Η χιονισμένη σανίδα

Μια χειμωνιάτικη μέρα, ένας εργάτης εκτοξεύει τούβλα …προς τα πάνω, από τη βάση μιας κεκλιμένης σανίδας, με γωνία κλίσης θ = 300. Η σανίδα έχει πιάσει πάγο όχι ομοιόμορφα, έχοντας παγώσει περισσότερο στο κάτω μέρος. Σαν συνέπεια, ο συντελεστής τριβής ολίσθησης αυξάνεται με την απόσταση από τη βάση της σανίδας και δίνεται από την εξίσωση μ = cx,  όπου c = (1/2√3)m-1 μια θετική σταθερά και η απόσταση που διανύει κάθε τούβλο πάνω στη σανίδα με x = 0 στο έδαφος. Οι συντελεστές τριβής στατικής και ολισθήσεως θεωρούνται ίσοι. Ο εργάτης δίνει στα τούβλα αρχική ταχύτητα μέτρου υ0 και η βαρυτική επιτάχυνση είναι g = 10m/s2. Δίνονται και ημ30 = ½συν30 = √3/2.

α) Αν η αρχική ταχύτητα είναι σχετικά μικρή, ο εργάτης παρατηρεί ότι το κάθε τούβλο ανέρχεται στη σανίδα, σταματάει και επιστρέφει. Από μια κρίσιμη όμως τιμή και πάνω, στο μέτρο της αρχικής ταχύτητας, τα τούβλα φτάνουν σε κάποιο σημείο σταματούν και δεν επιστρέφουν. Μπορείτε να δώσετε μια ποιοτική εξήγηση για αυτό το φαινόμενο;

β) Ποια είναι η ελάχιστη απόσταση xmin, που πρέπει να διανύσει ένα τούβλο πάνω στη σανίδα, για να σταματήσει μόνιμα; Η απόσταση αυτή εξαρτάται από τη μάζα των τούβλων;

γ) Βρείτε το μέτρο Τ της τριβής ολίσθησης, σε συνάρτηση με τη μάζα κάθε τούβλου και την απόσταση x από το σημείο εκτόξευσης και κάνετε την αντίστοιχη γραφική παράσταση μέχρι τη θέση xmin, που υπολογίσατε στο ερώτημα (β).

δ) Βρείτε το μέτρο της αρχικής ταχύτητας υ0, που απαιτείται για να φτάνει κάθε τούβλο στη θέση xmin.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Kατηγορίες

Πρόσφατα άρθρα

Σαν σήμερα

27/5/1963: Δολοφονείται ο Γρηγόριος Λαμπράκης, βουλευτής.

Άνοιγμα μενού
Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση
Μετάβαση σε γραμμή εργαλείων