Ταλάντωση σε κεκλιμένο επίπεδο με μεταβλητή κλίση-Μια διερεύνηση

Σώμα μάζας m συνδέεται σε ελατήριο σταθεράς k και το σύστημα τοποθετείται σε κεκλιμένο επίπεδο που μπορεί να αλλάζει γωνία κλίσης θ από 0 ως π/2 rad.

α) Δώστε μαθηματική έκφραση Δl0 = f(θ) για την επιμήκυνση του ελατηρίου στη θέση ισορροπίας, σε συνάρτηση με τη γωνία κλίσης και σχεδιάστε την αντίστοιχη γραφική παράσταση.
β) Απομακρύνουμε το σώμα κατά x0 = Α από τη θέση ισορροπίας του και το αφήνουμε ελεύθερο να εκτελέσει απλή αρμονική ταλάντωση.
Ποιο ή ποια από τα παρακάτω φυσικά μεγέθη επηρεάζονται, αν επαναλαμβάνουμε το πείραμα αλλάζοντας την κλίση του επιπέδου;
β1) περίοδος και γωνιακή συχνότητα
β2) πλάτος, μέγιστη ταχύτητα, μέγιστη επιτάχυνση
β3) αρχική φάση
β4) ενέργεια ταλάντωσης
β5) δυναμική ενέργεια ταλάντωσης
β6) κινητική ενέργεια ταλάντωσης
β7) δυναμική ενέργεια ελατηρίου
β8) δυναμική ενέργεια βαρύτητας

Συνέχεια 

Συνέχεια %ce%b1%ce%b1%ce%b1%ce%b11

Ξεκινάμε και καταλήγουμε πάνω στον κύκλο

Ο μπαρμπα-Γιάννης ο σιδεράς κόλλησε σε ένα κυκλικό στεφάνι, ακτίνας R, δύο λεία ευθύγραμμα σύρματα AB και ΑΓ, αφού πρώτα πέρασε μέσα σε αυτά δυο μικρούς όμοιους κρίκους Κ1 και Κ2, μάζας m ο καθένας. Αν τοποθετήσουμε τη διάταξη με τη διάμετρο ΑΔ κατακόρυφη, όπως φαίνεται στο διπλανό σχήμα και αφήσουμε ταυτόχρονα ελεύθερους τους κρίκους από το σημείο Α, να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες, δικαιολογώντας την απάντησή σας. Δίνεται η επιτάχυνση της βαρύτητας g.

α) Οι δύο κρίκοι αποκτούν το ίδιο μέτρο επιτάχυνσης.

β) Οι κρίκοι φτάνουν ταυτόχρονα στα κατώτερα σημεία Β και Γ της τροχιάς τους.

γ) Ο ρυθμός μεταβολής της ορμής έχει το ίδιο μέτρο και για τους δύο κρίκους.

δ) Για τα μέτρα των μεταβολών των ορμών ισχύει |Δp1| < |Δp2|

Συνέχεια 

Συνέχεια %ce%b1%ce%b1%ce%b1%ce%b11

Διατήρηση στροφορμής με μειούμενη ακτίνα

Ένα σφαιρίδιο Σ μάζας m = 2kg βρίσκεται πάνω σε λείο οριζόντιο τραπέζι, δεμένο στο ένα άκρο ιδανικού νήματος. Περνάμε το νήμα από μια τρύπα Ο, στην επιφάνεια του τραπεζιού,  προσδίδουμε στο σφαιρίδιο μια αρχική οριζόντια ταχύτητα μέτρου υ= 2m/s και ταυτόχρονα στο κάτω άκρο του Α, ασκούμε μια μεταβλητή κατακόρυφη δύναμη , ώστε το σημείο Α να αρχίσει να κατεβαίνει επιτάχυνση μέτρου αr = 1m/s2.

i) Αν η αρχική ακτίνα της τροχιάς του σφαιριδίου είναι R0 = 6m, να γράψετε την εξίσωση που δίνει την ακτίνα της τροχιάς σε συνάρτηση με το χρόνο και να εξηγήσετε ποιοτικά τι είδος τροχιάς θα διαγράψει το σφαιρίδιο.

ii) Σχεδιάστε σε κάτοψη την τροχιά ποιοτικά και σε μια τυχαία θέση του σφαιριδίου σημειώστε πάνω στο σχήμα τα διανύσματα (ταχύτητα, τάση νήματος, στροφορμή ως προς το Ο). Μπορεί η τάση να είναι κάθετη στην ταχύτητα;

iii) Τη χρονική στιγμή t1 = 2s η δύναμη που ασκούμε έχει μέτρο F = 6,5N.

