Ένας αστεροειδής κινείται στο διάστημα με σταθερή ταχύτητα υΑ = 5km/s. Θέλουμε να προσγειώσουμε στην επιφάνειά του ένα εξερευνητικό, μη επανδρωμένο όχημα, μάζας m = 1200kg. Η ταχύτητα του οχήματος είναι ίδιας κατεύθυνσης με την και μέτρου υ0 = 5,1km/s. Για να επιβραδύνουμε το σκάφος, θέτουμε σε λειτουργία τους ανασχετικούς πυραύλους του για Δt = 4s, εκτοξεύοντας καυσαέρια προς την κατεύθυνση της κίνησης, όπως φαίνεται στο σχήμα 1, με αποτέλεσμα να ασκείται στο διαστημικό όχημα δύναμη, που το μέτρο της μεταβάλλεται χρονικά όπως στο διάγραμμα του σχήματος 2.
i) Γιατί η εκτόξευση καυσαερίων, προς την κατεύθυνση της κίνησης, επιβραδύνει το όχημα;
ii) Την απαιτούμενη δύναμη πέδησης στο όχημα δημιουργεί
α) ένα αλεξίπτωτο που ανοίγει την κατάλληλη στιγμή.
β) ένα ειδικό φρένο όπως στα αυτοκίνητα, που ενεργοποιεί ο υπολογιστής του σκάφους.
γ) τα καυσαέρια καθώς εξέρχονται από τα ακροφύσια των κινητήρων.
iii) Ποια μεταβολή ορμής προκαλούν στο σκάφος οι ανασχετικοί πύραυλοι; Να κάνετε κατάλληλο σχήμα με τα διανύσματα των ορμών.
iv) Υποθέτοντας αμελητέα την μεταβολή μάζας του οχήματος εξαιτίας της εκροής των καυσαερίων βρείτε ποια θα είναι η ταχύτητα του οχήματος στο τέλος αυτής της διαστημικής μανούβρας.
v) Αν η θερμαντική ικανότητα της υδραζίνης (Ν2Η4), δηλαδή του καυσίμου που κάηκε, είναι 20ΜJ/kg, υπολογίστε τη μάζα του.
Η βαρυτική αλληλεπίδραση μεταξύ του οχήματος και του αστεροειδούς είναι αμελητέα και οι ταχύτητες είναι υπολογισμένες ως προς ακίνητο παρατηρητή.