#### **Statement of the problem**

implicitization of curves, surfaces, hypersurfaces

- 1. Algebraic Geometry
- 2. Practical Applications

Geometric Modeling Graphics Computer Aided Geometric Design **CAD** 

**parameterization** (inverse problem)

The choice between the **implicit** and the **parametric** representations of a geometric object depends heavily on the particular nature of the application.

A parameterization of a geometric object in a space of dimension n can be given by a set of equations as follows:

 $x_1=f_1(t_1,\ldots,t_k),\ldots,x_n=f_n(t_1,\ldots,t_k)$ 

with  $t_1, \ldots, t_k$  parameters,

and  $f_1, \ldots, f_n$ 

polynomials, rational or trigonometric functions, functions involving square roots, etc.

n = 2 curves

n = 3 surfaces

 $n \geq 4$  hypersurfaces

#### Implicitization

The implicitization problem consists in computing a polynomial cartesian (implicit) equation

 $p(x_1,\ldots,x_n)=0,$ 

of the geometric object described by the parametric equations, which satisfies

 $p(f_1(t_1,\ldots,t_k),\ldots,f_n(t_1,\ldots,t_k))=0,$ 

for all values of the parameters  $t_1, \ldots, t_k$ .

#### **Parameterization**

find parametric equations, given the implicit equations

these two problems are not always solvable

e.g. logarithmic spiral

 $x=lpha\cos heta\exp^{eta heta}, y=lpha\sin heta\exp^{eta heta}$ 

### **Description of the algorithm**

| Parametric equations for specific $n, k$ .                                                        |
|---------------------------------------------------------------------------------------------------|
| Cartesian (implicit) equations of degree $m$ .                                                    |
| construct the row vector $oldsymbol{v}$ of all power products                                     |
| of total degree up to $m$ in the vars $x_1,\ldots,x_n$ .                                          |
| compute the matrix $M = v^t \cdot v$ .                                                            |
| substitute $x_1,\ldots,x_n$ by their parametric                                                   |
| representation, in the matrix $oldsymbol{M}$ .                                                    |
| integrate the elements of the matrix $oldsymbol{M}$                                               |
| successively over each parameter $t_1,\ldots,t_k$ .                                               |
| compute a basis of the nullspace of $old G$                                                       |
| if the basis is empty                                                                             |
| then there is no implicit equation of degree $m{m}$                                               |
| else implicit equations are given as $oldsymbol{v}ulletoldsymbol{n}oldsymbol{v}ulletoldsymbol{n}$ |
|                                                                                                   |

# Examples I (Curves)

Consider parametric equations of the unit circle:

$$x=rac{1}{\sqrt{t^2+1}},\,\,y=rac{t}{\sqrt{t^2+1}}$$

Construct the vector  $v = [1, x, y, x^2, x \ y, y^2]$  and form the  $6 \times 6$  matrix  $M = v^t \cdot v$ .

Substitute the parametric equations into the matrix and integrate for  $t \in [0, 1]$ .

Obtain a singular matrix of rank 5 with nullspace generated by [-1, 0, 0, 1, 0, 1].

$$-1 + x^2 + y^2 = 0.$$

## Examples II (Space Curves)

Consider parametric equations of the trefoil knot:

$$x = \left(\sqrt{2} + \cos(2t)
ight)\cos(3t),$$
  
 $y = \left(\sqrt{2} + \cos(2t)
ight)\sin(3t), \ z = \sin(2t)$ 

In degree 4, we obtain a sparse  $35 \times 35$  matrix with a nullspace of dimension 4. (integrations done in  $[0, \pi]$ )

 $x^4 + x^2y^2 + rac{3}{2}x^2z^2 + 2\sqrt{2}x^2z^2 + rac{1}{2}y^2z^2 + 2\sqrt{2}y^2z^2 + rac{1}{2}z^4 + 2\sqrt{2}xyz - rac{9}{2}x^2 - \sqrt{2}x^2 - rac{3}{2}y^2 - \sqrt{2}y^2 + z^2 + rac{1}{2}$ 

 $x^4 - y^4 + z^2 x^2 + 4 z^2 \sqrt{2} x^2 - 3 x^2 - 2 \sqrt{2} x^2 + 4 \sqrt{2} z x y + 4 z^2 \sqrt{2} y^2 - 2 \sqrt{2} y^2 + 3 y^2 - z^2 y^2$ 

## Examples III (Hypersurfaces)

Consider parametric equations of a hypersurface:

$$x = t + s + r, y = ts + sr + rt,$$
  
 $z = tsr, w = t^4 + s^4 + r^4$ 

In degree 4, we obtain a sparse  $70 \times 70$  matrix with a nullspace of dimension 1. (integrations done in [0, 1])

$$-w + x^4 + 2\,y^2 - 4\,yx^2 + 4\,zx.$$

# **Examples IV (Families of ...)**

Consider a family of curves indexed by a parameter a defined by the following rational parametric equations:

$$x = rac{tig(a - t^2ig)}{ig(1 + t^2ig)^2}, \qquad y = rac{t^2ig(a - t^2ig)}{ig(1 + t^2ig)^2}$$

Compute the cartesian equation for some values of a and by extrapolation we have that the general monoparametric cartesian equation for this family of curves is:

$$x^4 - a \, y x^2 + 2 \, x^2 y^2 + y^3 + y^4 = 0.$$

# **Structure of the Implicitization Matrices**







Buchberger example (1961)  $x^4 - yz = 0$ 

#### Descartes Folium $x^3 + y^3 = 3xy$ (different orderings)



