ΥΔΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Η ΕΝΕΡΓΕΙΑ ΤΩΝ ΚΥΜΑΤΩΝ ΤΩΝ ΩΚΕΑΝΩΝ

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ

Υδραυλική και εν μέρει υδροηλεκτρική ενέργεια είναι η ενέργεια που αποταμιεύεται ως δυναμική ενέργεια μέσα από τη συγκέντρωση μεγάλων ποσοτήτων νερού σε υψομετρική διαφορά από τη συνέχιση της ροής του ελεύθερου νερού, και αποδίδεται ως κινητική μέσω της υδατόπτωσης. Η κινητική ενέργεια, στη συνέχεια, μπορεί είτε να χρησιμοποιείται αυτούσια επιτόπου (π.χ. νερόμυλοι), είτε να μετατρέπεται σε ηλεκτρική ή άλλες, που την αποθηκεύουν, ώστε τελικά να μεταφέρεται σε μεγάλες αποστάσεις. Στον γήινο κύκλο του νερού η ενέργεια προέρχεται κυρίως από τον ήλιο που εξατμίζει, σηκώνει ψηλά δηλαδή (στην ατμόσφαιρα), μεγάλες ποσότητες νερού. Η εκμετάλλευση της ενέργειας στον κύκλο αυτό γίνεται με τη χρήση υδροηλεκτρικών έργων (ταμιευτήρες νερού, φράγματα, κλειστοί αγωγοί πτώσεως, υδροστρόβιλοι, ηλεκτρογεννήτριες, διώρυγες φυγής).

Ενέργεια από την πτώση του νερού

Η λειτουργία των υδροηλεκτρικών μονάδων βασίζεται στην κίνηση του νερού λόγω διαφοράς ύψους μεταξύ των σημείων εισόδου και εξόδου. Για το σκοπό αυτό κατασκευάζεται ένα φράγμα που συγκρατεί την απαιτούμενη ποσότητα νερού στον δημιουργούμενο ταμιευτήρα. Κατά τη διέλευσή του από τον αγωγό πτώσεως, κινεί έναν στρόβιλο ο οποίος θέτει σε λειτουργία τη γεννήτρια. Η ποσότητα της παραγόμενης ενέργειας καθορίζεται από τον όγκο του νερού που ρέει, τη διαφορά ύψους μεταξύ της ελεύθερης επιφάνειας του ταμιευτήρα και του στροβίλου, κ.α.. Συνεπώς, ο παραγόμενος ηλεκτρισμός εξαρτάται από την ποσότητα του νερού του ταμιευτήρα. Για το λόγο αυτόν μόνο σε περιοχές με σημαντικές βροχοπτώσεις, πλούσιες πηγές και κατάλληλη γεωλογική διαμόρφωση είναι δυνατόν να κατασκευαστούν υδροηλεκτρικά έργα. Συνήθως η ενέργεια που τελικώς παράγεται, χρησιμοποιείται μόνο συμπληρωματικά ως προς άλλες συμβατικές πηγές ενέργειας, καλύπτοντας φορτία αιχμής. Στην Ελλάδα η υδροηλεκτρική ενέργεια ικανοποιεί περίπου το 9% των ενεργειακών μας αναγκών σε ηλεκτρισμό.

ΥΔΡΟΗΛΕΚΤΡΙΚΑ ΕΡΓΑ

Τα υδροηλεκτρικά έργα ταξινομούνται σε μεγάλης και μικρής κλίμακας.

Τα μικρής κλίμακας υδροηλεκτρικά έργα διαφέρουν σημαντικά από της μεγάλης κλίμακας σε ότι αφορά τις επιπτώσεις τους στο περιβάλλον.

Οι μεγάλης κλίμακας υδροηλεκτρικές μονάδες απαιτούν τη δημιουργία φραγμάτων και τεράστιων δεξαμενών με σημαντικές επιπτώσεις στο περιβάλλον. Η κατασκευή φραγμάτων περιορίζει τη μετακίνηση των ψαριών, της άγριας ζωής και επηρεάζει ολόκληρο το οικοσύστημα καθώς μεταβάλλει ριζικά τη μορφολογία της περιοχής.

