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Abstract: We present the implementation of an algorithm in AXIOM symbolic compu-
tation system, to get topological and geometric informations, as well as the number of
analytic components of real algebraic curves in R̃[x, y], where R̃ is a real closure of a
real field R. The main idea of the method appears in [CP3R], but this algorithm is not
complete and has never been implemented. The present implementation is efficient and
it gives the analytic components of some curves not obtained by the latter algorithm.
Our implementation is generic.
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1 Introduction

The aim of this paper is the presentation in AXIOM of a faster algorithm the one
proposed by Cucker et al. (see [CP3R]), to analyse branch points at singular
points of a real curve, using real rational Puiseux expansions to describe the
analytic components of the curve. This algorithm also gives a plane graph
homeomorphic to the set :

Cp = {(a, b) ∈ R2|p(a, b) = 0 & p(x, y) ∈ R[x, y]}
where R is a real field.

Theoretically the problem of parametrization of plane curves is solved, and
it is known that the parametrizable curves are exactly the curves of genus 0,
see [W], [AB] and [SW]. However, a real algebraic curve can always be locally
parametrizable and the algorithm ACRC say how to tracing the irreducible an-
alytic components of the curve.

Moreover, the algorithm ACRC, using the idea of real rational Puiseux ex-
pansions and exact algebraic real numbers algorithms, distinguishes the an-
alytic structure of curves that have the same topology; e.g. consider the
two curves defined by the following polynomials p(x, y) := y2 + x6 − x4 and
q(x, y) := y4 + x4 − x2, see figure 1.

x
K1,0 K0,5 0 0,5 1,0

y
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K0,4

K0,2

0,2

0,4

0,6

Figure 1: The graphs: p(x, y) blue, q(x, y) red.
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These two curves have the same topological graph, shaped roughly like an
∞ (the singular point is the origin of xy-plane); but the first has one analytic
component and the second two (its graph looks like two ovals tangent at the
origin).

The present algorithm detects two cases where the algorithm in [CP3R] does
not:

1. the determination of the order above one real root of the discriminant of
p(x, y),

2. the computation of the local topology of the half-branches like the half-
branches at the origin of a ramphoid cusp, whose defining polynomial is
2y4 + (6x− 3)y3 + (7x2 − 5x+ 1)y2 + (4x3 − 2x2)y + x4, see figure 2,

x
K0,2 K0,1 0 0,1 0,2 0,3

y

0,2

0,4

0,6

0,8

1,0

Figure 2: Rampoid cusp.

The argument proposed in [CP3R] that the analytic expansions of f(x, y)
are determined in a minimal algebraic extension of R and so it is cheaper as
far as computing time is concerned is not valid in practice because it requires a
tedious rebuilding of a new tower say, Ra1,...,an for further computations. This
process it is not efficient, see [L]. We utilize the domain representing the real
closure as it appears in [LRR]. We want to emphasize the fact that computations
with real algebraic numbers is a costly operation. Our aim is to reduce the
number of arithmetic operations in the real closure. For this we will discuss two
cases of the computation which differs in the number of arithmetic operations
in the real closure: computation over the projections of the singular points, and
computation over the projections of the non-singular points. There are some
special cases in which a different approach might be preferable, e.g. when Cp
is a non-singular curve. Our aim, however, is not a treatement of these special
cases, but a general algorithm.

The paper will be divided in three sections. In the first one we briefly review
some definitions about the real rational Puiseux expansions; in the second we
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explain the main algorithm ACRC and give a brief description of a faster algo-
rithm, and in the last section we give some information about the implemen-
tation in AXIOM symbolic system, along with examples and time computing
bounds.

In this paper we will denote by R a real field, by R̃ the real closure of R and
by 0Q, IR and IC the field of the rational, real and complex numbers, respectively.
For the definitions and the properties of the real fields see [BCR].

2 Definitions – A brief Review

We now recall some definitions concerning real algebraic curves that will be
needed later.

Definition 2.1 Let R be a real field and p(x, y) ∈ R[x, y] monic in y. A real
algebraic curve (r.a.-curve) is the set Cp := {(a, b) ∈ R̃2 | p(a, b) = 0}. The
polynomial p(x, y) is called the defining polynomial for the curve Cp.

Definition 2.2 Let Cp be a r.a.-curve. A point α = (a, b) ∈ R̃2 is called a regular
or simple point of p(x, y) if not both px(x, y) and py(x, y) vanish at α. A point
α = (a, b) is called a tangency point if p(a, b) = py(a, b) = 0. A tangency point is
called singular if p(a, b) = py(a, b) = px(a, b) = 0. A curve Cp is called regular
(or nonsingular) iff every point (a, b) ∈ Cp is not a singular point; otherwise it is
called singular.

2.1 Real Rational Puiseux Expansions

Let K be a field of characteristic 0 and K̂ any algebraic closure of K. The
Puiseux expansions found in the classical way, see [W], are usually not rational,
(non invariant under the action of the Galois group G ̂(K((x))/K((x))) ). D.
Duval ([D]) gives another set of Puiseux expansions that are rational. This
allows the study of curve singularities over real fields. For example, if K = 0Q
the roots of the polynomial p(x, y) := (x2 + y2)3 − 4x2y2 (see [D] p.119) are 6
Puiseux series :

y1 =
1

2
x2 + . . . y2 = −1

2
x2 + . . .

y3 =
√

2x
1
2 + . . . y4 = −

√
2x

1
2 + . . .

y5 = i
√

2x
1
2 + . . . y6 = −i

√
2x

1
2 + . . .

The rational Puiseux expansions in this case give 4 descriptions of these
roots by means of pairs of formal series :
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x = t y =
1

2
t2 + . . . correspond to y1

x = t y = −1

2
t2 + . . . correspond to y2

x =
1

2
t2 y = t+ . . . correspond to y3 & y4

x = −1

2
t2 y = t+ . . . correspond to y5 & y6

Let f(x, y) :=

n∑
i=0

m∑
j=0

ai,jx
jyi. Following Newton’s algorithm, see [W], the

polynomial has n Puiseux expansions y1, . . . , yn at the origin, namely:

yl :=
+∞∑
d=1

αl,dx
nl,d/el .

For each Puiseux expansion of f(x, y), let

xl(t) := tel and yl(t) :=

+∞∑
d=1

αl,dt
nl,d .

