Μια κυκλική μεταβολή, που δε συναντάται σε μηχανές…

Ιδανικό αέριο υποβάλλεται στην κυκλική μεταβολή ΑΒΓΔΕΖΓΗΑ του σχήματος. Οι δύο καμπύλες έχουν σχήμα κύκλου με ακτίνες R1 > R2.

i) Κατά τη διάρκεια της πλήρους κυκλικής μεταβολής το αέριο παράγει

α) Θετικό έργο                          β) Αρνητικό έργο                      γ) Μηδενικό έργο

Βρείτε τη σωστή απάντηση και δικαιολογείστε την.

ii) Στην κυκλική αυτή μεταβολή η συνολική θερμότητα, που ανταλλάσσει το αέριο εισρέει ή αποβάλλεται από το σύστημα; Εξηγείστε.

iii) Θα μπορούσε να χρησιμοποιηθεί αυτός ο κύκλος από μια θερμική μηχανή; Εξηγείστε.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Μια θερμική μηχανή Carnot τροφοδοτεί ένα ψυγείο Carnot

image
Μια θερμική μηχανή Carnot C1, προσλαμβάνει θερμότητα από μια δεξαμενή θερμοκρασίας θh1 = 7270C με ρυθμό Ph1 = 6kW και αποβάλλει θερμότητα στο περιβάλλον, που έχει θερμοκρασία Τc1 = 300K. Η μηχανική ισχύς που παράγει η θερμική μηχανή χρησιμοποιείται για να τροφοδοτήσει ένα ψυγείο Carnot C2 . Τι κάνει το ψυγείο; Αφαιρεί θερμότητα από το χώρο ψύξης ο οποίος έχει έτσι θερμοκρασία θc2 = -130C και την αποβάλλει στο περιβάλλον που έχει θερμοκρασία Τh2 = 300K. Αφού σχεδιάσετε τις δυο μηχανές, υπολογίστε:

α) Την απόδοση της θερμικής μηχανής C1 και τη μηχανική ισχύ P1, που προσφέρει στο ψυγείο.

β) Ποιος είναι ο συντελεστής λειτουργίας του ψυγείου C2.

γ) Το ρυθμό με τον οποίο αφαιρείται θερμότητα από το χώρο ψύξης στην C2.

δ) Το ρυθμό με τον οποίο αποβάλλεται θερμότητα στο περιβάλλον από το ψυγείο C2.

ε) Το συνολικό ρυθμό αποβολής θερμότητας στο περιβάλλον του συστήματος των δυο μηχανών.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Δυο έμβολα κινούνται παρέα

Δυο έμβολα κινούνται παρέαΤα τοιχώματα των δύο ενωμένων κυλινδρικών δοχείων Δ1, Δ2 του σχήματος είναι αδιαβατικά (θερμομονωτικά). Οι εγκάρσιες διατομές των κυλίνδρων είναι Α1 =1∙10-1m2A2 = 4∙10-1m2 αντίστοιχα. Σε κάθε δοχείο υπάρχει από ένα έμβολο καλά εφαπτόμενο στα τοιχώματα, αλλά ελεύθερα κινούμενο, χωρίς τριβές, σε αποστάσεις L1 = L2 = L = 1,5∙10-1από το σημείο που αλλάζει η εγκάρσια διατομή. Τα έμβολα συνδέονται μεταξύ τους με πολύ λεπτή αβαρή ράβδο. Στον κλειστό χώρο που δημιουργείται, ανάμεσα στα έμβολα, υπάρχει ιδανικό αέριο σε θερμοκρασία Τ0 = 300Κ. Η πίεση του αερίου είναι ίση με την εξωτερική ατμοσφαιρική δηλαδή p0 = patm = 105Pa.

α) Ποιο είναι το μέτρο της δύναμης, που ασκεί σε κάθε έμβολο η ράβδος σύνδεσης, στην αρχική κατάσταση ισορροπίας;

Αφήνουμε για χρονικό διάστημα Δt = 2min, να διέλθει ηλεκτρικό ρεύμα από τον αντιστάτη R, ο οποίος έχει ισχύ P = 30W.

β) Ποιο είναι το είδος της μεταβολής που υφίσταται το αέριο;

γ) Σε ποια κατεύθυνση θα μετακινηθούν τα έμβολα και γιατί;

δ) Ποια θα είναι η μετατόπιση των εμβόλων, μέχρι η νέα κατάσταση ισορροπίας να πραγματοποιηθεί;

ε) Ποια θα είναι η τελική θερμοκρασία του αερίου;

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Όταν η ψυχρή δεξαμενή ζεσταίνεται …

Ένα εξωγήινο εξερευνητικό σκάφος μπαίνει στην ατμόσφαιρα της Αφροδίτης. Στο σκάφος λειτουργεί μια μηχανή Carnot μεταξύ δύο δεξαμενών θερμότητας σε θερμοκρασίες Τh = 1200 K και Tc = 300 K. Κάποια στιγμή, που μπορούμε να θεωρήσουμε t0 = 0s, λόγω βλάβης, η θερμοκρασία Tc αρχίζει να αυξάνεται με ρυθμό  dTc/dt = 0,5K/s.

