
Introduction 

Algorithms, as demonstrated by their presence in the evolution of technology, 

mathematics and more generally of everyday life, play a catalytic role in our lives but 

also more generally in the world. 

At same time they are very useful in our lives and their better exploit brings positive 

results. Although they are complex, they generate more results, in order to improve 

our lives. 

Their history, which involves many disciplines of life and science, is great as their 

value. There will be a recursion in history to investigate their names, their original 

origins, their definition and their use in various machines and systems in different 

ages. 

Two of the most important and most known algorithms of Mathematics will be 

included: the Euclidean algorithm for find the greatest common measure of two 

numbers and the approximation method of chord, with iterative process.  

Generally 

Algorithm is a sequence of clear rational operation aiming at the solution of the 

problem that is, the production of necessary output for every acceptable input in finite 

time. Algorithm is also a description of the way by which we can successfully 

perform a task or procedure. 

The reference to instructions in the above definition implies the existence of 

something (a man or mechanism) which is able to understand and follow specific 

instructions. This entity is called computer, bearing in mind that in the pre-computer 

era, the term computer denoted someone who performed mathematical calculations. 

Today, of course «computers» are invisible electronic devices that have become an 

indispensable part of any of our activities. However they are not necessary for the 

meaning of algorithm although the majority of algorithms is going to take shape in a 

computer. All over the world many field of science have incorporated algorithms. 

Some of them are Mathematics, Physics, Computer Science, Engineering and 

humanitarian studies with the emotional intelligence they use. 

Algorithms are essential to the way computers process data. Many computer programs 

contain algorithms that specify the specific instructions a computer should perform (in 

a specific order) to carry out a specified task, such as calculating employees' 

paychecks or printing students' report cards. Thus, an algorithm can be considered to 

be any sequence of operations that can be simulated by a Turing-complete system.  

For some such computational process, the algorithm must be rigorously defined: 

specified in the way it applies in all possible circumstances that could arise. That is, 

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Turing_completeness


any conditional steps must be systematically dealt with, case-by-case; the criteria for 

each case must be clear (and computable). 

Because an algorithm is a precise list of precise steps, the order of computation will 

always be critical to the functioning of the algorithm. Instructions are usually assumed 

to be listed explicitly, and are described as starting "from the top" and going "down to 

the bottom", an idea that is described more formally by flow of control. 

So far, this discussion of the formalization of an algorithm has assumed the premises 

of imperative programming. This is the most common conception, and it attempts to 

describe a task in discrete, "mechanical" means. Unique to this conception of 

formalized algorithms is the assignment operation, setting the value of a variable. It 

derives from the intuition of "memory" as a scratchpad. There is an example below of 

such an assignment. 

 

 

                    Problem 

 

                  Algorithm 

 

 Input                         computer                        output 

The computational process and the algorithms terminate at some time and that is why 

by definitions they have their finite time as criterion. In the above diagram after using 

the appropriate algorithm the problem is solved and thus terminates  

However, terminating or not terminating of a process and thus of an algorithm is one 

of its characteristics. A big source of errors in the creation of an algorithm is that 

under certain circumstances the process being described may not terminate while it is 

supposed to terminate. 

Algorithms can be expressed in many kinds of notation, including natural languages, 

pseudocode, flowcharts, programming languages or control tables (processed by 

interpreters). Natural language expressions of algorithms tend to be verbose and 

ambiguous, and are rarely used for complex or technical algorithms. Pseudocode, 

flowcharts and control tables are structured ways to express algorithms that avoid 

many of the ambiguities common in natural language statements, while remaining 

independent of a particular implementation language. Programming languages are 

primarily intended for expressing algorithms in a form that can be executed by a 

computer, but are often used as a way to define or document algorithms. 

http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Assignment_operation
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Control_table
http://en.wikipedia.org/wiki/Interpreter_%28computing%29


For the computers’ algorithms to function it is necessary to be a language for 

communication between the scientist (the human) and the machines so that the 

operations of the algorithm can be recorded. In the beginning they tried to use a 

natural language but then they noticed that it was difficult for the computers to 

comprehend it since today they process the algorithms more. 

In order for a computer to execute the operations of an algorithm the language to be 

used must be as simple as possible. Such algorithms (that can function in the simplest 

possible way) are called programs and these programs are written in a programming 

language. Today there are hundreds of programming language and some of the most 

well-known are: Fortran, Cobol, Pl/C, Pascal, Ada, Basic, Logo and others. Many 

who want to note down the algorithm before they transfer it to the computer it is 

recorded in pseudocodes. But even this interim «language» or code does not differ 

from the natural language using its own alphabet. Today pseudocodes are use more 

for educational purposes and less in the use of scientific algorithms. 

