Όρια συναρτήσεων

0

Συγγραφέας: dkonas | Κατηγορία Για την Γ΄ Λυκείου, Μαθηματικά και Στοιχεία Στατιστικής Γ΄ Λυκείου | , στις 11-10-2014

Με την ακόλουθη διαδραστική εφαρμογή μπορείτε να εξασκηθείτε στον υπολογισμό, αλγεβρικά ή γραφικά, ορισμένων βασικών μορφών ορίων συναρτήσεων.

Limits_game

Γραφικές παραστάσεις συναρτήσεων

0

Συγγραφέας: dkonas | Κατηγορία Για την Γ΄ Λυκείου, Μαθηματικά Θετικών Σπουδών Γ΄ Λυκείου, Μαθηματικά και Στοιχεία Στατιστικής Γ΄ Λυκείου | , στις 27-09-2014

Με τη βοήθεια της ακόλουθης διαδραστικής εφαρμογής, μπορείτε να εξασκηθείτε στη χάραξη των γραφικών παραστάσεων ορισμένων βασικών συναρτήσεων.

Graphs_game

Η “ρίζα” του – αναγκαίου – κακού …

0

Συγγραφέας: dkonas | Κατηγορία Άλγεβρα Α΄ Λυκείου, Γεωμετρία Α΄ Λυκείου, Για την Α΄ Λυκείου | , στις 04-09-2014

Θα μπορούσατε να τοποθετήσετε, κατάλληλα, τέσσερα ίδια τετράγωνα, χωρίς αλληλεπικαλύψεις, έτσι, ώστε να κατασκευάσετε ένα νέο τετράγωνο; Είναι δυνατόν να γίνει το ίδιο με εννιά ίδια τετράγωνα; Με δεκαέξι; Με δύο; Τι παρατηρείτε;

Ο όρος “τετραγωνική ρίζα”, για μια έννοια που συνήθως χρησιμοποιείται στο πλαίσιο αλγεβρικών διαδικασιών, έτσι κι αλλιώς, προϊδεάζει για δεσμούς της υπόστασής της με τη Γεωμετρία. Έχετε κάποια υπόννοια για το ποια θα μπορούσε να είναι η “ρίζα” ενός τετραγώνου;

Η σύνδεση με τη Γεωμετρία μπορεί να γίνει σχετικά εύκολα λ.χ. για τις τετραγωνικές ρίζες (τετράγωνων) αριθμών όπως το $4$, το $9$, το $16$, το $25$ κλπ. Για παράδειγμα, για τον αριθμό $4$, η τετραγωνική του ρίζα δεν είναι τίποτε άλλο παρά η πλευρά τετραγώνου με εμβαδό $4$. Εναλλακτικά, πρόκειται για την πλευρά ενός τετραγώνου που έχει εμβαδό όσο το συνολικό εμβαδό τεσσάρων ίδιων τετραγώνων εμβαδού $1$.

Στα αρχαία Ινδικά εγχειρίδια “Sulbasutra”, που αντλούν γνώσεις οι οποίες χρονολογούνται, ίσως, από το 2000 π.Χ. και μεταφέρθηκαν μέσω της προφορικής παράδοσης, περιγράφονται τρόποι κατασκευής βωμών και ναών, ενώ, ταυτόχρονα, δίνεται το απαραίτητο “τεχνικό” υπόβαθρο˙ μια συλλογή εμπειρικών “κανόνων” (“Sutra”), ουσιαστικά, από το πεδίο που αργότερα θα στοιχειοθετούσε τη “Γεωμετρία”. Προφανώς, σε κάποια από τις κατασκευές των αρχαίων Ινδών, χρειάστηκε ο υπολογισμός της διαγωνίου ενός τετραγώνου:

“Το μέτρο της πλευράς του πρέπει να αυξηθεί κατά το ένα τρίτο του κι αυτό (το ένα τρίτο του) ξανά με το ένα τέταρτό του μειωμένο κατά το τριακοστό τέταρτο (αυτού του τετάρτου)˙ αυτή είναι η διαγώνιος ενός τετραγώνου …”