Αντίθετα, τα μικρής κλίμακας υδροηλεκτρικά εγκαθίστανται δίπλα σε ποτάμια ή κανάλια και η λειτουργία τους παρουσιάζει πολύ μικρότερη περιβαλλοντική όχληση. Για το λόγο αυτό, οι υδροηλεκτρικές μονάδες μικρότερης δυναμικότητας των 30 MW χαρακτηρίζονται ως μικρής κλίμακας υδροηλεκτρικά έργα και συμπεριλαμβάνονται μεταξύ των εγκαταστάσεων παραγωγής ενέργειας από ανανεώσιμες πηγές. Κατά τη λειτουργία τους, μέρος της ροής ενός ποταμού οδηγείται σε στρόβιλο για την παραγωγή μηχανικής ενέργειας και συνακόλουθα ηλεκτρικής μέσω της γεννήτριας. Η χρησιμοποιούμενη ποσότητα νερού κατόπιν επιστρέφει στο φυσικό ταμιευτήρα ακολουθώντας τη φυσική της ροή.

Είναι ιδιαίτερα σημαντικό να ξέρουμε τον ρόλο και τις διαφορές αυτών καθώς παίζουν μεγάλο ρόλο ανάλογα με το σκοπό μας.

ΠΛΕΟΝΕΚΤΗΜΑΤΑ- ΜΕΙΟΝΕΚΤΗΜΑΤΑ

1.  Πλεονεκτήματα: Οι υδροηλεκτρικοί σταθμοί είναι δυνατό να τεθούν σε λειτουργία αμέσως μόλις απαιτηθεί, σε αντίθεση με τους θερμικούς σταθμούς που απαιτούν σημαντικό χρόνο προετοιμασίας, Είναι μία “καθαρή” και ανανεώσιμη πηγή ενέργειας, με τα προαναφερθέντα συνακόλουθα οφέλη (εξοικονόμηση συναλλάγματος, φυσικών πόρων, προστασία περιβάλλοντος),  Μέσω των υδατοταμιευτήρων δίνεται η δυνατότητα να ικανοποιηθούν και άλλες ανάγκες, όπως ύδρευση, άρδευση, ανάσχεση χειμάρρων, δημιουργία υγροτόπων, περιοχών αναψυχής και αθλητισμού.  Μειονεκτήματα  Μεγάλο κόστος κατασκευής φραγμάτων και εγκατάστασης εξοπλισμού, καθώς και ο συνήθως μεγάλος χρόνος που απαιτείται για την αποπεράτωση του έργου, Η έντονη περιβαλλοντική αλλοίωση της περιοχής του έργου (συμπεριλαμβανομένων της γεωμορφολογίας, της πανίδας και της χλωρίδας), καθώς και η ενδεχόμενη μετακίνηση πληθυσμών, η υποβάθμιση περιοχών, οι απαιτούμενες αλλαγές χρήσης γης. Επιπλέον, σε περιοχές δημιουργίας μεγάλων έργων παρατηρήθηκαν αλλαγές του μικροκλίματος, αλλά και αύξηση της σεισμικής επικινδυνότητας τους.