Each pair (xl, yl) is a parametrization of Cf
(
f
(
xl(x

1/el), yl(x
1/el)

)
= 0

)
.

If there does not exist k > 1 such that the xl and yl are elements of K̂[[tk]],
then we say that the parametrization (xl, yl) is irreducible. We say that two
parametrizations (xl, yl) and (xm, ym), are equivalent, iff there exists z ∈ K̂[[t]]
of t-order equal to 1, see [W], such that xl(t) = xm(z(t)) and yl(t) = ym(z(t)).
A branch (or a place) of Cf is defined as an equivalence class of irreducible
parametrizations of Cf , and its center is the center of the parametrizations of
the class, see [W], [D].

Definition 2.3 Let K, f(x, y) be as above and {yl}l=1...n an irreducible para-
metrization. Let ν be the number of equivalence classes of the set {yl}l=1...n.
Suppose that f(0, 0) = 0. A system of rational Puiseux expansions of f(x, y)
over K is a set

{(x̃1, ỹ1), . . . , (x̃ν , ỹν)}
of ν pairwise non-equivalent irreducible parametrizations of Cf , which is invari-

ant under the action of the Galois groupG(K̂/K). Every coefficient of x̃l and ỹl is
a number of a finite algebraic extension of K and such that ∀l, x̃l is a monomial
clt

el , cl 6= 0 and el > 0.

Definition 2.4 ([BCR]) : Let f(x, y) be a irreducible polynomial in K[x, y],
K(Cf ) := K(x)[y]/(f(x, y)) be the quotient field, which is an extension of K(x).

Let (x̃l, ỹl) be a parametrization at the origin of f(x, y). We denote by B̃ the place
in K̂(Cf ) correspoding to (x̃l, ỹl), lying above the place B of K(Cf ). Let Õ be the

valuation ring of B̃ and O = Õ
⋂
K(Cf ). Let L := O/B be the residual field of

B. The place B is real iff its residual field L is real.
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Lemme 2.1 : Let L be defined as above and L∗ the field of coefficients of (x̃l, ỹl).
Then, there exists a K-algebra homomorphism from L into L∗.

Proof (see [D] Lemma section 3) :

There exists a K̂-algebra homomorphism
ψ : K̂[x, y]→ K̂[[t]], g 7→ g(x̃, ỹ)

The restriction φ : K[x, y] → L∗[[t]] is a K-algebra homomorphism such
that ker(φ) contains no non-zero element of K[x]. Since f(x, y) is irre-
ducible we get ker(φ) = (f).

Thus, we obtain a K-algebra homomorphism
ϕ : K(x)[y]/(f(x, y)) := K(Cf )→ L∗((t))

and ϕ(O) ⊂ L∗[[t]]
Let the K-algebra homomorphism

θ : L∗[[t]]→ L∗ such that θ(
+∞∑
i=0

cit
i) = c0

Then θ ◦ϕ |O: O → L∗ is a K-algebra homomorphism. Since ker(θ ◦ϕ |O
) = B it induces a K-algebra homomorphism from O/B = L to L∗.

The following corollary characterizes a rational Puiseux expansion that is
real.

Corollary 2.1 ([D]): Let (x̃l, ỹl)l be a system of rational Puiseux expansions of
p(x, y) ∈ IR[x, y]. Then for each l the branch corresponding to (x̃l, ỹl) is real iff
every coefficient of x̃l and ỹl are members of IR .

Proof : Easy by the previous Lemma and definition 4.

Technical Remark 1 Following corollary 1 we can define the real system of
rational Puiseux Expansions. It will be seen in section 2.1.1 algorithm 4, that
the computation in practice can be made in finite steps in the real closure. The
argument proposed in [CP3R] that this computation lies in the smallest one among
the coefficient fields of the parametrization, is not efficient, see [L] and [LRR]. So,
our computations will lie over the real closure of the ordered field of the coefficients
of p(x, y).

Definition 2.5 Let p(x, y) be a polynomial in R[x, y] with p(0, 0) = 0. A system
of rational Puiseux expansions of p(x, y)

{(x̃1, ỹ1), . . . , (x̃ν , ỹν)}

is real iff the coefficients of x̃l and ỹl are elements of the real closure of R.

Example : Let p(x, y) := y7 − 3xy5 + 3x2y2 − x3y + x4 be a polynomial in
IR[x, y]. The system of rational Puiseux expansions that lies above 0 is:
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{
1. x = t y = %it+ . . .
2. x = 9t5 y = −3t2 + . . .

}
where %i are the complex roots of the polynomial 3x2 − x + 1. The curve has
one real branch corresponding to the parametrization 2.

The computation of a system of rational Puiseux expansions will be exposed
in section 2.1.

2.2 Computing the global analytic components of the curve

(For the definition of the complex and coherent analytic set see [N]. For the
concept of semi-algebraic set and semi-algebraic function see [BCR].)

Definition 2.6 (See [N] p. 104) : Let A be a subset of an open set Ω ⊂ IRn,
(IRn ⊂ ICn). A is called C-analytic if there exists an open Ω′ ⊂ IRn, Ω′

⋂
IRn = Ω

and a complex analytic set S ⊂ Ω′ such that S
⋂

IRn = A. Equivalently (see [N]
prop. 15 p. 104), iff there are finitely many analytic functions fi in Ω such that
A = {x ∈ Ω|fi(x) = 0, for all i }

Consider now, Cp, (definition 1), as a real analytic set. It is well known that
Cp is a coherent analytic set and therefore a C-set, (the converse is not true in
general) see [BW] or [N]. According to proposition 11 p. 155 [BW], it is possible
to decompose Cp as the union of a countable number of C-irreducible, (the
union of two C-analytic sets is not different from itself), and C-sets, Ui. This
decomposition is unique and incontractible (or irredundant), that is for i 6= j
we have Ui 6⊂ Uj .

Definition 2.7 (See also [BCR])

1. Let U be an open semi-algebraic set of IRn. A semi-algebraic (see [BCR])
function of the class C∞ (the class of all infinitelly differentiable with conti-
nous semi-algebraic derivatives), f : U → IR is called a Nash function. If
U ′ is another open semi-algebraic set of IRn, a Nash-diffeomorphism of U
into U ′ is a bĳection of U onto U ′, so that both f and f−1 are Nash.