Με σύγχρονη ορολογία και συμβολισμό:

\[
\sqrt{2}=1+\frac{1}{3}+\frac{1}{3\cdot4}-\frac{1}{3\cdot4\cdot34}\simeq 1.4142…,
\]

Αλήθεια πως ήταν σε θέση οι αρχαίοι Ινδοί να προσδιορίσουν με τόσο μεγάλη ακρίβεια την εύρεση του $\sqrt{2}$; Ποιές πρωταρχικές γεωμετρικές διαδικασίες θα μπορούσαν να έχουν αξιοποιήσει; Άραγε, κατά την προσέγγισή τους, να αντιλήφθηκαν την ιδιαιτερότητα έκφρασης αυτού του αριθμού;

Με τη βοήθεια της ακόλουθης διαδραστικής εφαρμογής,

Sulbasutram_Square_Root_Of_Two

μπορείτε, ίσως, με μέθοδο παρόμοια μ΄ αυτήν που ενδεχομένως να ακολουθούσαν οι αρχαίοι Ινδοί, να βρείτε τρόπο έκφρασης των $\sqrt{2},\sqrt{3}$ και $\sqrt{5}$.

Αναφορές

  1. Henderson D.W., Square Roots in the Sulbasutra, Department of Mathematics, Cornell University.

Γραφική Επίλυση γραμμικών συστημάτων 2×2

0

Συγγραφέας: dkonas | Κατηγορία Άλγεβρα Γ΄ Γυμνασίου, Για την Γ΄ Γυμνασίου | , στις 05-08-2014

Με τη βοήθεια της ακόλουθης διαδραστικής εφαρμογής, μπορείτε να ελέγξετε τις γνώσεις σας στη γραφική επίλυση γραμμικών συστημάτων 2×2.

Linear_systems_graphical_interpretation_game

Ο π – ελάτης έχει πάντα δίκιο!

0

Συγγραφέας: dkonas | Κατηγορία Γεωμετρία Β΄ Λυκείου, Για τη Β΄ Λυκείου | , στις 16-07-2014

Μια απαιτητική πελάτισσα, με αφορμή την τροποποίηση ενός στρογγυλού γυάλινου τραπεζιού, “εξαντλεί” τα “όρια” των ικανοτήτων ενός δεξιοτέχνη υαλοποιού. Θα βοηθήσετε τον υαλοποιό να ολοκληρώσει την παραγγελία;

Ίσως, στην προσπάθεια αυτή, να απαντήσετε τη μέθοδο του Αρχιμήδη για τον υπολογισμό του μήκους και του εμβαδού ενός κύκλου. Επίσης, θα έχετε τη δυνατότητα να ξανασυστηθείτε μ΄ έναν παλιό σας γνώριμο: τον αριθμό $\pi$.

Pi's_Priviledge

Το πρόβλημα του ξυλουργού

0

Συγγραφέας: dkonas | Κατηγορία Γεωμετρία Γ΄ Γυμνασίου, Για την Γ΄ Γυμνασίου | , στις 02-07-2014

Ένας ξυλουργός σχεδιάζει την κατασκευή μιας στέγης ενός σπιτιού.

Carpenter's_problem

Το εγχείρημα τον φέρνει αντιμέτωπο με μια σειρά από ερωτήματα που, για να απαντηθούν με ακρίβεια, θα χρειαστούν γνώσεις από την Τριγωνομετρία, τη Γεωμετρία και την Άλγεβρα. Μπορείτε να τον βοηθήσετε;

Κουλουμο … μετρία

0

Συγγραφέας: dkonas | Κατηγορία Γεωμετρία Β΄ Γυμνασίου, Για τη Β΄ Γυμνασίου | , στις 01-07-2014

Θα μπορούσατε να συνδυάσετε τις γνώσεις σας από τη Γεωμετρία, ιδιαίτερα από το κεφάλαιο της Τριγωνομετρίας, στην ακόλουθη δραστηριότητα Κουλουμο … μετρίας; :mrgreen:

Trigonometry_2

Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση