Feed
Άρθρα
Σχόλια

Στο Γυμνάσιο διδασκόμαστε την επιμεριστική ιδιότητα από τα πρώτα μαθήματα της Αλγεβρας .

α * (β + γ)= α * β + α * γ

Ο καθηγητής – καθηγήτρια μας, επιμένει να τη μάθουμε καλά γιατί όπως λέει είναι βασική ιδιότητα. Στην ερώτηση αν τη χρησιμοποιούμε στη ζωή μας, στη καθημερινότητα μας ξαφνιαζόμαστε, κοιταζόμαστε και απαντάμε πως μαλλον όχι, όχι  δεν τη χρησιμοποιούμε. Και τότε γιατί να τη μαθαίνουμε; Που άραγε θα μας χρειαστεί; Ισως κάποιος επιστήμονας τη χρησιμοποιεί; …. Ε! σίγουρα θα τη χρειαστούμε κάπου στα …..μαθηματικά μας, για να το λέει ο καθηγητής – καθηγήτρια μας κάτι θα ξέρει …..

Η καθηγήτρια μας, μας ρώτησε να της εξηγήσουμε τι εννοούμε με τη φράση «νόστιμα και κατακόκκινα μήλα» , απαντήσαμε «νόστιμα μήλα και κατακόκκινα μήλα» και μετά μας ρώτησε πως αλλοιώς λέμε τη φράση «νόστιμα μήλα και νόστιμα αχλάδια» δώσαμε απάντηση «νόστιμα μήλα και αχλάδια». Γράψαμε τις ισοδύναμες προτάσεις στον πίνακα κάτω από την επιμεριστική ιδιότητα και ξαφνικά παρατηρήσαμε μια ευθεία αντιστοιχία της επιμεριστικής ιδιότητας με το γλωσσικό πρότυπο!!!

Στη συνέχεια ζήτησε να της πούμε απλές ερωτήσεις / προβλήματα που απαντούσαμε / λύναμε στο Δημοτικό και πολλά από αυτά μας βοήθησε να τα συνδέσουμε με την επιμεριστική ιδιότητα. Θέλετε να σας τα πούμε κι εσάς;

  • Στο δημοτικό από την πρώτη τάξη ο δάσκαλος /η δασκάλα, μας έμαθε ότι μπορούμε να προσθέτουμε μόνον όμοια πράγματα πχ:

+ =

Δηλαδή 3 μήλα + 2 μήλα = 5 μήλα

και με άλλο τρόπο λέγαμε:
3φορές+2φορές = (3+2)φορές =5 

3 μήλα + 2 μήλα = ( 3 + 2 ) μήλα = 5 μήλα

ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ!

  • Στην επόμενη τάξη μάθαμε να προσθέτουμε διψήφιους αριθμούς π.χ το 14 με το 53. Γράφαμε 14+53=67 και το βρίσκαμε με το μυαλό αφού αναλύαμε κάθε αριθμό στις δεκάδες Δ και τις μονάδες Μ που έχει και στη συνέχεια προσθέταμε μονάδες με μονάδες και δεκάδες με δεκάδες. Στο παράδειγμα μας ο 14=1Δ +4Μ και ο 53=5Δ +3Μ, οπότε
    14+53=(1Δ+5Δ)+( 4Μ+3Μ)=(1+5) Δ+(4+3) Μ=6Δ+ 7Μ=67
    ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ!
  • Σε άλλη τάξη μάθαμε διάφορα γεωμετρικά σχήματα και υπολογίζαμε την περίμετρο τους πχ την ημιπερίμετρο ενός ορθογωνίου παραλληλογράμμου με διαστάσεις 3,6 μ και 4 μ . Απαντούσαμε ότι η ημιπερίμετρος:
    Η=3,6μ+ 4μ=7,6μ  ή 3,6 μ + 4 μ =(3,6 + 4) μ  = 7,6 μ
    ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ!
  • Αργότερα μάθαμε να βρίσκουμε το εμβαδό ενός γεωμετρικού σχήματος π.χ το εμβαδό του παραπάνω ορθογωνίου είναι το γινόμενο των δύο διαστάσεων του 3,6 μ  *  4 μ. Τον πολλαπλασιασμό αυτό τον κάναμε με δύο τρόπους α) κάναμε τη πράξη κατακόρυφα στο χαρτί μας 3,6 μ  * 4 μ  =14,4 τ.μ ή  β) με το μυαλό μας. Θυμάμαι κάναμε ένα τέχνασμα για να το βρούμε με το μυαλό μας: γράφαμε τον αριθμό 3,6 =3 + 0.6 και μετά όλα ήταν εύκολα αφού 3* 4 =12 και 0,6 * 4 =2,4 Απαντούσαμε ότι το εμβαδό Ε, ισούται με το άθροισμα 12 + 2,4  = 14,4 τ.μ Δηλαδή λέγαμε
    Ε=3,6μ *4μ =(3+0.6) *4 τ.μ =(3*4+ 0,6 *4 )τ.μ =(12 +2,4)τ.μ =14,4τ.μ ΠΑΛΙ ΚΑΙ ΠΑΛΙ Η ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ!

  • Ηθελα να ντύσω με αυτοκόλητο ντύμα ένα βιβλίο μου σε μέγεθος Α4 και ενα τετράδιο μου πιο κοντό σε μέγεθος. Με ρώτησε η μαμά πόσο αυτοκόλητο χρειαζόμουν για να αγοράσει. Για το βιβλίο μου μαζί με τα περιθώρια χρειαζόμουν αυτοκόλητο  μήκους 32 εκ και για το τετράδιο 29 εκ. Η μαμά έκανε τη πράξη με το μυαλό της και μου είπε ότι θα αγοράσει αυτοκόλητο μήκους 61 εκ. Η μαμά είχε υπολογίσει :
    32 εκ + 29 εκ = (32+29) εκ = 61 εκ,
    ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ !
  • Αυτό το τέχνασμα μου άρεσε και το χρησιμοποιούσα αργότερα για να βρω το γινόμενο μεγάλων αριθμών ως εξής:
    103*8 =(100+3)*8 =100*8+3*8 =800 +24=824
    ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ !
  • Για τον υπολογισμό του μήκους υφάσματος που πρέπει να αγοράσω, για να μου ράψει η μοδίστρα δύο φούστες μια κοντή και μια μακρια ποια ιδιότητα των μαθηματικών χρησιμοποιώ;
    ΤΗΝ ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ !
  • Οταν λέω 3 χ+ 5 χ = ( 3 + 5 )  χ = 8 χ ποια ιδιότητα των μαθηματικών χρησιμοποιώ;
    ΤΗΝ ΕΠΙΜΕΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ !
  • Ας δοκιμάσουμε να βρούμε με δύο τρόπους πόσα χρήματα θα μου κοστίσει το βάψιμο δύο τοίχων του δωματίου μου, αν το βάψιμο κάθε τετραγωνικού κοστίζει 2 ευρώ;ΕΔΩ–>
  • Επιβεβαιώνουμε την ιδιότητα της επιμεριστικής ως προς την αφαίρεση και βρίσκουμε δικά μας παραδείγματα για τη χρησιμότητα της, στην καθημερινότητα μας.
    α * (β – γ)  =  α * β – α * γ

Αφήστε μια απάντηση

Top
 
Μετάβαση σε γραμμή εργαλείων