Μια χορδή με σταθερά άκρα διεγείρεται οπότε δημιουργείται πάνω της ένα στάσιμο κύμα με 2 δεσμούς (εκτός των δύο άκρων). Η πρώτη κοιλία Κ1 απέχει απόσταση d=10cm από το αριστερό άκρο της χορδής και τη στιγμή που θεωρούμε t=0, έχει μέγιστη θετική ταχύτητα μέτρου 10π cm/s, ενώ τη στιγμή t1=0,6s η ταχύτητά της μηδενίζεται για δεύτερη φορά.
i) Να υπολογιστεί το πλάτος ταλάντωσης της κοιλίας Κ1 και το μήκος L της χορδής, το οποίο θεωρούμε ίσο με την απόσταση των δύο άκρων της.
ii) Να γραφεί η εξίσωση της απομάκρυνσης της κοιλίας Κ1, σε συνάρτηση με το χρόνο, καθώς και οι αντίστοιχες εξισώσεις y=f(t) για τις υπόλοιπες κοιλίες που σχηματίζονται πάνω στη χορδή.
iii) Θεωρώντας την θέση της πρώτης κοιλίας Κ1, ως αρχή x=0, ενός προσανατολισμένου άξονα, με την προς τα δεξιά κατεύθυνση θετική, να βρεθεί η εξίσωση του στάσιμου κύματος, που δημιουργείται πάνω στη χορδή και να σχεδιαστεί το στιγμιότυπο του στάσιμου τη στιγμή t2=(13/15)s.
iv) Αν πάρουμε ως t0=0, τη στιγμή που η κοιλία Κ1, έχει μηδενική ταχύτητα και θετική απομάκρυνση (y>0), ποια εξίσωση κύματος θα βρίσκαμε; Στην περίπτωση αυτή να βρείτε τις εξισώσεις y=(x) για τα διάφορα σημεία της χορδής τις στιγμές:
α) t3=1,2s και β) t4=1,8s
σχεδιάζοντας και τα αντίστοιχα στιγμιότυπα.
ή