Η ΕΝΕΡΓΕΙΑ ΤΩΝ ΚΥΜΑΤΩΝ ΤΩΝ ΩΚΕΑΝΩΝ

Η θάλασσα έχει θεωρηθεί από καιρό ως πηγή ενέργειας. κατά τον Μεσαίωνα (1200-1500) οι αγρότες παγίδευαν το θαλάσσιο νερό στις λίμνες μύλων, για να το χρησιμοποιήσουν στους υδρόμυλους δύναμης . Κατά τη διάρκεια των τελευταίων πενήντα ετών, οι μηχανικοί έχουν αρχίσει να εξετάζουν την παλιρροιακή δύναμη και τη δύναμη των κυμάτων σε μια μεγαλύτερη, βιομηχανική κλίμακα. Εντούτοις, μέχρι τα τελευταία έτη, ιδιαίτερα στην Ευρώπη, η δύναμη των κυμάτων και η παλιρροιακή δύναμη , θεωρήθηκαν αντιοικονομικές. Αν και μερικά πιλοτικά έργα έδειξαν ότι η ενέργεια θα μπορούσε να παραχθεί, κάποια άλλα επίσης έδειξαν ότι, ακόμα κι αν το κόστος για την παράγωγη της ενέργειας δεν εξεταστεί, υπάρχει ένα πραγματικό πρόβλημα, που αφορά την ικανότητα του εξοπλισμού να αντέξει το εξαιρετικά σκληρό θαλάσσιο περιβάλλον.  Πριν από είκοσι χρόνια η αντίστοιχη βιομηχανία παραγωγής ενέργειας από αέρα αντιμετώπιζε παρόμοια προβλήματα αλλά με την υποστήριξη των εκάστοτε κυβερνήσεων στους κατασκευαστές κατάφεραν να ανταγωνιστούν τη πράσινη δύναμη. Η ενεργειακή βιομηχανία κυμάτων είναι τώρα σε παρόμοιο στάδιο ανάπτυξης αλλά με τη δημόσια υποστήριξη και κάποια δημόσια χρήματα θα ξεπεραστούν οι όποιες αποτυχίες στον τρόπο παραγωγής, όπως γίνεται σε κάθε παρόμοια αναπτυξιακή τεχνική. Με την εισαγωγή νέων πηγών ενέργειας στην αγορά υπάρχει η προσδοκία ότι οι συνθήκες για την χρησιμοποίηση της δύναμης κυμάτων θα ωριμάσει έτσι ώστε να έχει σημαντική συμβολή στην κάλυψη των ενεργειακών μας αναγκών. Προς το τέλος της δεκαετίας του ’90, έχει γίνει σαφές ότι η τεχνολογία έχει προωθηθεί σε σημείο όπου η αξιόπιστη και φτηνή ηλεκτρική ενέργεια από τους ωκεανούς γίνεται μια πραγματικότητα . Το Ηνωμένο Βασίλειο παρήγαγε την πρώτη ηλεκτρική ενέργεια από θαλάσσια και παλιρροϊκά κύματα με την οποία εφοδίασε τον εθνικό του δίκτυο το έτος 2000, αναγκάζοντας και άλλες χώρες να σκεφτούν σοβαρά να πράξουν κάτι ανάλογο.

ΕΙΣΑΓΩΓΗ

Οι ωκεανοί μπορούν να μας προσφέρουν τεράστια ποσά ενέργειας. Υπάρχουν τρεις βασικοί τρόποι για να εκμεταλλευτούμε την ενέργεια της θάλασσας:

α) από τα κύματα, καθώς η ανυψωτική κίνηση του κύματος μπορεί να παράγει ρεύμα. Αυτός είναι ένας μόνο τύπος εκμετάλλευσης της ενέργειας των κυμάτων. Η παραγόμενη ενέργεια είναι σε θέση να καλύψει τις ανάγκες μιας οικίας, ενός φάρου, κ.λ.π.

Ενέργεια από τα κύματα επιφανείας Σήμερα, οι επιστήμονες ενέργειας παίρνουν όφελος από τα κύματα της θάλασσας, καθώς βάζουν ειδικά εργαλεία στην επιφάνεια του νερού, όταν τα κύματα αρχίζουν να ψηλώνουν και να ρίχνουν τα εργαλεία αυτά, παράγεται μια μηχανική κίνηση , η οποία παράγει ηλεκτρική ενέργεια, η ενέργεια μπορεί να μετατραπεί μέσω καλωδίων ώστε να μπορούν να πάρουν όφελος από αυτήν. Το 1799 ο MonsieurGirard, ένας Γάλλος και ο γιος του ήταν οι πρώτοι άνθρωποι που χρησιμοποίησαν τα κύματα για την παραγωγή ενέργειας. 