α) Ποια σχέση δίνει τo συντελεστή απόδοσης της θερμικής μηχανής σε συνάρτηση με το χρόνο;

β) Να κάνετε τη γραφική παράσταση του συντελεστή απόδοσης σε συνάρτηση με το χρόνο, από t0 = 0s, ως t = 350s.

γ) Από το εξωγήινο κέντρο ελέγχου διαπιστώνουν ότι θα μπορούσαν να κρατήσουν σταθερό το συντελεστή απόδοσης, αν αυξάνεται η θερμοκρασία της θερμής δεξαμενής.

Μπορούν να επιτύχουν το εγχείρημα με γραμμική αύξηση της θερμοκρασίας της θερμής δεξαμενής; Αν ναι ποιος θα είναι ο ρυθμός μεταβολής αυτής της θερμοκρασίας;

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Αποικία στον Ερμή και μηχανή Carnot

Ο Ερμής είναι ο πλησιέστερος πλανήτης στον Ήλιο. Αυτό δημιουργεί ένα μεγάλο πρόβλημα αν θέλουμε να δημιουργήσουμε αποικία, αφού την ημέρα η θερμοκρασία είναι 4300C και το βράδυ πέφτει στους -1800C. Οι άποικοι φυσικά θα πρέπει να ζουν σε θόλους με κλιματισμό. Ας θεωρήσουμε ότι ένα κλιματιστικό μηχάνημα, λειτουργεί σαν ιδανική μηχανή Carnot και στο χώρο διαβίωσης δημιουργεί θερμοκρασία 200C. Ο ρυθμός απώλειας ενέργειας από ή προς το περιβάλλον από τη μόνωση του θόλου είναι 0,5KJ/για διαφορά θερμοκρασίας 10C .

α) Ποιος είναι ο ρυθμός  απώλειας ενέργειας τη νύχτα και ποια η ισχύς της μηχανής Carnot, όταν λειτουργεί κατά τη διάρκεια της νύχτας;

β) Ποιος είναι ο ρυθμός  εισροής ενέργειας την ημέρα και ποια η ισχύς της μηχανής Carnot, όταν λειτουργεί κατά τη διάρκεια της ημέρας;

Απάντηση(Word)

Απάντηση(Pdf)

Η απόδοση του κύκλου Stirling

Το ιδανικό μονοατομικό αέριο μιας θερμικής μηχανής υποβάλλεται στην κυκλική μεταβολή που φαίνεται στο διπλανό διάγραμμα  PV, όπου 1→2 είναι ισόθερμη εκτόνωση, 2→3 είναι ισόχωρη ψύξη, 3→4 είναι ισόθερμη συμπίεση και 4→1 είναι ισόχωρη θέρμανση μέχρι την αρχική κατάσταση. Να υπολογίσετε το θερμοδυναμικό συντελεστή απόδοσης της μηχανής και να τον συγκρίνετε με αυτόν της μηχανής Carnot, που εργάζεται ανάμεσα στις ίδιες θερμοκρασίες.

ΣΥΝΕΧΕΙΑ

Πυροβολώντας ένα αέριο…

Κυλινδρικό δοχείο με θερμικά μονωμένα τοιχώματα είναι κλεισμένο αεροστεγώς με θερμομονωτικό έμβολο μάζας M = 1,9kg, που μπορεί να κινείται χωρίς τριβές μέσα σ’ αυτό.

Το δοχείο είναι ακλόνητο με τον άξονά του οριζόντιο και περιέχει αέριο όγκου Vο = 0,8L σε θερμοκρασία Το και πίεση Pο = 105N/m², με το έμβολο να βρίσκεται σε ισορροπία.

Βλήμα μάζας m = 0,1kg κινείται οριζόντια στην προέκταση του άξονα του δοχείου και σφηνώνεται στο έμβολο, αναγκάζοντάς το να κινηθεί και να συμπιέσει το αέριο αδιαβατικά.

ΣΥΝΕΧΕΙΑ

Μιά άσκηση του Διονύση Μητρόπουλου που την …προσάρμοσα λίγο στη “νέα” ύλη.

