The 54th International Mathematical Olympiad: Problems and Solutions

Day 1 (July 23th, 2013)

H

Problem 1
Assume that k and 7 are two positive integers. Prove that there exist positive integers 721, . . .. ™ such that
2k 1 1 1
1+ =(1+— ) (14— ).
n s 1}
de solution

Ve will prove the statement using induction on k. More precisely, we will prove the following:
For k= 1, we can take m; = 7, and the required equality is trivial.

Assume now that statement holds for a positive integer k. We want to prove that for every integer 72 there exists positive integers 121, . . ., M k+1 that satisfy
T 1 1
1+—— = (14+—)--- (14 )
T Ty MeE4+1

+1
» Case 1.7 is odd. Then nT € N and according to inductional hypothesis there are integers 11, .. ., 2 such that

22 (1 ) (1 ),
By taking 741 — . we obtain:

1 1 gk _ 1 1 21 _ 2\ n+1 w1428 _2 ghtl_ g
1+— ] [1+ =1+—F—)-(14+=)=[1+ - = =14+ —-—-.
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We will distinguish the cases of odd and even 72.

+ Case 2.7 is even Then % € M and according fo inductional hypothesis there are integers 7121, . ... Tk such that

By taking M1 = 2kl 1 5 — 2 e obtain:
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Problem 2

Given 2013 red and 2014 blue points in the plane, assume that no three of the given points lie on a line_A partition of the plane is called perfect if no region contains points of different
colors. Determine the smallest number k for which a perfect partition can always be achieved by drawing & straight lines.

d

& solution

We will prove that 2013 is the smallest value for k for which one can guarantee the perfect partition.

We will first show that there is a configuration of points for which 2013 lines are necessary to achieve the perfect partition. Consider the regular 4027-gon Aj Ag - -+ A4y inscribed in
the unit circle. Assume that the vertices Aag+1 are red for k € {[I, 1...., 2[!13} and that the other vertices are blue. For each J € {1, 2,..., 4026}the shorter arc A ;A +1 has to

intersect one of the lines of the partition. Hence there are 4026 points of intersections of the unit circle with the lines of the partition. Since each line can contain at most 2 of the points, we
must have at least 2013 lines in the partition.

We will now prove that it is always possible to form a perfect partition using 2013 lines. Assume that there are 2013 red and 2014 plue points. Let W; ... W}, be the convex hull of these
points.

If any point of this convex hull is red, say W1 then there is a line 772 that separates the plane into two regions one of which contains Wi only. Let {Rl, coc ,Rgnlg} be the set of red
points other than W1_ For each j € {1,2,..., 1006} we consider the line Raj—1 Raj There are two lines j and I} parallel to Raj—1 Ra; such that the region between I and [; does

not contain any points other than R2;j—1 and Raj. Thelinesm, Iy & la. By ... lioos. Lgge generate a perfect partition.
If all of the points Wi ... Wi are blue, then there is a line p parallel to W1 W3 that separates the plane into fwo regions: one containinﬁ; only the points W1 and Wa_ Let us denote by
Bi. ... Bapia the remaining blue points. For each j € {1,2,..., 1006} we consider the line Baj—1 Baj. There are two lines [; and ; parallel to Baj—1 Baj such that the region

between l; and f;-does not contain any points other than Baj—1 and Ba; Thelines p. It It Ia Iy ... liooe. lyps generate a perfect partition.
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Problem 3

Let A1, Bi. and C1 be the points at which the excircles touch the sides BC'. C'A. ana AB of the triangle ABC'. Prove that if the circumcenter of &4 By € belongs to the
circumcircle of A ABC' then one of the angles of A ABC is 90°.

d

e solution

Denote by @, b, and € the lengths of the sides BC'. CA_and AB Lets = © . Ba. and C'a the points of tangency of the incircle with the sides BC' CA_and AB.
Let ka. kg, and ke be the circumcircles correspondingto A, B, and €' and let S 4. SB. and S¢ be their centers, respectively. Then we have

ACQZABQZBClchBl:S—a, BAQ:BCQZCA]_:AC:[:E—&, CAQ:CBQZBA]_:AB:L:E—C.

since the circumcenter of 2243 By C belongs to the circumeircle of £ A BC' | one of the angles of £ A1 By € has to be obtuse. Assume that ZB1 A1 Cy > 90 Then the
circumcenter of £ A1 B1CY and the point 4 belong to the same arc BC of the circumcircle of & ABC

