
Statement of the problem

implicitization of curves, surfaces, hypersurfaces

1. Algebraic Geometry

2. Practical Applications

Geometric Modeling

Graphics

Computer Aided Geometric Design

CAD

parameterization ( inverse problem )
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The choice between the implicit and the parametric
representations of a geometric object depends heavily on

the particular nature of the application.

A parameterization of a geometric object in a space of

dimension n can be given by a set of equations as follows:

x1 = f1(t1, . . . , tk), . . . , xn = fn(t1, . . . , tk)

with t1, . . . , tk parameters,

and f1, . . . , fn
polynomials, rational or trigonometric functions, functions

involving square roots, etc.

n = 2 curves
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n = 3 surfaces

n ≥ 4 hypersurfaces

Implicitization

The implicitization problem consists in computing a

polynomial cartesian (implicit) equation

p(x1, . . . , xn) = 0,

of the geometric object described by the parametric

equations, which satisfies

p(f1(t1, . . . , tk), . . . , fn(t1, . . . , tk)) = 0,

for all values of the parameters t1, . . . , tk.
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Parameterization

find parametric equations, given the implicit equations

these two problems are not always solvable

e.g. logarithmic spiral

x = α cos θ expβθ, y = α sin θ expβθ
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Description of the algorithm

Input: Parametric equations for specific n, k.

Output: Cartesian (implicit) equations of degree m.

Step 1: construct the row vector v of all power products

of total degree up to m in the vars x1, . . . , xn .

Step 2: compute the matrix M = vt · v.

Step 3: substitute x1, . . . , xn by their parametric

representation, in the matrix M .

Step 4: integrate the elements of the matrix M

successively over each parameter t1, . . . , tk.

Step 5: compute a basis of the nullspace of G

Step 6: if the basis is empty

then there is no implicit equation of degree m

else implicit equations are given as v · nv
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Examples I (Curves)

Consider parametric equations of the unit circle:

x = 1√
t2+1

, y = t√
t2+1

Construct the vector v = [1, x, y, x2, x y, y2] and

form the 6× 6 matrix M = vt · v.

Substitute the parametric equations into the matrix and

integrate for t ∈ [0, 1].

Obtain a singular matrix of rank 5 with nullspace gen-

erated by [−1, 0, 0, 1, 0, 1].

−1 + x2 + y2 = 0.
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Examples II (Space Curves)

Consider parametric equations of the trefoil knot:

x =
(√

2 + cos(2 t)
)

cos(3 t),

y =
(√

2 + cos(2 t)
)

sin(3 t), z = sin(2 t)

In degree 4, we obtain a sparse 35× 35 matrix with a

nullspace of dimension 4. (integrations done in [0, π])

x4 + x2y2 + 3
2 x

2z2 + 2
√

2x2z2 + 1
2 y

2z2 + 2
√

2y2z2 + 1
2 z

4 + 2
√

2xyz− 9
2 x

2−
√

2x2 − 3
2 y

2 −
√

2y2 + z2 + 1
2

x4− y4 + z2x2 + 4 z2√2x2− 3x2− 2
√

2x2 + 4
√

2zxy+ 4 z2√2y2− 2
√

2y2 +

3 y2 − z2y2
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Examples III (Hypersurfaces)

Consider parametric equations of a hypersurface:

x = t+ s+ r, y = ts+ sr + rt,

z = tsr, w = t4 + s4 + r4

In degree 4, we obtain a sparse 70× 70 matrix with a

nullspace of dimension 1. (integrations done in [0, 1])

−w + x4 + 2 y2 − 4 yx2 + 4 zx.
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Examples IV (Families of ...)

Consider a family of curves indexed by a parameter a

defined by the following rational parametric equations:

x =
t(a−t2)
(1+t2)2, y =

t2(a−t2)
(1+t2)2

Compute the cartesian equation for some values of a and

by extrapolation we have that the general monoparametric

cartesian equation for this family of curves is:

x4 − a yx2 + 2x2y2 + y3 + y4 = 0.
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Structure of the Implicitization Matrices

Unit Circle: x =
1

√
t2 + 1

, y =
t

√
t2 + 1
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Buchberger example (1961) x4 − yz = 0
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Descartes Folium x3 + y3 = 3xy (different orderings)
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