2. Let M be a semi-algebraic set of IRn.

(a) The set M is called a Nash-subvariety of IRn of dimension d, if ∀x ∈
M there exists a Nash-diffeomorphism φ of a semi-algebraic open
neighborhood, V , of x in IRn into a semi-algebraic open neighborhood,
V ′, of x in IRn such that φ(0) = x and
φ(IRd⋂V) = M

⋂
V ′.

(b) Two Nash-subvaritiesM andM ′ are called Nash-diffeomorhic if there
exist a bĳection M →M ′, so that both f and f−1 are Nash.
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3. Let M be a Nash-subvariety of IRn. A Nash-set in M is a semi-algebraic
subset of M in form

{x ∈M |f1(x) = . . . = fp(x) = 0}

where {f1, . . . , fp} is a family of Nash-functions of M into IR .

Proposition 2.1 Let C be a real algebraic curve. Then the previous decomposi-
tion in C-irreducible and C-sets of C, is finite.

Proof :

The curve C is a Nash-set and so there exists a decomposition C =

n⋃
i=1

Vi,

where each Vi is an irreducible Nash set, and so a real analytic irreducible
set, see proposition 8.6.7 [BCR]. Let Ui be a real analytic set such that
Vi ⊂ Ui, ∀i, and if there exists E so that Vi ⊂ E then Ui ⊂ E, (the
intersection of any family of analytic sets is still analytic set, see [N]). It

can be checked that, the decomposition C =

n⋃
i=1

Ui is irredundant and the

sets are Ui irreducible. But C is a coherent, and thus a C-analytic set (see
[F]). Therefore, following proposition 11 p. 155 [BW], this decomposition
is unique.

Our algorithm gives a description of these irreducible components of pure
dimensional part of Cp. Following [B] we may conjecture that:

∥∥∥∥ they analytic irreducible components of the previous decomposition
are Nash-sets.

It is important to note that, there exist curves whose defining polynomials
are algebraically irreducible and yet the curves are analytically reducible. For
example, take the curve defined by the irreducible polynomial y2−x2−x4. This
curve has a graph roughly shaped like a X, but it has two analytic components.

2.3 Decision procedure for finding the projection of singular
points of a curve

In this subsection we establish an one-to-one correspondence between the sin-
gular points of a curve (real or complex) and the distinct roots of the discrim-
inant d(x) of the defining polynomial for the curve. This correspondence is
described in [S].

Let p(x, y) be a polynomial in 0Q[x, y]. Let u, v be new coordinates so that
x = u + mv, y = u, and consider g(u, v) = p(u + mv, v); then we can pick an
integer m so that the following two conditions are satisfied (see Lemma 2.2, [S])
:
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a) g(u, v) is monic.

b) whenever the points (u0, v0), (u0, v1) satisfy the equations
g = ∂g/∂u = 0, then v0 = v1.

Denote by fx = ∂f/∂x, fy = ∂f/∂y, gu = ∂g/∂u, gv = ∂g/∂v.
Consider the polynomial q(u, v, t) = tgu − gv, and let a(u, t) = Resv(g, q).

We have (see Proposition 2.3 in [S]) :
Let a be as above. Write a(u, t) =

∑
i

ai(u)ti, and consider

A(u) = gcdi(ai(u)). Then

1. Cg is singular over IR2 iff A(u) = 0 is solvable in IR .

2. Cg is singular over IC2 iff A(u) = 0 is solvable in IC.

The proof, (see p.39–40 [S]), indicates that the real (complex) singular points
are in one-to-one correspondence with the distinct real (complex) roots of A(u).
However, in our decision procedure to find the projection of singular points,
all we need is a weaker test (which is more efficient since the new polynomial
g which satisfies the previous condition b, possesses more cells than the ini-
tial polynomial p in the procedure of the Cylindrical Algebraic Decomposition).
Thus, a similar procedure can be applied directly to the original polynomial
p(x, y) for testing whether Cp is singular over IC2. We caution however, that
this test fails to give us a definite answer as to whether Cp is real singular.

Example : Consider the tacnode p := y4 − 2y3 + y2 − 3x2y + 2x4, see 3.
Our defining polynomial for the tacnode satisfies the condition a but not the
condition b. The discriminant of p is d := x6(2048x6−4608x4+37x2+12) which
has five real roots. The polynomial A(u) in this case is u6. So, the projection of
the singular points (real or complex) in the x-axis is the origin, (0, 0).

x
K1,0 K0,5 0 0,5 1,0

y

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

Figure 3: The tacnote y4 − 2y3 + y2 − 3x2y + 2x4 = 0.
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3 The Algorithm ACRC

In this section f(x, y) ∈ R[x, y] with f(0, 0) = 0,

f(x, y) :=

n∑
i=0

m∑
j=0

ai,jx
jyi

and f(x, y) monic a polynomial in y.

3.1 The Computation of a System of Rational Puiseux expa-
nsions

In the present section we study the computer algebra construction of the
system of rational Puiseux expansions of a plane curve using a variant of New-
ton’s algorithm, see [W], [D]. A parametrization of a branch passing through the
origin, of Cf (

x̃ = λte, ỹ =

+∞∑
i=1

αit
i
)

is real iff λ and αi are real; see corollary 1 and definition 3 section 1.1. The first
step in our construction of the algorithm, relates to the computation of a such
parametrization corresponding in the real branches. For this computation, we
need to compute the coefficients and the exponents of x̃ and ỹ. First, we define
some usefuls technical terms of algorithmic context.

Definition 3.1 A R-real term (R−RT ) is a list

τk := (pk, qk, lk, uk, vk, < % >k, sk)

where pk, qk are positive integers, gcd(pk, qk) = 1 lk, uk and vk ∈ ZZ, such that
vkpk + ukqk = 1, if R′ is an finite extension of R, < % >k is the representation of
the real root %k of a polynomial h(x) ∈ R′[x] (this contains the polynomial h(x)
and the coding of the real root by interval coding or by Thom’s coding, see [LRR])
and sk := sign(%k) in R′.

Definition 3.2 An R-real rational development (R−RRD) is a countable list of
R−RT k

π := [τ1, . . . , τk]

and there exists a positive integer k0 ≤ k such that qi = 1 and %vii = 1 ∀i ≥ k0

(for the existence of k0 see below).