Let M be the midpoint of the arc BC that contains A From MB = MC ZAMBA = AMCA and BC, = CBj we conclude that AMBC, =2 AMCB; anda MB; = MCy.
Therefore, M is the circumeenter of &4 By Cy

since BAy = C'Ay . we conclude that M Ay = M A, and consequen’%that Aa belongs to the circumeircle of /A1 B1Cy . let Be be the point of tangency of A B with the circle kg.
since M is the midpoint of S¢SB and S¢C'1 ||Sg B, we conclude that K belongs to the bisector of the segment C1 Be. This implies that Be belongs to the circumcircle of

NAy B Cy

Ve now use the power of the point B with respect to the circumcircle of £ Ay Bl(:'% We have BAQ BA, = BC,-BB, since BB, =5 BC; —=s—a. BA; = s—band
BA; = s — ¢ we conclude s(s — a) = (s — b)(s — ¢) which is equivalent to a® = =b? +c? According to Pythagoras' theorem this implies that ZCAB = 90°




Day 2 (July 24th, 2013)
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Problem 4

Let ABC pe an acute triangle with orthocenter H _and let W be a point on the side BC petween B ana C' The points M and N are the feet of erﬂendiculars from B and C'
res;ln/gctively_ Let wi be the circumcircle of £ BW N _and let X be the point such that WX is a diameter of w1 . Let wa be the circumcircle of ACW M and let ¥ be the point such that
WY is a diameter of wa. Prove that the points X, Y and H are collinear.

d

e solution

Let Z be the other point of intersection of w1 and wa_ We will prove that X Z_and H are collinear. In the same way we obtain that Y. Z_and H are collinear. From

INZW = 180° — LZABC and ZMZW = 180° — £LACB we conclude that ZNZM = 180° — £ BAC which means that Z belongs to the circumcircle of ANMA
Therefore £ AZN = ZAMN  and since BCMN is cyclic we have ZAMN = ZABC Thus ZAZN + ZNZW = 180" and the points A, Z, and W lie on a line.

Let P be the foot of perpendicular from A to BC' Then BEH N is cyclic hence AH - AE = AN- AB wealsohave AZ - AW = AN- AB= AH - AP therefore EWZH
is cyclic and ZHZW = ZHEW = 90° thus the line ZH intersects wq at X

In a similar way we obtain that Y__ Z__ and H are collinear, and the statement is proved.
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Problem 5

Let (4 be the set of all positive rational numbers. Let f : @0, — I be a function that satisfies the following three conditions:
« (i) f(z) f(y) = flzy) foraz,y € Q.
- (i) f(z +y) = flz) + fly) foraiz,y € Uy
» (ili) There exists a rational number @ > 1suchthat fla) = a.

Prove that flz) = x forane € Q.

d

e solution

Froma = fla) = fla- 1) < fla

- f(1) =a- f(1) we conclude that f(1) > 1. For any positive integer 7 we have
flr)=f(l4+n—-1) = n

— 1) = 1+ f(n — 1), and an argument with induction implies that f(n2) = n foraln € N.

(
[fime, 1 & M we have m < m) = f(%) . f{n] which implies that f(%) = 0. Therefore, the codomain of f is @+ and the condition (iii) implies that f is increasing.
=

since f(a) = a we havea® = f(a) - f(a) = f(a?) and the principle of mathematical induction implies that for each k € M we have f(a*) < a* clearly. f(na) = nf(a) = na.

Assume that for some I € I we have f(la) — la = e > 0.1t N is any integer greater that 5 we conclude that f(Nla) = Nf(la) = Nla + Na > Nla +a._There exisis k € N
such that LakJ = NI The condition (i) implies:
a*™ > f(a*a) > f(|a*fa) = £((la*] - NT)a) + f(Nia)
> (|a*] - Ni)a + Nla +a = |a*|a +a.
This is a contradiction, hence f(la) = la foranl € I.