α. Yπολογίστε για το σφαιρίδιο Σ την επιτάχυνση.

β. Aφού εξηγείστε την ύπαρξή της, υπολογίστε την κεντρομόλο επιτάχυνση.

iv) Κάποιος ισχυρίζεται ότι η ποσότητα L = m∙υ∙R εκφράζει κάθε χρονική στιγμή τη στροφορμή του σφαιριδίου ως προς το Ο. Συμφωνείτε με αυτό τον ισχυρισμό;

v) Υπολογίστε το μέτρο της ταχύτητας του σφαιριδίου τη χρονική στιγμή t1= 2s.

vi) Βρείτε την τάση του νήματος σε συνάρτηση με το χρόνο.

vii) Ποιος είναι ο ρυθμός παραγωγής έργου από την δύναμη τη χρονική στιγμή t1= 2s;

viii) Πόσο είναι το έργο της δύναμης από τη χρονική στιγμή της εκτόξευσης μέχρι τη χρονική στιγμή t1;

Δεν αναπτύσσεται τριβή μεταξύ νήματος (κατά το πέρασμά του από την τρύπα) και της επιφάνειας του τραπεζιού.

Συνέχεια 

Συνέχεια %ce%b1%ce%b1%ce%b1%ce%b11

Η σφήνα και ο κύλινδρος

Ο ομογενής κύλινδρος K του σχήματος,  μάζας m = 6kg, ισορροπεί με τη βοήθεια της ομογενούς κεκλιμένης σφήνας ΑΒΓ ίδιας μάζας m και του κατακόρυφου τοίχου. Οι κάθετες πλευρές της σφήνας έχουν μήκη ΑΒ = 8m και ΑΓ = 6m και ο κύλινδρος εφάπτεται με τη σφήνα στο μέσον Μ της υποτείνουσας ΒΓ. Στο σχήμα φαίνεται το κέντρο μάζας C, όπου xC = 8/3m, yC = 2m. Τριβή υπάρχει μόνο μεταξύ της σφήνας και του οριζόντιου δαπέδου, ενώ η επιτάχυνση της βαρύτητας είναι g = 10m/s2.

α) Σχεδιάστε τις δυνάμεις που ασκούνται στον κύλινδρο και τη σφήνα.

β) Βρείτε τις δυνάμεις που ασκούνται στον κύλινδρο από τη σφήνα και τον τοίχο.

γ) Βρείτε τις δυνάμεις που δέχεται η σφήνα από το δάπεδο.

δ) Υπολογίστε την ελάχιστη τιμή του συντελεστή στατικής τριβής μεταξύ σφήνας και δαπέδου για να μην ολισθαίνει η σφήνα.

ε) Σε ποιο σημείο της βάσης ΑΒ της σφήνας ασκείται η (συνισταμένη) κάθετη αντίδραση του δαπέδου;

Συνέχεια 

Συνέχεια %ce%b1%ce%b1%ce%b1%ce%b11

Kατηγορίες

Πρόσφατα άρθρα

Σαν σήμερα

9/12: Παγκόσμια Ημέρα κατά της Διαφθοράς
Τη διαφθορά μάχεται εδώ και χρόνια σε παγκόσμιο επίπεδο η μη κυβερνητική οργάνωση «Διεθνής Διαφάνεια», που έπεισε τον ΟΗΕ να υιοθετήσει σχετικές πρωτοβουλίες. Η 9η Δεκεμβρίου γιορτάζεται ως Παγκόσμια Ημέρα κατά της Διαφθοράς, γιατί την ημερομηνία αυτή του 2003 η γενική συνέλευση του ΟΗΕ υιοθέτησε τη Συνθήκη κατά της Διαφθοράς.
   - Σχετικές αναρτήσεις

Άνοιγμα μενού
Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση
Μετάβαση σε γραμμή εργαλείων