Statement of the problem

implicitization of curves, surfaces, hypersurfaces

1. Algebraic Geometry
2. Practical Applications

Geometric Modeling
Graphics
Computer Aided Geometric Design
CAD
parameterization (inverse problem)

The choice between the implicit and the parametric representations of a geometric object depends heavily on the particular nature of the application.

A parameterization of a geometric object in a space of dimension \boldsymbol{n} can be given by a set of equations as follows:

$$
\begin{aligned}
& x_{1}=f_{1}\left(t_{1}, \ldots, t_{k}\right), \ldots, x_{n}=f_{n}\left(t_{1}, \ldots, t_{k}\right) \\
& \text { with } t_{1}, \ldots, t_{k} \text { parameters, } \\
& \text { and } f_{1}, \ldots, f_{n}
\end{aligned}
$$

polynomials, rational or trigonometric functions, functions involving square roots, etc.
$n=2$ curves
$n=3$ surfaces
$n \geq 4$ hypersurfaces

Implicitization

The implicitization problem consists in computing a polynomial cartesian (implicit) equation
$p\left(x_{1}, \ldots, x_{n}\right)=0$,
of the geometric object described by the parametric equations, which satisfies
$p\left(f_{1}\left(t_{1}, \ldots, t_{k}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{k}\right)\right)=0$,
for all values of the parameters t_{1}, \ldots, t_{k}.

Parameterization

find parametric equations, given the implicit equations
these two problems are not always solvable
e.g. logarithmic spiral
$x=\alpha \cos \theta \exp ^{\beta \theta}, y=\alpha \sin \theta \exp ^{\beta \theta}$

Description of the algorithm

Input: \quad Parametric equations for specific n, \boldsymbol{k}.
Output: Cartesian (implicit) equations of degree \boldsymbol{m}.
Step 1: construct the row vector \boldsymbol{v} of all power products of total degree up to m in the vars x_{1}, \ldots, x_{n}.
Step 2: compute the matrix $\boldsymbol{M}=\boldsymbol{v}^{t} \cdot \boldsymbol{v}$.
Step 3: substitute x_{1}, \ldots, x_{n} by their parametric representation, in the matrix M.
Step 4: integrate the elements of the matrix M successively over each parameter t_{1}, \ldots, t_{k}.
Step 5: compute a basis of the nullspace of G
Step 6: if the basis is empty then there is no implicit equation of degree m else implicit equations are given as $\boldsymbol{v} \cdot \boldsymbol{n v}$

Examples I (Curves)

Consider parametric equations of the unit circle:

$$
x=\frac{1}{\sqrt{t^{2}+1}}, y=\frac{t}{\sqrt{t^{2}+1}}
$$

Construct the vector $v=\left[1, x, y, x^{2}, x y, y^{2}\right]$ and form the $\mathbf{6} \times \mathbf{6}$ matrix $M=v^{t} \cdot \boldsymbol{v}$.

Substitute the parametric equations into the matrix and integrate for $t \in[\mathbf{0}, \mathbf{1}]$.

Obtain a singular matrix of rank 5 with nullspace generated by $[-1,0,0,1,0,1]$.

$$
-1+x^{2}+y^{2}=0
$$

Examples II (Space Curves)

Consider parametric equations of the trefoil knot:

$$
\begin{gathered}
x=(\sqrt{2}+\cos (2 t)) \cos (3 t) \\
y=(\sqrt{2}+\cos (2 t)) \sin (3 t), z=\sin (2 t)
\end{gathered}
$$

In degree 4, we obtain a sparse 35×35 matrix with a nullspace of dimension 4 . (integrations done in $[0, \pi]$)

$$
\begin{aligned}
& \quad x^{4}+x^{2} y^{2}+\frac{3}{2} x^{2} z^{2}+2 \sqrt{2} x^{2} z^{2}+\frac{1}{2} y^{2} z^{2}+2 \sqrt{2} y^{2} z^{2}+\frac{1}{2} z^{4}+2 \sqrt{2} x y z-\frac{9}{2} x^{2}- \\
& \sqrt{2} x^{2}-\frac{3}{2} y^{2}-\sqrt{2} y^{2}+z^{2}+\frac{1}{2} \\
& \quad x^{4}-y^{4}+z^{2} x^{2}+4 z^{2} \sqrt{2} x^{2}-3 x^{2}-2 \sqrt{2} x^{2}+4 \sqrt{2} z x y+4 z^{2} \sqrt{2} y^{2}-2 \sqrt{2} y^{2}+ \\
& 3 y^{2}-z^{2} y^{2}
\end{aligned}
$$

Examples III (Hypersurfaces)

Consider parametric equations of a hypersurface:

$$
\begin{gathered}
x=t+s+r, y=t s+s r+r t \\
z=t s r, w=t^{4}+s^{4}+r^{4}
\end{gathered}
$$

In degree 4 , we obtain a sparse 70×70 matrix with a nullspace of dimension 1. (integrations done in $[0,1]$)

$$
-w+x^{4}+2 y^{2}-4 y x^{2}+4 z x
$$

Examples IV (Families of ...)

Consider a family of curves indexed by a parameter \boldsymbol{a} defined by the following rational parametric equations:

$$
x=\frac{t\left(a-t^{2}\right)}{\left(1+t^{2}\right)^{2}}, \quad y=\frac{t^{2}\left(a-t^{2}\right)}{\left(1+t^{2}\right)^{2}}
$$

Compute the cartesian equation for some values of a and by extrapolation we have that the general monoparametric cartesian equation for this family of curves is:

$$
x^{4}-a y x^{2}+2 x^{2} y^{2}+y^{3}+y^{4}=0
$$

Structure of the Implicitization Matrices

Matrix Browser

Unit Circle: $x=\frac{1}{\sqrt{t^{2}+1}}, y=\frac{t}{\sqrt{t^{2}+1}}$

Buchberger example (1961) $x^{4}-y z=0$

Descartes Folium $x^{3}+y^{3}=3 x y$ (different orderings)

