Ένα σφαιρίδιο Σ μάζας m = 2kg βρίσκεται πάνω σε λείο οριζόντιο τραπέζι, δεμένο στο ένα άκρο ιδανικού νήματος. Περνάμε το νήμα από μια τρύπα Ο, στην επιφάνεια του τραπεζιού, προσδίδουμε στο σφαιρίδιο μια αρχική οριζόντια ταχύτητα μέτρου υ0 = 2m/s και ταυτόχρονα στο κάτω άκρο του Α, ασκούμε μια μεταβλητή κατακόρυφη δύναμη , ώστε το σημείο Α να αρχίσει να κατεβαίνει επιτάχυνση μέτρου αr = 1m/s2.
i) Αν η αρχική ακτίνα της τροχιάς του σφαιριδίου είναι R0 = 6m, να γράψετε την εξίσωση που δίνει την ακτίνα της τροχιάς σε συνάρτηση με το χρόνο και να εξηγήσετε ποιοτικά τι είδος τροχιάς θα διαγράψει το σφαιρίδιο.
ii) Σχεδιάστε σε κάτοψη την τροχιά ποιοτικά και σε μια τυχαία θέση του σφαιριδίου σημειώστε πάνω στο σχήμα τα διανύσματα (ταχύτητα, τάση νήματος, στροφορμή ως προς το Ο). Μπορεί η τάση να είναι κάθετη στην ταχύτητα;
iii) Τη χρονική στιγμή t1 = 2s η δύναμη που ασκούμε έχει μέτρο F = 6,5N.
α. Yπολογίστε για το σφαιρίδιο Σ την επιτάχυνση.
β. Aφού εξηγείστε την ύπαρξή της, υπολογίστε την κεντρομόλο επιτάχυνση.
iv) Κάποιος ισχυρίζεται ότι η ποσότητα L = m∙υ∙R εκφράζει κάθε χρονική στιγμή τη στροφορμή του σφαιριδίου ως προς το Ο. Συμφωνείτε με αυτό τον ισχυρισμό;
v) Υπολογίστε το μέτρο της ταχύτητας του σφαιριδίου τη χρονική στιγμή t1= 2s.
vi) Βρείτε την τάση του νήματος σε συνάρτηση με το χρόνο.
vii) Ποιος είναι ο ρυθμός παραγωγής έργου από την δύναμη τη χρονική στιγμή t1= 2s;
viii) Πόσο είναι το έργο της δύναμης από τη χρονική στιγμή της εκτόξευσης μέχρι τη χρονική στιγμή t1;
Δεν αναπτύσσεται τριβή μεταξύ νήματος (κατά το πέρασμά του από την τρύπα) και της επιφάνειας του τραπεζιού.





Ένας ομογενής δίσκος ακτίνας R = 0,1m, βρίσκεται ελεύθερος πάνω σε ένα παγοδρόμιο και κάποια χρονική στιγμή οι ταχύτητες των αντιδιαμετρικών σημείων του Α και Β φαίνονται στο σχήμα, όπου υ1 = 6m/s, θ1 = 600 και θ2 = 300.


