I like maths

Sir Isaac Newton (Ισαάκ Νεύτων) 1642 – 1727

Ο Σερ Ισαάκ Νιούτον γεννήθηκε σαν σήμερα 25 Δεκεμβρίου του 1642.

Ήταν Άγγλος φυσικός, μαθηματικός, αστρονόμος, φιλόσοφος, αλχημιστής και θεολόγος.

Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών διατύπωσε τους τρεις μνημειώδεις νόμους της κίνησης και τον περισπούδαστο «νόμο της βαρύτητας» (που ο θρύλος αναφέρει πως αναζήτησε μετά από πτώση μήλου από μια μηλιά).

Μεγάλης ιστορικής σημασίας υπήρξαν ακόμη οι μελέτες του σχετικά με τη φύση του φωτός καθώς επίσης και η καθοριστική συμβολή του στη θεμελίωση των σύγχρονων μαθηματικών και συγκεκριμένα του διαφορικού και ολοκληρωτικού λογισμού.

Είχε αποκτήσει τον τίτλο του Εταίρου της Βασιλικής Εταιρείας, που δίνονταν σε πολίτες ή μόνιμους κατοίκους της Κοινοπολιτείας των Εθνών.

Είχε διατελέσει πρόεδρος της Βασιλικής Εταιρίας.

Παιδικά Χρόνια

Όταν γεννήθηκε, ο πατέρας του είχε ήδη πεθάνει.

Τα τρία πρώτα χρόνια της ζωής του μένει μαζί με τη μητέρα και τη γιαγιά του.

Κατόπιν η μητέρα του, Χάννα, παντρεύεται για δεύτερη φορά και φεύγει από το σπίτι, αφήνοντας το μικρό Ισαάκ στα χέρια της μητέρας της.

Όταν ο πατριός πεθαίνει επίσης, μετά από οκτώ χρόνια, η μητέρα γυρίζει στο χωριό με τα τρία ετεροθαλή αδέρφια του, δύο κορίτσια και ένα αγόρι.

Είναι γνωστό ότι ο Νεύτων, ως νεαρός, κρατούσε ένα «αμαρτιολόγιο», έναν κατάλογο δηλαδή όπου σημείωνε τις αμαρτίες που πίστευε ότι διέπραττε.

Μέσα εκεί αναφέρεται στη μητέρα του και στον πατριό του και έτσι γνωρίζουμε ότι ένιωθε ζήλια και μνησικακία για το γεγονός ότι εκείνη τον άφησε από μικρό για να ξαναπαντρευτεί.

Σπουδές

Το 1661, ο νεαρός Νεύτων εισάγεται στο Κολλέγιο Τρίνιτι του Καίμπριτζ.

Λαμβάνει το πρώτο πτυχίο του το 1665 και με υποτροφία, μετά από τρία χρόνια (1668) ολοκληρώνει το μεταπτυχιακό του.

Στο μεταξύ εκλέγεται μέλος της πανεπιστημιακής κοινότητας και αρχίζει έτσι επίσημα την ερευνητική σταδιοδρομία του.

Για τον κοινωνικό κύκλο του Νιούτον κατά την περίοδο της φοίτησής του στο Καίμπριτζ, λίγα πράγματα είναι γνωστά.

Οπωσδήποτε, ένας φίλος του ήταν ο συγκάτοικός του Γουίκινς (Wickins), ο οποίος εκτέλεσε κάποτε και χρέη γραφέα του. Από αναφορές του ίδιου του Νιούτον διαπιστώνουμε πως, πέρα από τη μελέτη, πολύ λίγα άλλα πράγματα τον ενδιέφεραν.

Σε αντίθεση με τη σύγχρονη φήμη του Καίμπριτζ, τον καιρό που ο Νιούτον ήταν εκεί, το ίδρυμα διένυε περίοδο σημαντικής ύφεσης, για λόγους που οφείλονταν κατά μείζονα λόγο στην πολιτική αστάθεια που επικρατούσε στη χώρα.

Αυτό είχε ως αποτέλεσμα αφενός την αποστασιοποίηση του νέου φοιτητή από τους συμφοιτητές του, οι οποίοι στην πλειοψηφία τους επιδίδονταν σε ανούσιες παραπανεπιστημιακές ασχολίες, και αφετέρου την έλλειψη μεθοδικής και έγκυρης καθοδήγησης από τους διδασκάλους του, πολλοί από τους οποίους ήταν διορισμένοι στο ίδρυμα χάριν του πολιτικού ή θρησκευτικού καθεστώτος και ελάχιστη σχέση είχαν με τα επιστημονικά δρώμενα.

Αυτή η κατάσταση, ωστόσο, δεν φαίνεται να εμπόδισε το νεαρό Νεύτωνα να ασχοληθεί με τις επιστήμες με τον πιο ενεργητικό και δημιουργικό τρόπο.

  • Βρίσκοντας το δρόμο μόνος του, πειραματίστηκε αρχικά σε θέματα οπτικής — πολλές φορές με ακραίο τρόπο — ενώ παράλληλα μελετούσε τους παλαιότερους συγγραφείς,
  • όπως οπτική από τον Κέπλερ,
  • φιλοσοφία από τον Αριστοτέλη, τον Γαλιλαίο και τον Ντεκάρτ
  • και, φυσικά, τα μαθηματικά έργα αυτών και άλλων.

Τα Στοιχεία του Ευκλείδη ήταν η πρώτη επαφή του με τη γεωμετρία.

Το μοναδικό του καθαρά μαθηματικό σύγγραμμα του Ντεκάρτ, η «Γεωμετρία» (Géométrie, 1637), υπήρξε σταθμός στις μελέτες του Νεύτωνα.