Staring at one edge in the Newton polygon in the first interaction which the
equation has real roots, an R −RT k is the data corresponding to Newton-like
k-interaction to compute the coefficients and the exponents of a real root as a
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Puiseux series in x of the polynomial f(x, y). Let ν be the number of equivalence
classes of real parametrizations at the origin. The following proposition gives
the relation between the R−RRD and the parametrizations of real branches.

Proposition 3.1 For each finite R −RRD, πν := [τ1, .., τk0 ]ν such that qk0 = 1
and %vk0 = 1, there exists a corresponding parametrization :

P (πν) :=
[
x̃ = λte, ỹ =

k0∑
k=1

αkt
n
k0
k

]
ν

where for k ≤ k0 :



e := q1q2 . . . qk0 , λ := µ
q00
1 µ

q10
2 . . . µ

q
k0−1

0

k0

where qji :=
∏j
k=i+1 qk ∀i, j : 0 ≤ i ≤ j ≤ k0, qii := 1, µk := %−vkk

nk0k := p1q
k0
1 + p2q

k0
2 + . . .+ pkq

k0
k , αk := %uk

k βk where

βk := (µ2µ
q2
3 . . . µ

q2...qk0−1

k0
)p1(µ3µ

q3
4 . . . µ

q3...qk0−1

k0
)p2 . . .

(µk+1µ
qk+2

k+2 . . . µ
qk+1...qk0−1

k0
)pk

(for any k, see [D].)

Proof :

Consider new symbols x0, x1, . . . , xk0 and y0, y1, . . . , yk0 , and the relations

(Sk)

{
xk−1 = %−vkk xqkk
yk−1 = (%uk

k + yk)xpkk , 1 ≤ k ≤ k0

The proposition follows by the elimination of x1, . . . , xk0 and y1, . . . , yk0 .

– DESCRIPTION

In the description of the algorithm we use the Newton polygon of a polyno-
mial f(x, y). This is defined as the lower part of the convex hull of the set of
points (i, j) such that ai,j 6= 0 along with the origine, see also [W].

Algorithm 1 COEFFICIENTS

input : The polynomial f(x, y).

output : A list of integers (i, o(

m∑
j=j0

ai,jx
j)), where o(

m∑
j=j0

ai,jx
j) := j0 if ai,j0 6= 0.
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Algorithm 2 BEZOUT

input : Two integers p and q such that gcd(p, q) = 1.

output : Two integers u and v such that up+ vq = 1.

This is the well known extended Euclidean algorithm. If p = 1 then (u, v) :=
(1, 0).

Algorithm 3 CONVEXHULL

input : A list of points lp := [(id, jd)d], (id, jd) ∈ ZZ2.

output : The list of list of points of edges of segments in the Newton polygon.

Algorithm 4 RATEXPAN

input : A polynomial f ′(x, y) ∈ R′[x, y], where R′ is a finite algebraic extension
of R such that f ′(0, 0) = 0.

output : A finite list of R−RT . This list contains all the ‘‘real’’ informations by
the Newton polygon analysis applied in the f ′(x, y).

Example : Let f(x, y) := y5 + 2xy4 − xy2 − 2x2y + x4 − x3. As the first step,
the procedure RATEXPAN finds the COEFFICIENTS of f(x, y), (algorithm 1),
and the corresponding CONVEXHULL (algorithm 3):

lp := COEFFICIENTS(f) := [(0, 3), (1, 2), (2, 1), (4, 1), (5, 0)]

ch := CONVEXHULL(lp) := [[(0, 3), (1, 2), (2, 1)], [(2, 1), (5, 0)]]

@
@
@

@
@
@

PPPPPPPP

•

• •

6

0

-◦
1

◦
2
◦
3
◦
4
•
5

◦1

◦2

•3

Let ∆1 := [(0, 3), (1, 2), (2, 1)]. Then 3 + 0γ = 2 + 1γ ⇒ γ = 1/1. So,
p = q = 1, u = 1, v = 0, l = 3 and i0 := min(0, 1, 2) = 0. The characteristic
polynomial is h(z)∆1 := −z2 − 2z − 1 = −(z + 1)2 and it has only one real root
%1 := −1. Then

τ1 := (1, 1, 3, 1, 0, < %1 >,−1).

Let ∆2 := [(2, 1), (5, 0)], 1 + 2γ = 0 + 5γ ⇒ γ = 1/3. Then, p = 1, q = 3,
u = 0, v = 1, l = 5 and i0 := min(2, 5) = 2. The corresponding characteristic
polynomial is h(z) := z−1 and it has one real root %2 := 1 and the corresponding
R−RT is

τ ′1 := (1, 3, 5, 0, 1, < %2 >, 1).

Finally, the algorithm gives the list of R−RT : [τ1, τ
′
1].
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Algorithm 5 NEWPOLYNOMIAL

input : A polynomial f ′(x, y) ∈ R′[x, y], where R′ is a finite algebraic extension
of R and a R−RT (p, q, l, u, v,< % >, s).

output : The polynomial
g(x, y) := x−lf ′(%−vxq, (%uxp + xpy)) ∈ R′(%−v, %u)[x, y]

Algorithm 6 RealRationalExpansions (abbrev. RREXP)

Let f(x, y) be a polynomial in R[x, y]. We denote by R − RRDf the list of
the first k terms of the type R − RT of the R − RRD, π := [τ1, . . . , τk . . .], of
the polynomial f(x, y), such that the real root %k in the last τk is a simple zero.
Then, the branch corresponding to R − RRDf is real, according to corollary
1 section 2.2, because in each i−interaction, i > k, the segment of negative
slope has horizontal length at most m, where m is the multiplicity of the real
root in the i− 1 interaction (see [W]), and so in our case, (m = 1), the degree of
the characteristic polynomial is equal to 1 (the finitness of algorithm). It is also
easy to verify that for each i > k, qi = 1.

input : The polynomial f(x, y).
output : A finite list of R −RRDf . The length of this list is equal to ν, where ν
is the number of equivalence classes of real parametrizations or equivalently the
number of real branches at the origin of the polynomial f(x, y).