There are integers P and g such thata = %. Hence fld ‘g} =d % foralld € M and setting d = kq gives us f(kp) = kp for all k € M. From the second equation we have

kp = flkp) = f(k) +(p—1)f(k) = 2f(k) +(p—2)f(k) = --- = pf(k) hence f(k) < k. Together with already established inequality f(k) = k we conclude that
flk)=Fkforalke N

Assume that If for some & € (0 there exists 5 > 0 such that f(z) — = = 8. Let N be an integer such that Nz € M. Then we have
Nz = f(Nz) =2 Nf(z) = N(z + 3) = Nz + NS This is a contradiction. Thus f(z) =z foranz € {J, .
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Problem &

Given an integer 2 = 3. assume that % + 1 equally spaced points are marked on a circle. Consider all labelings of these points with the numbers 0, 1, .. .. % such that each label is used
exactg once. Two labelings are considered the same if one can be obtained from the other by a rotation of the circle. A labeling is beautiful if, for any four Iahels a < b < e < duwih
b+c. the chord joining points labeled @ and d does not intersect the chord joining points labeled bande.

Let M be the number of beautiful labelings and let /N be the number of ordered pairs (2, ¥y) of positive integers such that £ + ¥ = n and ged (z,y) = 1 Provethat M = N + 1.

de solution

Assume that @g, @1 ... Gy are the labels at the vertices of the 2 + 1-gon in counter-clockwise order. We may assume that ag = 0 since rotations preserve labelings. We say that a
quadruple (@, b, e, d) is balanced fa +¢ = b 4+ d. A labeling is beautiful if and only if no four vertices form balanced quadruple when arranged in counter-clockwise orientation.

Given a beautiful labeling @g, - - - , @ with @g = 0. assume that @1 = 2.

Lemmalik = | 2| then the equalitya; = @@ holdsfor 0 < ¢ < k

Proof of Lemma. Assume the contrary: there is @ < k such that @; # . We may assume that@g = gz forq < i — 1 Ifa; > x_thenthereis j > ¢ such thata; = a; — . and
(@0, a1, a;,a;) is a balanced quadruple.

Assume that @; < . Assume thata; = i@ for some j > . Since (i — 1)z +a; € {aq,...,a;,a;} thereis [such thata; = (i — 1)x 4@, 1fl < j then the configuration wouldn't
be beautiful as (a1, a;,a;, a;) = (z,a;, (i — 1)x + a;,ix) would form a balanced quadruple. Thus [ > j.

Assume that 1 is the index such that @, = ix — 4. Clearly iz — a; & {ag, ... ,ai,aj}_ If# > jthen {ag,ai,aj,am} would form a balanced quadruple, hence 112 <C J.
However, the quadruple (@;_1., am,aj,a;} = ((i — 1)z, iz — ay,iz, (i — 1)z + @;) is balanced. This contradiction completes the proof of the lemma. [

Assume that @z 1 = ¥. Let p be the smallest integer such that px —g >mn. Letmm = pxr —y. For 0 <t < m, let us denote by b; the remainder of tz modulo 7. We will now prove
that@g @1 ... @y is the subsequence of the sequence By b1 ... b consisting of those elements that belong to {0, 1,. .. ,ni

It suffices to prove that Do, . . ., b is the unique beautiful sequence that satisfies by = jz for j = 0,...,k and bgy1 = Y. Assume that Co, . .., Cm is a beautiful sequence such that
e; = byfor 0 <4 < k 4 1 and let j be the smallest integer such thatc; # b;

First of all. we must have ¢; < . as otherwise, the number ¢; — & would not be an element of {cu,. - c_.,-} and the sequence (Cg,ﬂl,ﬂj,ﬂj — ) would be balanced.

since the sequence (¢;) is nice, the label Cx + €; — Cx41 is either negative or appears in the set {¢p,...,¢;}. Since
e +ej—cppy=kzte;—pztm=(k—p)ztc;+m

This means that kz +e;—y =1+ ¢y +m — px belongs to the set ¢ + 7 — (p— 1)z € {r:g, 5oo ,r:j}_ This is contradicts our assumption on €;.

For z = 1 we obtain the beautiful sequence @, = 7. and every other beautiful sequence is uniquely determined by the pair (z,Y) of relatively prime integers smaller than or equal to =
2

such that ¥ <  Denote by S the set of all such pairs. and let f : § — {1,2,...,m}" be the function defined as f(x,y) = (z,z — y) Clearly f is the bijection of 5 to the set of all

ordered pairs (@, b) of relatively prime integers smaller than 7 such thata + b < 7.

Thus M =N + 1.




