σε επαφή με το (α) και το κέντρο του Κ να εκτελεί κυκλική κίνηση με κέντρο το κέντρο του νομίσματος (α).

Όταν το κέντρο (Κ) του (β) έχει μισή περιστροφή, η σχετική θέση των δύο νομισμάτων θα είναι

Α) Όπως στο σχήμα 2

Β) Όπως στο σχήμα 3

Γ) Όπως στο σχήμα 4

Να επιλέξετε τον σωστό σχήμα δικαιολογώντας την επιλογή σας.

Η συνέχεια σε  ή σε 

Δυο μπάλες, η ορμή και η στροφορμή

1

Δύο μικρές μπάλες Α και Β, μάζας mA = 3kg και mB = 1kg, αντίστοιχα, συνδέονται με άκαμπτη αβαρή ράβδο, μήκους L = 2m και ηρεμούν πάνω σε λείο οριζόντιο επίπεδο. Ξαφνικά εκτοξεύουμε τη σφαίρα Α με ταχύτητα μέτρου υ0 = 4m/s, με διεύθυνση κάθετη στη ράβδο, όπως φαίνεται στο σχήμα.
i) Υπολογίστε
α) την ορμή του συστήματος και
β) τη στροφορμή του συστήματος ως προς το κέντρο μάζας του C που βρίσκεται σε απόσταση r = 0,5m από τη μπάλα Α.
ii) Βρείτε τις ταχύτητες των Α και Β τη χρονική στιγμή t1 , που η ράβδος έχει περιστραφεί κατά 1800.
iii) Τη χρονική στιγμή t1 υπολογίστε επίσης το μέτρο της γωνιακής ταχύτητας ω και το μέτρο υC της ταχύτητας του κέντρου μάζας C του συστήματος.
iv) Για καθηγητές:
Βρείτε τις συντεταγμένες x, θέσης της μπάλας Α, τη χρονική στιγμή t1.
Τη χρονική στιγμή t0 = 0s, που εκτοξεύτηκε, είχε x = 0m, y = +0,5m.

Απάντηση 

 

Ένα σύστημα υλικών σημείων μεταβάλλει τη στροφορμή του

Δύο υλικά σημεία Σ1 και Σ2 κινούνται σε περιοχή χωρίς βαρυτικές επιδράσεις, πάνω στο επίπεδο xOy. Το Σ1 κινείται παράλληλα στον άξονα Ox και το Σ2 παράλληλα στον άξονα Oy, όπως φαίνεται στο σχήμα. Στη θέση που τα βλέπουμε, ασκείται στο Σ1 η (εξωτερική) δύναμη μέτρου |F| = 2N, με θ = 300. Το Σ1 έχει μάζα m1 = 6kg και μέτρο ταχύτητας υ1 = 2m/s, ενώ το Σ1 έχει μάζα m2 = 3kg και μέτρο ταχύτητας υ2 = 4m/s. Οι αποστάσεις που φαίνονται στο σχήμα, από την αρχή Ο του συστήματος των αξόνων είναι r1 = 1,5m, r2 =3m. Τα διανύσματα των ταχυτήτων και η δύναμη ανήκουν στο επίπεδο xOy. Θεωρώντας θετική φορά από τη σελίδα προς τον αναγνώστη υπολογίστε:

α) Τη στροφορμή κάθε υλικού σημείου ως προς το Ο.

β) Τη στροφορμή του συστήματος ως προς το σημείο Ο.

γ) Τη ροπή της δύναμης που δέχεται το Σ1 εκείνη τη στιγμή, ως προς το Ο.

δ) Το ρυθμό μεταβολής της στροφορμής του συστήματος των υλικών σημείων.

Απάντηση 

 

Μια ράβδος και ένα ελατήριο

Μια ομογενής λεπτή ράβδος ΑΓ μάζας M και μήκους L, συνδέεται μέσω ενός μη εκτατού νήματος σε ένα ελατήριο σταθεράς k. Το νήμα περνά πάνω από μια πολύ μικρή και λεία τροχαλία στερεωμένη στο P . Η ράβδος είναι ελεύθερη να στρέφεται χωρίς τριβή περί οριζόντιο άξονα που διέρχεται από το σημείο Α, με ΡΑ = α, σε όλο το γωνιακό εύρος ≤ θ ≤ π.  Αν ΡΓ = d = 0, το ελατήριο έχει το φυσικό του μήκος.
Το σύστημα βρίσκεται σε κατακόρυφο επίπεδο και ισορροπεί. Δίνεται η επιτάχυνση της βαρύτητας και L < a (ώστε αν η ΑΓ γίνει κατακόρυφη να μη «βρίσκει» στην τροχαλία).
Η ράβδος ισορροπεί (ευσταθώς), αν

α) kα = Μg                   β) kα = Μg/2                 γ) kα = 2Mg

Να επιλέξετε τη σωστή απάντηση και να την δικαιολογήσετε. Προφανώς τα δεδομένα  L, d δε θα χρειαστούν στην τελική σχέση. Επίσης θεωρείται γνωστός ο νόμος των ημιτόνων.

Απάντηση

Απάντηση%ce%b1%ce%b1%ce%b1%ce%b11

Kατηγορίες

Πρόσφατα άρθρα

Σαν σήμερα

7/4: Παγκόσμια Ημέρα Υγείας
Κάθε χρόνο στις 7 Απριλίου εορτάζεται η Παγκόσμια Ημέρα Υγείας, η οποία επικεντρώνεται σε σημαντικά προβλήματα της δημόσιας υγείας που απασχολούν όλο τον κόσμο. Η 7η Απριλίου είναι η ημερομηνία «γέννησης» το 1948 του Παγκόσμιου Οργανισμού Υγείας, ενός εξειδικευμένου οργάνου του ΟΗΕ για θέματα Υγείας.
   - Σχετικές αναρτήσεις

Άνοιγμα μενού
Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση
Μετάβαση σε γραμμή εργαλείων