Examples : In the following examples, the coding method used for the real
algebraic numbers, is the interval coding method, see [LRR].

1) Let f(x, y) := y5 + 2xy4 − xy2 − 2x2y + x4 − x3. The algorithm RealRa-
tionalExpansions runs the following list of real branches passing through the
origin :

TotRBr(0,0) := [π1, π2]
where :
π1 := [(1, 1, 3, 1, 0, < −x2 − 2x− 1,−1 >,−1), (1, 2, 0, 1, < −x+ 1,−1 >, 1)]
π2 := [(1, 3, 5, 0, 1, < x− 1, 1 >, 1)]

The curve has two real branches passing through the origin defined by the
R − RRD, π1 and π2. The first real branch is coded by two R − RT because
the first has not a simple real root.

2) The polynomial defining the ramphoid cusp : f(x, y) := 2y4 +(6x−3)y3 +
(7x2 − 5x+ 1)y2 + (4x3 − 2x2)y + x4.

TotRBr(0,0) := [π1]
where :
π1 := [(2, 1, 4, 1, 0, < x2 − 2x+ 1, 1 >, 1), (1, 2, 2, 0, 1, < x− 1, 1 >, 1)]

So, the curve has one real branch π1 at the origin coded by two R−RT s.

13



As an immediate consequence of this algorithm we present another algo-
rithm, (we call it RealRationalPuiseuxSeriesQ ), which computes the n-first
terms of all the real Puiseux series.

Algorithm 7 RealRationalPuiseuxSeriesQ (abbrev. RRPSQ)

input : A polynomial f(x, y) ∈ R[x, y], and an integer n.

output : A finite list of R − RRDf . The length of this list is equal to ν, where
ν is the number of equivalence classes of real irreducibles parametrizations or
equivalently the number of real branches at the origin of the polynomial f(x, y).
Every R−RRDf has exactly n R−RT s.

3.2 The Main Algorithm

As we have seen, (cf. 1.2), our algorithm gives a description of the real
analytic and irreducible components of f(x, y). The strategy involves the use of
real rational Puiseux expansions. The algorithm is structured in three phases :

PHASE 1 : TRANSLATION

1. We compute the discriminant locus and the branch points (simple, tan-
gency simple and singular points) (ξi, ζi,li)i of the curve Cf .

2. We find the projections of singular points of the curve. Let (ξk, ζk,lk)k be
these points.

3. We translate the point (ξk, ζk,lk) to the origin. Let f ′(x, y) := f(x+ ξk, y+
ζk,lk) be the new polynomial.

4. We compute the RREXP(f ′(x, y)) for each branch point.

PHASE 2 : COMPUTING THE LOCAL ANALYTIC COMPONENTS – ADJA-
CENCY RELATION

1. Compute the simple points and tangency simple points, over the real roots
ξi′ for i′ 6= k for all k that satisfy the second condition in PHASE 1.

2. (a) Compute the polynomial g(x, y) :=
∂2f

∂y2
. If the sign of this polyno-

mial at the tangency simple point is zero go to (c), else go to (b)

(b) Compute the polynomial h(x, y) :=
∂f

∂x
f(x, y), and the sign of the

h(x, y) at the tangency simple points.

(c) Compute the local topology at the simple points.

(d) Compute the local topology by the sign of the h(x, y), at tangency
simple points.

14



3. Compute the local topology of the real points over the ξ′ks.

4. Compute the adjacency relations of half-branches of every branch point.

PHASE 3 : COMPUTING THE GLOBAL ANALYTIC COMPONENTS

1. Describe the global analytic components of the given curve.

3.2.1 The Algorithm of the PHASE 1

Algorithm 8 : SING

input : The monic polynomial f(x, y) and its discriminant d(x) with respect to y.

output : The list of the real roots of d(x) into two classes : the class of the projec-
tions of the complex, in general, singular points and the class of the projections
of the real simple and simple tangency points.

– DESCRIPTION (see also 1.3)

• Let q(x, y, w) := wfx − fy, f(x, y, w) := f(x, y), and a(x,w) :=

Resx(f(x, y, w), q(x, y, w)). If a(x,w) :=
∑
i

ai(x)wi, let

h(x) := gcdi(ai).

• We find the real solutions of the system d(x) = h(x) = 0. We denote
by {ξk}1≤k≤s these commun solutions, where s is the number of real
solutions of the d(x).

Technical Remark 2 The algorithm that find the real solutions of
d(x) = h(x) = 0, varies with the method of the real root coding; so, in Thom’s
coding method we utilize a special case of the algorithm for coding the real roots
of a polynomial (see [L]), and in the interval coding method we evaluate h(x) over
the real roots of d(x).

Algorithm 9 TRREXP

input : The polynomial f(x, y)

output : A finite list of list of R−RRDf , see algorithm 1. The size of this list is
equal to k. Each list of R−RRDf contains the real rational Puiseux expansions
in the real points (ξk, ζk,lk), where ζk,lk are the real solutions of f(ξk, y) = 0.

– DESCRIPTION
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• Let d(x) be the discriminant of f(x, y) with respect to y. After a square
free reduction we assume that d(x) has no repeated roots. We code the
real roots {ξ1, . . . , ξs} of d(x).

• For each t, 1 ≤ t ≤ s, let {ζt,1, . . . , ζt,lt} be the real roots of f(ξt, y) = 0.

• We characterize the real roots of d(x) into classes, the projections of real
or complex singular points, and the projections of real simple and simple
tancency points, following the previous algorithm SING. Let ξk be the
projections of singular points.

• We translate the point (ξk, ζk,lk) to the origin. Let f ′(x, y) := f(x+ ξk, y+
ζk,lk) be the new polynomial.

• We compute the RREXP(f ′(x, y)) for each branch point.

3.2.2 The Algorithm of the PHASE 2

The local topology over the points ξi′ , i′ 6= k

In the following the quadrant (x > 0, y > 0) will be labelled by 1, the
(x < 0, y > 0) by 2, the (x < 0, y < 0) by 3 and the (x > 0, y < 0) by 4.

