Ένας τροχός ακτίνας R = 0,4m, κυλίεται χωρίς ολίσθηση σε οριζόντιο επίπεδο, με το κέντρο μάζας του να έχει σταθερή ταχύτητα μέτρου υcm = 4m/s.
α) Να βρείτε τη μαθηματική σχέση του μέτρου υ της ταχύτητας ενός τυχαίου σημείου μιας κατακόρυφης διαμέτρου, σε συνάρτηση με την απόσταση ψ του σημείου από το δάπεδο και να κάνετε την αντίστοιχη γραφική παράσταση σε βαθμολογημένους άξονες.
β) Θεωρώντας το σύστημα XOΨ ορθογωνίων αξόνων του σχήματος, με αρχή που συμπίπτει με τη θέση του κατώτερου σημείου Β τη χρονική στιγμή t = 0, βρείτε τις εξισώσεις x = f(t) και y = f(t), που δίνουν τη θέση του σημείου Β, σε συνάρτηση με το χρόνο.
γ) Να κάνετε τη γραφική παράσταση της τεταγμένης y= f(t) σε βαθμολογημένους άξονες, για χρονικό διάστημα ίσο με δυο περιόδους περιστροφής του τροχού. Τι παρατηρείτε;

