Σε οριζόντιο επίπεδο βρίσκεται ένα πλαίσιο σχήματος τραπεζίου ΚΛΜΝ, ανοιχτό στην πλευρά ΜΝ, όπως φαίνεται στην κάτοψη του σχήματος 1, όπου τα Μ, Ν είναι συνευθειακά, με (ΜΝ) = 3m. Δεν είναι όλες οι πλευρές από το ίδιο υλικό, με αποτέλεσμα υπολογίσιμη αντίσταση έχει μόνο η πλευρά ΚΛ, R = 0,5Ω. Οι γωνίες του είναι Κ=900, Λ=1350, ενώ (ΚΛ) = ψ0 = 1m. Σε όλο το χώρο υπάρχει κατακόρυφο ομογενές μαγνητικό πεδίο, έντασης μέτρου Β =1Τ με φορά προς το έδαφος. Ευθύγραμμος αγωγός ΑΓ, μήκους L =3m, είναι συνεχώς σε επαφή με το πλαίσιο, με το άκρο του Γ να ολισθαίνει πάνω στην πλευρά ΚΝ, έτσι ώστε ό αγωγός να είναι συνεχώς κάθετος σε αυτή. Ασκώντας κατάλληλη μεταβλητή δύναμη , ο αγωγός μεταφέρεται προς τα δεξιά, με σταθερή ταχύτητα μέτρου υ = 0,5m/s, κάθετη στις δυναμικές γραμμές του μαγνητικού πεδίου. Τη χρονική στιγμή t0 = 0, το ευθύγραμμο τμήμα ΑΓ συμπίπτει με την πλευρά ΚΛ του πλαισίου. Τριβές αμελητέες.
α) Βρείτε τη χρονική σχέση του μήκους ( ΓΔ) = ψ του αγωγού (σχήμα 1), που έχει συνεχώς τα άκρα του πάνω στο πλαίσιο, από τη χρονική στιγμή t0 = 0, μέχρι τη χρονική στιγμή t1 που ο αγωγός εγκαταλείπει το πλαίσιο.
β) Θεωρούμε το εμβαδικό διάνυσμα n, που προσανατολίζει την επιφάνεια του κυκλώματος, που σαρώνει ο αγωγός κατά την κίνησή του, να έχει φορά προς το έδαφος.
Η αλγεβρική τιμή της ΗΕΔ επαγωγής που δημιουργείται στο κύκλωμα από την κίνηση του αγωγού είναι θετική ή αρνητική; Δικαιολογείστε.
γ) Να βρείτε τη χρονική εξίσωση της έντασης του επαγωγικού ρεύματος που διαρρέει το κύκλωμα.
δ) Να κάνετε τη γραφική παράσταση της έντασης του επαγωγικού ρεύματος σε βαθμολογημένους άξονες και να υπολογίσετε το ηλεκτρικό φορτίο, που θα περάσει από μια διατομή του κυκλώματος μέχρι τη χρονική στιγμή t1.
ε) Σχεδιάστε τη φορά του επαγωγικού ρεύματος στο κύκλωμα. Είναι σύμφωνη και με τον κανόνα Lenz;
στ) Ποια οριζόντια δύναμη κάθετη στον αγωγό πρέπει να ασκούμε για να επιτυγχάνεται η σταθερή ταχύτητα;
ζ) Ποιες ενεργειακές μετατροπές συμβαίνουν τη χρονική στιγμή t2 = 2s;
Απάντηση 