header image

Εικασία του Goldbach

Συγγραφέας: | Δεκέμβριος 15, 2017
17 Σχόλια |

Tα κλασικά άλυτα προβλήματα της θεωρίας αριθμών παραδοσιακά ήταν τρία:

Η Εικασία του Goldbach: Κάθε άρτιος θετικός ακέραιος μεγαλύτερος του 2 μπορεί να γραφτεί ως άθροισμα δύο πρώτων αριθμών, έτσι ώστε για κάθε n ≧ 2,  2n = p + q, όπου p, q πρώτοι αριθμοί.

Η υπόθεση του Riemann: Το πραγματικό μέρος κάθε μη τετριμμένης μηδενικής ρίζας της συνάρτησης ζ του Riemann είναι ½. Η συνάρτηση ζήτα ή συνάρτηση ζήτα του Riemann, από το όνομα του Γερμανού μαθηματικού Bernard Riemann είναι μια συνάρτηση με ιδιαίτερη σημασία στη θεωρία αριθμών, λόγω της σχέσης της με την κατανομή των πρώτων αριθμών.

Το τελευταίο Θεώρημα του Fermat: Δεν υπάρχουν θετικοί ακέραιοι x, y, και z τέτοιοι ώστε xn + yn = zn, όπου n θετικός ακέραιος μεγαλύτερος του 2.

Σημείωση: Το τελευταίο θεώρημα του Fermat αποδείχθηκε πρόσφατα από τους μαθηματικούς Andrew Wiles και Richard Taylor στο πανεπιστήμιο Princeton.

 

Ειδικότερα η εικασία του Goldbach:

Κάθε άρτιος θετικός ακέραιος μεγαλύτερος του 2 μπορεί να γραφεί ως άθροισμα δύο πρώτων αριθμών, έτσι ώστε για κάθε n ≧ 2,   2n = p + q, όπου p, q πρώτοι αριθμοί.

π.χ.

  4 = 2 + 2
  6 = 3 + 3
  8 = 3 + 5
10 = 3 + 7 = 5 + 5
12 = 5 + 7
14 = 3 + 11 = 7 + 7
16 = 5 + 11
18 = 7 + 11
20 = 7  + 13 …

Η δεύτερη εικασία ή ασθενής εικασία του Goldbach αναφέρει ότι κάθε περιττός ακέραιος αριθμός μεγαλύτερος του 5 μπορεί να εκφραστεί ως άθροισμα τριών πρώτων. Η εικασία ονομάζεται ασθενής, γιατί αν αποδειχθεί η κύρια εικασία, η απόδειξή αυτής είναι εύκολη. Κάθε άρτιος ακέραιος σύμφωνα με την εικασία, μπορεί να γραφεί ως άθροισμα δύο πρώτων. Προσθέτοντας σε αυτό το άθροισμα το 3 κατασκευάζονται όλοι οι περιττοί αριθμοί οι οποίοι είναι μεγαλύτεροι του 5.

περισσότερα:  Βικιπαίδεια

κάτω από: Γενικά, Μαθηματικά...

Αφήστε μια απάντηση

Κατηγορίες