ΠΑΛΙΡΡΟΪΚΗ ΕΝΕΡΓΕΙΑ- ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΩΚΕΑΝΩΝ

Ενέργεια των εσωτερικών κυμάτων Στη Βρετανία, παίρνουν τα οφέλη κάτω από τα θαλάσσια ρεύματα τα οποία προκύπτουν από τα κύματα της παλίρροιας. Αυτή η πηγή ενέργειας θεωρείται ότι είναι καθαρή και ασφαλής πηγή ενέργειας. Η τεχνική που χρησιμοποιείται είναι να βάζουν Έλικες ή τουρμπίνες κάτω από τη θάλασσα, και τότε η κίνηση των κυμάτων της παλίρροιας μετατρέπεται σε μηχανική ενέργεια. Η διάμετρος του έλικα είναι 20 μέτρα και μπορεί να τοποθετηθεί μέχρι 30 υποθαλάσσια μέτρα. Οι επιστήμονες πιστεύουν ότι αυτή η πηγή είναι καλύτερη από την ενέργεια των ανέμων , γιατί η κίνηση των κυμάτων είναι τακτική, ώστε να μπορεί να μελετηθεί καλά, επίσης, ο όγκος και η δύναμή τους μπορεί να υπολογίζεται και έτσι επιτρέπει καλύτερο σχεδιασμό στροβίλων.

β) Η αξιοποίηση της παλιρροϊκής ενέργειας χρονολογείται από εκατοντάδες χρόνια πριν, αφού με τα νερά που δεσμεύονταν στις εκβολές ποταμών από την παλίρροια, κινούνταν νερόμυλοι. Ο τρόπος είναι απλός: Τα εισερχόμενα νερά της παλίρροιας στην ακτή κατά την πλημμυρίδα μπορούν να παγιδευτούν σε φράγματα, οπότε κατά την άμπωτη τα αποθηκευμένα νερά ελευθερώνονται και κινούν υδροστρόβιλο, όπως στα υδροηλεκτρικά εργοστάσια. Τα πλέον κατάλληλα μέρη για την κατασκευή σταθμών ηλεκτροπαραγωγής είναι οι στενές εκβολές ποταμών. Η διαφορά μεταξύ της στάθμης του νερού κατά την άμπωτη και την πλημμυρίδα πρέπει να είναι τουλάχιστον 10 μέτρα. Σήμερα οι μικροί σταθμοί παραγωγής ηλεκτρικής ενέργειας από το θαλασσινό νερό βρίσκονται σε πειραματικό στάδιο. Η ηλεκτρική ενέργεια που μπορεί να παραχθεί είναι ικανή να καλύψει τις ανάγκες μιας πόλης μέχρι και 240 χιλιάδων κατοίκων. Ο πρώτος παλιρροϊκός σταθμός κατασκευάσθηκε στον ποταμό La Rance στις ακτές της Βορειοδυτικής Γαλλίας το 1962 και οι υδροστρόβιλοί του μπορούν να παράγουν ηλεκτρική ενέργεια καθώς το νερό κινείται κατά τη μια ή την άλλη κατεύθυνση. Άλλοι τέτοιοι σταθμοί λειτουργούν στη Ρωσία, στη θάλασσα Barents και στον κόλπο Fuhdy της Νέας Σκωτίας.

γ) Η θερμική ενέργεια των ωκεανών μπορεί επίσης να αξιοποιηθεί με την εκμετάλλευση της διαφοράς θερμοκρασίας μεταξύ του θερμότερου επιφανειακού νερού και του ψυχρότερου νερού του πυθμένα. Η διαφορά αυτή πρέπει να είναι τουλάχιστον 3,5 °C.

ΠΛΕΟΝΕΚΤΗΜΑΤΑ- ΜΕΙΟΝΕΚΤΗΜΑΤΑ

Τα πλεονεκτήματα από τη χρήση της ενέργειας των ωκεανών, εκτός από “καθαρή” και ανανεώσιμη πηγή ενέργειας, με τα γνωστά ευεργετήματα, είναι το σχετικά μικρό κόστος κατασκευής των απαιτούμενων εγκαταστάσεων, η μεγάλη απόδοση (40- 70 KW ανά μέτρο μετώπων κύματος) και η δυνατότητα παραγωγής υδρογόνου με ηλεκτρόλυση από το άφθονο θαλασσινό νερό που μπορεί να χρησιμοποιηθεί ως καύσιμο.  Στα μειονεκτήματα αναφέρεται το κόστος μεταφοράς της ενέργειας στη στεριά.