Η «Γεωμετρία» αποτέλεσε επίσης το κίνητρο για την επινόηση του διαφορικού λογισμού.

Συγκεκριμένα, η άποψη του Ντεκάρτ ότι από την εξίσωση μίας καμπύλης μπορούμε δυνητικά να έχουμε οποιαδήποτε πληροφορία για την καμπύλη, παρότρυνε τον Νεύτωνα να γενικεύσει τις αποσπασματικές μεθόδους του Γάλλου φιλοσόφου σε «αναλυτικούς» αλγόριθμους που να έχουν εφαρμογή σε κάθε καμπύλη.

Στην ανάπτυξη τέτοιων αλγόριθμων από τη σκοπιά του ολοκληρωτικού λογισμού, ο Νεύτων βασίστηκε στο έργο του Τζον Γουόλις (John Wallis).

Στο Arithmetica Infinitorum (1655) ο Γουόλις ασχολείται με το γνωστό πρόβλημα του τετραγωνισμού του κύκλου.

Ορμώμενος από τη μελέτη αυτή, ο Νεύτων ασχολήθηκε με το γενικότερο πρόβλημα τετραγωνισμού καμπύλης, το οποίο σήμερα μπορούμε να χαρακτηρίσουμε ως εύρεση του εμβαδού κάτω από καμπύλη.

Ακόμη βασίστηκε στο βιβλίο αυτό όταν ανακάλυπτε το γενικευμένο διωνυμικό θεώρημα.

Τις χρονιές 1665 και 1666, όταν έπληττε την Ευρώπη η πανούκλα και το πανεπιστήμιο στο Καίμπριτζ παρέμεινε αναγκαστικά κλειστό για προφανείς προληπτικούς λόγους, ο Νεύτων γύρισε στο Γούλσθορπ.

Κατά την παραμονή στη γενέτειρά του η μελέτη του πάνω στα έργα άλλων επιστημόνων άρχισε ήδη να αποδίδει καρπούς.

Την περίοδο εκείνη έκανε, σημαντικότατες ανακαλύψεις για τα μαθηματικά και όχι μόνο, συγκεκριμένα :

  • τη θεωρία χρωμάτων,
  • το γενικευμένο διωνυμικό θεώρημα,
  • και βέβαια, τον απειροστικό λογισμό.

Τα έτη 1665 και 1666 για τον Νεύτωνα αναφέρονται στη βιβλιογραφία ως «Anni Mirabiles» (Θαυματουργά Έτη).

Τα τελευταία έτη (Εκδόσεις – Λάιμπνιτς)

Από τη στιγμή που ο Νεύτων έφυγε από το Καίμπριτζ, μειώθηκε σε μεγάλο βαθμό και η επιστημονική του δραστηριότητα.

Συνέχισε να ασχολείται με μαθηματικά προβλήματα αλλά κυρίως ασχολήθηκε με τις δημοσιεύσεις των εργασιών του.

Ήταν τα χρόνια της διαμάχης με τον Λάιμπνιτς.

Χρησιμοποιώντας κάθε δυνατό μέσο, προσπάθησε — αποτελεσματικά ως ένα βαθμό — να πείσει την επιστημονική κοινότητα ότι ο λογισμός ήταν δική του επινόηση και ότι ο Λάιμπντς δεν έκανε τίποτε άλλο από το να οικειοποιηθεί τις δικές του ιδέες.

Αναγκάστηκε, λοιπόν, να ξεπεράσει τις παλιές του επιφυλάξεις και να εκθέσει στην κρίση των συναδέλφων του τις παλιές ανακαλύψεις του, σε έναν αγώνα δρόμου να κατοχυρώσει τους ερευνητικούς του καρπούς.

Μέχρι το 1711 είχαν εκδοθεί από μία τουλάχιστον φορά,

  • τα Opticks (1704),
  • Tractatus de Quadratura Curvarum (1704),
  • Enumeratio Linearum Tertii Ordinis (1704),
  • Arithmeticæ Universalis (1707),
  • De Analysi (1711),
  • Methodis Differentialis (1711)
  • καθώς και δύο ακόμη φορές το Principiæ Mathematica (1713, 1726)
  • ενώ εννιά χρόνια μετά το θάνατό του, εκδόθηκε για πρώτη φορά το De Methodis Fluxionum et Serierum Infinitarum (1736).

Το Φεβρουάριο του 1699 η Ακαδημία των Επιστημών του Παρισιού ονόμασε τον Νεύτωνα αντεπιστέλλον μέλος, ενώ το Νοέμβριο του 1703 εκλέχθηκε πρόεδρος της Βασιλικής Εταιρείας, όπου παρέμεινε μέχρι το θάνατό του.

Στη θέση αυτή στάθηκε σκληρός και άτεγκτος, ενώ μάλιστα έχει δειχθεί ότι επωφελήθηκε της θέσης ώστε να ενεργήσει κατά του Λάιμπνιτς.

Στις 16 Απριλίου του 1705, σε τελετή που έγινε στο Κολέγιο του Τρίνιτι, η βασίλισσα Άννα έχρισε τον Νεύτωνα ιππότη ως αναγνώριση των πολιτικών υπηρεσιών του προς την Αγγλία.

Είκοσι δύο χρόνια μετά, στις 31 Μαρτίου του 1727, πέθανε άρρωστος από πάθηση των πνευμόνων σε ηλικία ογδόντα τεσσάρων ετών.

ΠΗΓΗ

Αφήστε μια απάντηση

Μπες και Δεν θα χάσεις !