Σε λείο οριζόντιο επίπεδο, ηρεμεί ένα αμαξίδιο μάζας Μ=4kg, στο οποίο η πάνω επιφάνειά του σχηματίζει τεταρτοκύκλιο ακτίνας R=0,25m, κέντρου Ο. Μια μικρή σφαίρα, μάζας m= 1kg και αμελητέας ακτίνας, αφήνεται στο πάνω άκρο Α του τεταρτοκυκλίου να κινηθεί, ενώ συγκρατούμε ακίνητο το αμαξίδιο. Η κίνηση της σφαίρας πραγματοποιείται χωρίς τριβές. Μετά από λίγο η σφαίρα περνά από το σημείο Β, όπου η ακτίνα ΒΟ σχηματίζει γωνία θ με την κατακόρυφη, ενώ συνεχίζοντας την κίνησή της εγκαταλείπει το αμαξίδιο με οριζόντια ταχύτητα υ0.
i) Να βρεθεί η επιτάχυνση της σφαίρας στην αρχική θέση Α και στη θέση Γ, που εγκαταλείπει το
αμαξίδιο. Πόση δύναμη δέχεται η σφαίρα από το αμαξίδιο στις παραπάνω θέσεις;
αμαξίδιο. Πόση δύναμη δέχεται η σφαίρα από το αμαξίδιο στις παραπάνω θέσεις;
ii) Να βρεθεί η δύναμη που ασκεί το αμαξίδιο στη σφαίρα στη θέση Β.
iii) Πόσο απέχει το σημείο Γ από το έδαφος, αν η σφαίρα φτάσει στο έδαφος σε απόσταση d=0,4m από το άκρο του αμαξιδίου;
iv) Επαναλαμβάνουμε τη διαδικασία, αλλά τώρα δεν συγκρατούμε το αμαξίδιο ακίνητο. Να εξηγείστε γιατί το αμαξίδιο θα κινηθεί και να υπολογιστεί η ταχύτητά του, τη στιγμή που η σφαίρα φτάνει στο σημείο Γ.
v) * Πόση δύναμη δέχεται το αμαξίδιο από το έδαφος ελάχιστα πριν η σφαίρα το εγκαταλείψει στη θέση Γ;
Δίνεται g=10m/s2, ενώ ημθ=0,6 και συνθ=0,8 και:
* η v) ερώτηση απευθύνεται μόνο σε καθηγητές.