6

y

- x

12

3 4
Let (a, b) be a non-singular point of the curve. If this point is a simple

point we say that the corresponding real branch lies in the quadrants 2 → 4;
this position has the same final effect as the position 1 → 3; our choice is
accidental. Now suppose that (a, b) is a simple tangency point; if the sign of the
polynomial g(x, y), see PHASE 2 2.(a), in this point is zero, then the polynomial
has an inflexion point, and we can say that the real branch lies in the quadrants
1→ 3. Else, the sign of the polynomial h(x, y), (see PHASE 2, 2(a)), is non zero,
it is positive iff the curve has two real branches on the left, i.e. local position
2 → 3, and it is negative iff the curve has two real branches on the right, i.e.
local position 1→ 4.

Example : Consider the curve p(x, y) := y6 +(x4 +x3−1)y3 +3x3−x2 +2x, see
figure 4. The discriminant of p(x, y) has three real roots. Over the first root,
we can see that the polynomial has an inflexion point, (the polynomial f(x, y)
is zero), over the second root the simple tangency point make the polynomial
h(x, y) positive, and over the last root the corresponding simple tangency point
makes the polynomial p(x, y) negative.

16



x
K20 K10 0 10

y

K5

K4

K3

K2

K1

1

Figure 4: p(x, y) := y6 + (x4 + x3 − 1)y3 + 3x3 − x2 + 2x

The local topology over the points ξk

Let π := [τ1, .., τk0 ] be an R − RRD, that determines a real branch. Let
τ1 := (p1, q1, l1, u1, v1, < %1 >, s1) be the first R−RT of π.

If the corresponding real branch is determined by only the first R−RT τ1,
then the parities of p1 and q1 and the sign s1 are sufficient to determine in which
quadrants the real branch Brr lies, according to the relation (S1) section 2.1.
These conclusions are summarized in the following table to facilitate qualitative
inferences from the sign of % and the parities of p and q (see also [CP3R] or [L]):

p q sign(%) = s quadrants

odd odd positive 3→ 1
negative 4→ 2

odd even positive 4→ 1
negative 3→ 2

even odd positive 2→ 1
negative 4→ 3

table 1

Proposition 3.2 If a real branch is determined by the firstR−RT , then its local
position at the origin, is given by the table 1.

Proof :

(Notation: The notation (x̃, ỹ) ∈ 1, 2, 3 or 4, signifies that the real branch
lies in the quadrant 1, 2, 3 or 4 respectively.)

We restrict our attention to the case where sign(%) = −1; the case
sign(%) = +1 is the same. If sign(%) = −1, we have the following cases :
Let ε be an positive infitesimal.
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• case 1 — p, q : odd and s = sign(%) = −1. Then,

sign(−ε)q = −1 sign(−ε)p = −1
sign(ε)q = +1 sign(ε)p = +1

But, sign(%−v) = sign(%−vp) and sign(%u) = sign(%uq). So,

sign(%−v)sign(%u) = sign(%−vp)sign(%uq)
= sign(%1−2vp)
= sign(%) = −1

If sign(%−v) = −1 and sign(%u) = +1 by the (S1) section 2.1,

For t = ε⇒
{
sign(x̃) = −1
sign(ỹ) = +1

}
⇒ (x̃, ỹ) ∈ 2

For t = −ε⇒
{
sign(x̃) = +1
sign(ỹ) = −1

}
⇒ (x̃, ỹ) ∈ 4

If sign(%−v) = +1 and sign(%u) = −1 :

For t = ε⇒
{
sign(x̃) = +1
sign(ỹ) = −1

}
⇒ (x̃, ỹ) ∈ 4

For t = −ε⇒
{
sign(x̃) = −1
sign(ỹ) = +1

}
⇒ (x̃, ỹ) ∈ 2

• case 2 — p : odd q : even, s = sign(%) = −1. Then,
sign(−ε)q = +1, sign(−ε)p = −1, sign(ε)q = +1 and sign(ε)p = +1. But
now we have, sign(%−v)sign(%u) = +1.
If sign(%−v) = +1 then v is even and so uq+ vp is also even, a contradic-
tion. So, sign(%−v) = sign(%u) = −1.

For t = ε⇒
{
sign(x̃) = −1
sign(ỹ) = −1

}
⇒ (x̃, ỹ) ∈ 3

For t = −ε⇒
{
sign(x̃) = −1
sign(ỹ) = +1

}
⇒ (x̃, ỹ) ∈ 2

• case 3 — p : even q : odd, s = sign(%) = −1. As in the case 2,

sign(−ε)q = −1, sign(−ε)p = +1
sign(ε)q = +1, sign(ε)p = +1
sign(%−v) = sign(%u) = −1

For t = ε⇒
{
sign(x̃) = −1
sign(ỹ) = −1

}
⇒ (x̃, ỹ) ∈ 3

For t = −ε⇒
{
sign(x̃) = +1
sign(ỹ) = −1

}
⇒ (x̃, ỹ) ∈ 4

18



Remark 1 The above description does not depend on the choices of the solutions
u and v of up+ vq = 1.

If the real branch is determined by a series of k0 R − RT , k0 > 1, then
the situation is more complicated. Essentially, we determine the points like a
‘‘ramphoid cusp’’, if they exist, see figure 2. The procedure is the following :

step 1: First, we evaluate the RREXP(f(x, y)). Let π := [τ1, .., τk0 ] be a
real branch through the origin. By the parities of p1 and q1 and the sign
of %1 we determine the local topology of π as previously.

step 2: Consider the previous real branch π. Let x̃ := %−v11 %
−v2q10
2 . . .-

%
−vk0

q
k0−1

k0

k0
tq1q2...qk0 , where qj0 :=

∏j
k=1 qk, ∀j : 0 < j ≤ k0.

{ (a) Let the real branch lie in one of the following quadrants 3→ 1,
2→ 1, 2→ 4 or 3→ 4. If for t = ε and t = −ε the sign of tq1q2...qk0 is
the same (this is the case, if q1q2 . . . qk0 is even), then the real branch
at the origin has a shape like the ramphoid cusp.