It’s worth pointing out that every programming language uses its own grammatical 

and syntactic rules that dictate the use of this vocabulary. In most cases vocabulary 

consists of specific mathematical symbols and several English words and the 

grammar rules are simple enough to allow for the interpretation of programs by 

computer. Because of differences in vocabulary and grammar programming languages 

differ according to the kind of function they allow. 

In order for an algorithm to be executed correctly it must be syntactically correct 

when there is an error involved in the syntax of the algorithms, this error is called 

syntactic correctness is a necessary requirement to interpret a computer program. 

Exceptions appear only when a processor (of any kind even the human mind) is so 

wise as to guess the form of operation at a syntactic error. 

Apart from the syntactic errors there are errors of meaning relating to the meaning of 

specific forms of expressions in a language and the logical errors relating to a not so 

good description of a process. 

An algorithms is correct when it includes steps executed the one after the other. Then 

we say that such an algorithm is a sequence of steps. 

When an algorithm is a sequence of steps it does not have the ability to change this 

sequence according to circumstances. For this many algorithms have to ability to 

change according to circumstances with an order they contain. This ability is called 

selection and is realized under a condition. Every condition includes one “if” and one 

“else” so predicting the unstable factors. 

A characteristics of the algorithms is the repetition of processes it has performed 

without been fed with new values and sums. This process is called iteration and it is 

very useful in an algorithm. 

Simple Example 



Algorithm LargestNumber 

  Input: A non-empty list of numbers L. 

  Output: The largest number in the list L. 

  largest ← L0 

  for each item in the list (Length(L)≥1), do 

    if the item > largest, then 

      largest ← the item 

  return largest 

 

History 

In the beginning mainly in Middle Aged this term meant only the execution of four 

calculations with Arabic numbers and logical rules, connected to the decimal 

numbering system. Algorithmists were called those who followed the new method 

contrary to the abacists who continued to calculate using the abacus. Algorithmists 

followed the rules written in a book of the Arab Mathematician Al- Kuarismi who 

lived in Bagdad around 830 A.D. This book was known in Middle Ages as liber 

Algorismi and the and the word algorithm is a misspelling of the writer’s name. 

 

Euclid’s Algorithm 

Euclid’s algorithm appears as Proposition II in Book VII ("Elementary Number 

Theory") of his Elements. Euclid poses the problem: "Given two numbers not prime 

to one another, to find their greatest common measure". He defines "A number [to be] 

a multitude composed of units": a counting number, a positive integer not including 0. 

And to "measure" is to place a shorter measuring length s successively (q times) along 

longer length l until the remaining portion r is less than the shorter length s. In modern 

words, remainder r = l - q*s, q being the quotient, or remainder r is the "modulus", the 

integer-fractional part left over after the division. 

For Euclid’s method to succeed, the starting lengths must satisfy two requirements: (i) 

the lengths must not be 0, AND (ii) the subtraction must be “proper”, a test must 

guarantee that the smaller of the two numbers is subtracted from the larger 

(alternately, the two can be equal so their subtraction yields 0). 

Euclid's original proof adds a third: the two lengths are not prime to one another. 

Euclid stipulated this so that he could construct a reduction ad absurdum proof that 

the two numbers' common measure is in fact the greatest.  

http://en.wikipedia.org/wiki/Reductio_ad_absurdum


Computer (computor) language for Euclid's algorithm 

Only a few instruction types are required to execute Euclid's algorithm—some logical 

tests (conditional GOTO), unconditional GOTO, assignment (replacement), and 

subtraction. 

A location is symbolized by upper case letter(s), e.g. S, A, etc. 

The varying quantity (number) in a location will be written in lower case letter(s) and 

(usually) associated with the location's name. For example, location L at the start 

might contain the number l = 3009. 

 

 

An inelegant program for Euclid's algorithm 

INPUT: 

1 [Into two locations L and S put the numbers l and s that represent the two lengths]: 

INPUT L, S 

2 [Initialize R: make the remaining length r equal to the starting/initial/input length l] 

R ← L 

E: [Insure r ≥ s.] 

3 [Insure the smaller of the two numbers is in S and the larger in R]: IF R > S THEN 

the contents of L is the larger number so skip over the exchange-steps 4, 5 and 6: 

GOTO step 6 ELSE swap the contents of R and S.] 

