Algorithms and their history

A presentation for the euro math 2011 by Constantine Polyzois

Introduction

Ladies and gentlemen,
Dear fellow students,
I am happy to be given the chance to participate in this conference. I would like to share my thoughts with you, concerning this particular branch of mathematics.

Generally and the definition euro) Math

An algorithm

- Is a sequence of clear rational operations
- Aims at the solution of the problems
- Has a finite and time

problem
 Algorithm

Input
Computer
output

Characteristics

- Its programming language
- Its sequence
- Its selection
- Its repetition/ iterations

The characteristics of the Programming languages

- Their own syntax
, Their own vocabulary

Programmatic languages euro) Frath

- Fortran

Cobol
, Pl/I

- Pascal
- Ada
- Basic
- Logo

Pseudocode

Pseudocode is a code having with the nowadays rapid development of technology educational objectives. Unlike with the computer or the programming languages identifies more and more with mathematics because it uses more mathematical symbols

History

- During the Middle Ages the term meant the performing of four mathematical calculations.
- Immediately linked to decimal numbering system.
- They originated in Arabia

Their name is misspelling of the writer's name Al- Kuarismi

Secant method if $f(x)=0$

$$
\begin{gathered}
\lambda=\frac{f_{0}}{x_{0}-x_{2}}=\frac{f_{1}}{x_{1}-x_{2}} \\
f_{0}\left(x_{1}-x_{2}\right)=f_{1}\left(x_{0}-x_{2}\right) \\
\left(-f_{0}\right) x_{2}+f_{1} x_{2}=\left(-f_{0}\right) x_{1}+f_{1} x_{0}
\end{gathered}
$$

Secant method

euro ${\underset{2}{2}}_{0}{\underset{1}{1}}^{2}$

$$
\begin{gathered}
\left(f_{1}-f_{0}\right) x_{2}=f_{1} x o-f_{0} x_{1} \\
x_{2}=\frac{f_{1} x_{0}-f_{0} x_{1}}{f_{1}-f_{0}}
\end{gathered}
$$

An algorithm for secant method

, REM SECANT METHOD FOR SOLUTION OF NON-LINEAR ALGEBRAIC EQUATION $F(X)=0$

- INPUT XO, XI, E
- $10 \mathrm{FO}=\mathrm{XO}$ * (XO - 1 !) * (XO + 1!)
- $\mathrm{FI}=\mathrm{XI}$ * (XI - 1!) * (XI + 1!)
- $\mathrm{X} 2=(\mathrm{FI} * \mathrm{XO}-\mathrm{FO} * \mathrm{XI}) /(\mathrm{FI}-\mathrm{FO})$ PRINT X2
- $\mathrm{XO}=\mathrm{XI} \mathrm{X1}=\mathrm{X} 2$
- IF ABS(X1 - XO) > E GOTO 10
- PRINT ‘_-_-_-_-_-_
- END

Euclid's Algorithm in use euro):

- The greatest common divisor of the numbers 124 and 34.

a	b	exemplification
124	34	$124>34$
34	22	$22=124 \bmod 34(22$ is the residual of $124 / 34)$
22	12	$12=34 \bmod 22(12$ is the residual of $34 / 22)$
12	10	$\ldots .$.
10	2	\ldots.
2	0	When the b or the a is 0 the algorithm terminate and 2 is the greatest common divisor

Euclid's algorithm in Basic

- REM Euclid's algorithm for greatest common divisor
PRINT "Type two integers greater than 0"
INPUT A,B
- IF $B=0$ THEN GOTO 80
- IF A > B THEN GOTO 60
- $\angle E T B=B-A$
- GOTO 20
- $\operatorname{LET} A=A-B$
- GOTO 20
- PRINT A
- END

Consulting bibliography

- Encyclopedia domi
- Introduction to Contemporary Information Technology
- Wikepedia.org

Conclusion

- I would like to thank for their in the conduct of this study first of all my professor Mr Dionysis Lambrinidis and the professors Mr Dimosthenis Thanos and Mr Dimitris Vekios as well as my college Varvakeio Experimental and you for your attention