{ (b) If not, the local position of the real branch is given by step 1.

step 3: In this step, we examine the situation of the step 2 (a). Let ε be
a positive infinitesimal. In this case we easily obtain the sign of x̃ by the
signs of %1, . . . , %k0 and the parities of q1, . . . , q

k0−1
0 and v1, . . . , vk0 .

step 4: In the other cases, i.e. if 4 → 1 or 3 → 2, we find the sign of the
first term, for t = ±ε, of the series ỹ of the prop. 2, which is:

position obtain local position
sign(x̃) sign(ỹ)

by step 1 of the half-brs

3→ 1 positive 1→ 1
negative 3→ 3

2→ 1 positive 1→ 1
negative 2→ 2

4→ 2 positive 4→ 4
negative 2→ 2

4→ 3 positive 4→ 4
negative 3→ 3

4→ 1 positive 1→ 1
negative 4→ 4

3→ 2 positive 2→ 2
negative 3→ 3

table 2
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(
µ2µ

q2
3 . . . µ

q2...qk0−1

k0

)p1
tp1q2...qk0 , µj := %

−vj
j

Examples : (1) Let f := 2y4 +(6x−3)y3 +(7x2−5x+1)y2 +(4x3−2x2)y+x4,
see figure 2. The curve has one real branch at the origin coded by π1, see Ex. 2
of the algorithm 6. By the firstR−RT , (2, 1, 4, 1, 0, < x2−2x+1, 1 >, 1), and the
table 1, we conclude that this real branch lies in the quadrants 2 → 1. In this
case we have, p1 = 2, q1 = 1, u1 = 0, v1 = 1, %1 = 1 and p2 = 1, q2 = 2, u2 = 1,
v2 = 0, %2 = 1. Applying the test in the previous step 2 (a), we see that q1q2 = 2,
so at the origin the curve has a ramphoid point. By prop. 2, x̃ = t2 or x̃ is
positive for t = ±ε. Finally, by the table 2 the real branch lies in the quadrant 1.

(2) Let f(x, y) := 2y5 − xy3 + 2x2y2 − x3y + 2x5, see figure 5.

x
K0,10 K0,08 K0,06 K0,04 K0,02 0 0,02 0,04 0,06

y

K0,10

K0,08

K0,06

K0,04

K0,02

0,02

0,04

0,06

Figure 5: The curve 2y5 − xy3 + 2x2y2 − x3y + 2x5 = 0.

The alg. 6 gives:
RREXP(f(x, y)):=[π1, π2, π3] :=[(

(2, 1, 5, 1, 0, < −x+ 2, 2 >, 1)

)
,(

(1, 1, 4, 1, 0, < −x2 + 2x− 1, 1 >, 1), (1, 2, 2, 0, 1, < −x+ 4, 4 >, 1)

)
,(

(1, 2, 5, 0, 1, < 2x− 1,
1

2
>, 1)

)]
The real branches corresponding to the π1 and π3 lie in the quadrants 2→ 1

and 4→ 1 respectively. The real branch coded by π2 looks like a ramphoid point
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at the origin, because q1q2 = 2, see figure 6. More precisely, this real branch
lies in the quadrant 1→ 1, because x̃ = %−v11 %−v1q12 tq1q2 = t2 > 0 for t = ±ε.
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3 3

Figure 6

For instance, by the tables 1 and 2 we have the contiguous real half-
branches in the real branch points. The adjacency relation between two succe-
sive real roots ξi and ξi+1 of the discriminant, follows the Cylindrical Algebraic
Decomposition analysis and so we must compare all the half-branches which
are on the same side of a real root of the discriminant.

Let π1, . . . , πr denote the half-branches on the same side of a real root ξi,
left or right. The procedure of the order is the following:
(Notation: We note by πj,t and by πj′,t′ , the real half-branches of πj and πj′

which lie in the quadrants t and t′ respectively.)

1. if the branch points ζi,k and ζi,k′ corresponding to the half-branches πj,t
and πj′,t′ , 1 ≤ j, j′ ≤ r, are in order ζi,k < ζi,k′ , then πj,t < πj′,t′ ,

2. if πj,t belongs in the quadrants 1 (or 2) and πj′,t′ in the quadrants 4 (or
4), then πj′,t′ < πj,t,

3. in the other case, let πj,t :=< τ1,j , . . . , τk,j > and
πj′,t :=< τ1,j′ , . . . , τk′,j′ > be two real half-branches in the same quadrant
t. Let l be the smallest index such that τl,j 6= τl,j′ and τi,j = τi,j′ ∀i < l.

(a) If 1 < l,
i. If nkl < nk

′

l ⇒ πj′,t < πj,t

ii. If nkl = nk
′

l then πj,t < πj′,t iff

sign
(
ỹ(σ)− ỹ′(σ)

)
= −1

where, ỹ and ỹ′ are the series of the prop. 2, σ is equal to −ε, a
negative infinitesimal, if t = 2 or 3, or +ε, a positive infinitesimal,
if t = 1 or 4. Note that the sign of the difference

(
ỹ(σ)− ỹ′(σ)

)
is equal to the sign of αltn

k
l − α′ltn

k′
l = (αl − α′l)tn

k
l , for t = σ.
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(b) else, i.e. l = 1, see the following proposition 4.

Remark 2 The proof of conditions of 3.(a).i and ii, is easy.

Proposition 3.3 Let
y(x) := ξ1,j

1/q1,jxp1,j/ql,j + . . . and y′(x) := ξ′1,j′
1/q1,j′xp1,j′/ql,j′ + . . . are the first

terms of the compact forms of πj,t and πj′,t respectively, then

1. if p1,j/q1,j = p1,j′/q1,j′ , and σ as previously, πj′,t < πj,t iff sign
(
y(σ) −

y′(σ)
)

= +1, where σ = +ε if t = 1 or 4, or σ = −ε if t = 2 or 3, which is

equivalent to:

if



ξ′1,j′ < ξ1,j and
i = i′ = 4, j = j′ = 1, t = t′ = 4
or
i = i′ = 3, j = j′ = 2, t = t′ = 2
or
i = i′ = 3, j = j′ = 1, t = t′ = 3
or
i = i′ = 4, j = j′ = 2, t = t′ = 2


then, πj,t < πj′,t.

else, if ξ1,j < ξ′1,j′ we have that πj,t < πj′,t.

2. If p1,j/q1,j 6= p1,j′/q1,j′ , then,

πj,t < πj′,t =

 true iff p1,j′/q1,j′ < p1,j/q1,j

false else

Proof:

1. We prove only the first.
sign(y(x)− y′(x)) = sign(−ξ1/q1,j

1,j + ξ′1,j′
1/q1,j′ ) = −1 iff ξ′1,j′ > ξ1,j .