4 L ← R (this first step is redundant, but will be useful for later discussion). 

5 R ← S 

6 S ← L 

E1:[Find remainder]: Until the remaining length r in R is less than the shorter length 

s in S, repeatedly subtract the measuring number s in S from the remaining length r in 

R. 

7 IF S > R THEN done measuring so GOTO 10 ELSE measure again, 

8 R ← R - S 

9 [Remainder-loop]: GOTO 7. 

Is the remainder 0?]: EITHER (i) the last measure was exact and the remainder in R 

is 0 program can halt, OR (ii) the algorithm must continue: the last measure left a 

remainder in R less than measuring number in S. 



10 IF R = 0 then done so GOTO step 15 ELSE continue to step 11, 

Interchange s and r: The nut of Euclid's algorithm. Use remainder r to measure what 

was previously smaller number s:; L serves as a temporary location. 

11 L ← R 

12 R ← S 

13 S ← L 

14 Repeat the measuring process: GOTO 7 

OUTPUT: 

15 [Done. S contains the greatest common divisor]: PRINT S 

DONE: 

16 HALT, END, STOP. 

An elegant program for Euclid's algorithm in Basic 

REM Euclid's algorithm for greatest common divisor 

PRINT "Type two integers greater than 0" 

INPUT A,B 

IF B=0 THEN GOTO 80 

IF A > B THEN GOTO 60 

LET B=B-A 

GOTO 20 

LET A=A-B 

GOTO 20 

PRINT A 

END 

 

 

Secant method 

In numerical analysis, the secant method is a root-finding algorithm that uses a 

succession of roots of secant lines to better approximate a root of a function f. The 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Root-finding_algorithm
http://en.wikipedia.org/wiki/Root_of_a_function
http://en.wikipedia.org/wiki/Secant_line
http://en.wikipedia.org/wiki/Function_%28mathematics%29


secant method can be thought of as a finite difference approximation of Newton's 

method. However, the method was developed independently of Newton's method, and 

predated the latter by over 3000 years.  

The method 

The secant method is defined by the recurrence relation 

 

As can be seen from the recurrence relation, the secant method requires two initial 

values, x0 and x1, which should ideally be chosen to lie close to the root. 

Derivation of the method 

Starting with initial values x0 and x1, we construct a line through the points (x0,f(x0)) 

and (x1,f(x1)). In point-slope form, this line has the equation 

 

For y=0 to 

 

The solution is 

 

We then use this value of x as x2 and repeat the process using x1 and x2 instead of x0 

and x1. We continue this process, solving for x3, x4, etc., until we reach a sufficiently 

high level of precision (a sufficiently small difference between xn and xn-1). 

 

 

... 

 

Comparison with other root-finding methods 

http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Newton%27s_method
http://en.wikipedia.org/wiki/Newton%27s_method
http://en.wikipedia.org/wiki/Recurrence_relation


The secant method does not require that the root remain bracketed like the bisection 

method does, and hence it does not always converge. The false position method uses 

the same formula as the secant method. However, it does not apply the formula on 

xn−1 and xn, like the secant method, but on xn and on the last iterate xk such that f(xk) 

and f(xn) have a different sign. This means that the false position method always 

converges. 

The recurrence formula of the secant method can be derived from the formula for 

Newton's method 

 

by using the finite difference approximation 

 

If we compare Newton's method with the secant method, we see that Newton's 

method converges faster (order 2 against α ≈ 1.6). However, Newton's method 

requires the evaluation of both f and its derivative at every step, while the secant 

method only requires the evaluation of f. Therefore, the secant method may well be 

faster in practice. For instance, if we assume that evaluating f takes as much time as 

evaluating its derivative and we neglect all other costs, we can do two steps of the 

secant method (decreasing the logarithm of the error by a factor α² ≈ 2.6) for the same 

cost as one step of Newton's method (decreasing the logarithm of the error by a factor 

2), so the secant method is faster. If however we consider parallel processing for the 

evaluation of the derivative, Newton's method proves its worth, being faster in time, 

though still spending more steps.  

 

http://en.wikipedia.org/wiki/Bisection_method
http://en.wikipedia.org/wiki/Bisection_method
http://en.wikipedia.org/wiki/False_position_method
http://en.wikipedia.org/wiki/Newton%27s_method
http://en.wikipedia.org/wiki/Finite_difference

