Η γενική μορφή εξίσωσης δεύτερου βαθμού στο επίπεδο, δηλαδή μια εξίσωση της μορφής,
\begin{equation}
ax^2+2bxy+cy^2+dx+ey+f=0,\,\,\,\,a,b,c,d,e,f \in \mathbb{R},
\end{equation}
μπορεί να αποδειχτεί ότι, στην περίπτωση που δεν είναι αδύνατη, παριστάνει είτε ζεύγος παράλληλων ευθειών είτε μια κωνική τομή: έλλειψη – κύκλος – σημείο, παραβολή, υπερβολή – ζεύγος τεμνόμενων ευθειών.
Η παρακάτω διαδραστική εφαρμογή παρέχει τη δυνατότητα σχεδίασης και ελέγχου του γραφήματος κάθε εξίσωσης, ενός συστήματος δύο τέτοιων εξισώσεων, οπότε, τελικά, της γραφικής του επίλυσης.
Copyright © 2017. Με την επιφύλαξη όλων των δικαιωμάτων.