Ο αντιστάτης ζεσταίνει το αέριο

Το έμβολο E, κλείνει μια ποσότητα ιδανικού μονοατομικού αερίου, μέσα στο οριζόντιο κυλινδρικό δοχείο του σχήματος. Η αρχική πίεση του αερίου, ίδια με την εξωτερική ατμοσφαιρική, είναι p1 = 105 Pa. Το εμβαδόν του εμβόλου είναι Α = 0,03m2. Ένα ελατήριο σταθεράς k = 2000N/m, που έχει το φυσικό του μήκος, έχει συνδεθεί στο ένα άκρο του με το έμβολο και στο άλλο με ακλόνητο στήριγμα. Τα τοιχώματα του δοχείου και το έμβολο είναι θερμομονωτικά. Ο αρχικός όγκος του αερίου στο δοχείο είναι V1 = 0,024m3 και η αρχική θερμοκρασία είναι Τ1 = 300K. Ένας αντιστάτης με αντίσταση R = 103Ω, ζεσταίνει το αέριο για χρονικό διάστημα Δt = 10s, ανεβάζοντας τη θερμοκρασία σε Τ2 = 360Κ.
α) Βρείτε τη μετατόπιση του εμβόλου
β) Ποιες είναι οι τελικές τιμές πίεσης και όγκου του αερίου;
γ) Ποια είναι η μεταβολή της εσωτερικής ενέργειας του αερίου;
δ) Ποια είναι η ενέργεια που ανταλλάσσει το αέριο μέσω έργου;
ε) Υπολογίστε την ενέργεια που δόθηκε στον αέρα με τον αντιστάτη.
στ) Ποια ήταν η ένταση του ρεύματος που πέρασε από τον αντιστάτη;

Απάντηση(pdf)

Απάντηση(word)

Ας εφαρμόσουμε τον 1ο Θερμοδυναμικό Νόμο

Μια ποσότητα αερίου μπορεί να υποστεί μεταβολή από την αρχική κατάσταση Α στην τελική κατάσταση Β με τρεις διαφορετικούς τρόπους, όπως φαίνεται στο διάγραμμα. Η θερμότητα που προσφέρθηκε στο αέριο στη μεταβολή 1 είναι Q1 = 10p0V0.
i) Η μεταβολή της εσωτερικής ενέργειας του αερίου στη μεταβολή 1 είναι
α) 6p0V0          β) 2p0V          γ) –2p0V0
ii) Η θερμότητα που αντάλλαξε το αέριο στη μεταβολή 2 είναι
α) p0V0            β) 11p0V          γ) –2p0V0
iii) Η θερμότητα που αντάλλαξε το αέριο στη μεταβολή 3 είναι
α) p0V0            β) 2p0V          γ) 9p0V0
iv) Ο λόγος της μέγιστης προς την ελάχιστη θερμοκρασία που έφτασε το αέριο κατά τη διάρκεια των μεταβολών είναι
α) 14    β) 15      γ) 16

 

Απάντηση

 

Μια θερμική μηχανή…

Το ιδανικό αέριο μιας θερμικής μηχανής βρίσκεται μέσα σε κύλινδρο, στην κατάσταση Α, πίεσης Ρ0, όγκου V0, απόλυτης θερμοκρασίας Τ0 και υποβάλλεται στις παρακάτω αντιστρεπτές μεταβολές:

ΑΒ: Αδιαβατική συμπίεση μέχρι να τετραπλασιαστεί η απόλυτη θερμοκρασία του

ΒΓ: Ισόθερμη εκτόνωση

ΓΑ: Ισοβαρής ψύξη μέχρι την αρχική του κατάσταση.

α) Βρείτε την πίεση, τον όγκο και την απόλυτη θερμοκρασία του αερίου στις καταστάσεις Β και Γ, παρουσιάζοντας τα αποτελέσματά σας σε πίνακα μεταβολών.

β) Να κάνετε ποιοτικά το διάγραμμα P-V.

γ) Υπολογίστε σε κάθε μεταβολή το έργο, τη μεταβολή της εσωτερικής ενέργειας και το ποσό θερμότητας που ανταλλάσσει το αέριο με το περιβάλλον.

δ) Ποιος είναι ο συντελεστής απόδοσης αυτής της μηχανής;

ε) Ποιος θα ήταν  συντελεστής απόδοσης μιας μηχανής Carnot που θα λειτουργούσε ανάμεσα στις ίδιες θερμοκρασίες;

Δίνονται γ = 5/3, ln2 = 0,7. Οι απαντήσεις να δοθούν σε συνάρτηση με τα Ρ0, V0, Τ0

ΣΥΝΕΧΕΙΑ

Kατηγορίες

Πρόσφατα άρθρα

Σαν σήμερα

4/10/1908: Η Κρήτη επαναστατεί και κηρύσσει την ένωσή της με την Ελλάδα, η οποία, όμως, θα έρθει τέσσερα χρόνια αργότερα.

4/10/: Παγκόσμια Ημέρα Ζώων
Η Παγκόσμια Ημέρα των Ζώων καθιερώθηκε ως ένας τρόπος ευαισθητοποίησης όλων μας για τα δικαιώματα των ζώων. Αυτά αναφέρονται στην Διακήρυξη των δικαιωμάτων των ζώων.
   - Σχετικές αναρτήσεις

Άνοιγμα μενού
Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση
Μετάβαση σε γραμμή εργαλείων