2. Easy.

Example : Consider the curve in the previous two examples. We have
nothing to do in the first curve. In the latter, let π1,2, π1,1 are the half-branches
of π1 in the quadrants 2 and 1 respectively, π3,1, π3,4 are the half-branches of
π3 in the quadrants 1 and 4 respectively, and π2

2,1 the two half-branches of π2

in the quadrant 1. Then, the orders in the right side of the origin, are as follows
(see also (figure 6)):
(1) π3,4 < π1,1, π

2
2,1, π3,1 (following the condition 2).

(2) The compact forms of π1, π2 and π3 are y1(x) = 2x2 + . . ., y2(x) = x+ . . .
and y3(x) = (1

2 )1/2x1/2 + . . . respectively. By prop 4 (2), π1,1 < π2
2,1 (since

1 < 2) and π2
2,1 < π3,1 (since 1/2 < 1).

So, we have π3,4 < π1,1 < π2
2,1 < π3,1.
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The Adjacency Relation

Now, the adjacency relation between two successives real roots of the dis-
criminant ξi and ξi+1 is a straightforward consequence of the order of half-
branches just right of ξi and just left of ξi+1. We code the real branch points
and the real half-branches as follows :

1) a real point by Ak,lk which corresponds to the real root ζk,lk , see algo-
rithm of the phase 1.

2) we code a real half-branch, left or right of real roots ξk, 1 ≤ k ≤ s,
see algorithm of the phase 1, by Br(i1,i2,i3,i4,i5), where i1 and i2 are the
quadrants which the real branch lies, i3 is the enumeration of the real
branches in the same quadrants i1 and i2, i4 is the quadrant in which the
real half-branch lies and i5 is its order determined by the previous phase
of half-branch left or right of a real root of the discriminant.

The adjacency relation between two real half-branches Br(t,r,l,m,n) and
Br′(t′,r′,l′,m′,n′), is determined by the following :

• i) if they are on the left and on the right of the branch point Ai,ji then
they belong to the same real branch iff t = t′, r = r′ and l = l′.

• ii) if they are on the right (or on the left) of the point Ai,ji and on the left
of the point Ai+1,ji+1

(or on the right Ai−1,ji−1
) respectively, then they are

adjacent iff n = n′.

Algorithm 10 ORDERBr

input : The output of the algorithm
TRREXP(f(x, y)), (see algorithm 9.)

output : A lexicographically ordered set :

(Σ) :

{
. . . ,

(
(. . . Br(t,r,l,m,n), . . .)left, Ai,ji ,

(. . . , Br′(t′,r′,l′,m′,n′), . . .)right

)
i,ji
, . . .

}
where the lists of left and right half-branches are ordered as previously.

3.2.3 The Algorithm of the PHASE 3

We can finally draw the one-dimensional analytic component of the real curve.
The algorithm called TRANSCLOSURE:

Algorithm 11 TRANSCLOSURE

input : The set (Σ)
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output : A list of one-dimensional analytic component of the real curve.

– DESCRIPTION

Let AC be an one-dimensional analytic component of the real curve.

1) If an element of (Σ) has only a point Ai,ji then this point is a trivial
analytic component of the curve.

2) If the set of left half-branch over the ξ0 is empty go to step 3. Let Br
be the first half-branch over the interval (−∞, ξ0) (or (ξs,+∞)) centered
in the point A0,j0 (or As,js ), then Br and A0,j0 ∈ AC (or As,js ). We go to
other side of ξ0 (or ξs) and we repeat step 3.1.

3) Let (. . . , Br, . . .) be the first non-empty list of half-branches left or
right over the real root ξi. Let Br be the first half-branch in the previous
list and Ai,ji the center of Br. Then, Ai,ji , Br ∈ AC.

3.1) if Br′ is the other half-branch adjacencies in Br following
the relation i, subsection 4.2.2, Br′ ∈ AC. Now, we go to the list
labeled by Ai+1,ji+1

(or Ai−1,ji−1
) and let Br′′ be the half-branch

which is adjacent to Br′ following the relation ii, subsection 4.2.2.
We continue the above procedure until we find a half-branch which
coincides with Br or goes to infinity following the previous case 2.
Ai+1,ji+1 (or Ai−1,ji−1 ), Br′′ ∈ AC. We drop from the set (Σ) the :
Br,Br′, Br′′, Ai,ji , Ai+1,ji+1

or (Ai−1,ji−1
).

4) We repeat the above procedure until the set (Σ) is empty.

We need to show that the above algorithm gives the one-dimensional real
analytic components of the real curve. The component AC is a real analytic set
of Cf (because is locally so at every point), it is also one-dimensional and so
C-analytic, coherent (see [F]), and C-irreducible set (because all the contiguous
real half-branches belong to same irreducible real analytic local component).

Example : Here, we give a complete example of our algorithm. Let the Ruiz-
Castizo’s quatric p := (y2 − 2x2 − 3x)2 − 4x2(1 − x)(2 − x), see figure 6 and
7.
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Figure 6: The Ruix-Castizo’s curve (y2 − 2x2 − 3x)2 − 4x2(1− x)(2− x) = 0.
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Br(1,4,1,4,4)

Figure 7

• Algorithm 9: TRREXP
The algorithm says that the second root of discriminant ξ2 is the projection

of the alone singular point of the real curve. So, let p′(x, y) := p(x+ ξ2, ζ2,1) the
new polynomial after the translation of (ξ2, ζ2,1), the point A2,1, to the origin.
We compute the RREXP(p′(x, y)):

π1 :=< 1, 2, 4, 0, 1, < x2 − 6x+ 1, 2
√

2 + 3 >, 1 >

π2 :=< 1, 2, 4, 0, 1, < x2 − 6x+ 1,−2
√

2 + 3 >, 1 >
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• Algorithm 10: ORDERBr
1) The algorithm computes the local topology over the real roots ξ1, ξ3

and ξ4. The signs of the polynomial h(x, y), (see PHASE 2, 2(a)), at the real
points: A1,1 := (ξ1, ζ1,1), A3,1 := (ξ3, ζ3,1), A3,2 := (ξ3, ζ3,2), A4,1 := (ξ4, ζ4,1)
and A4,2 := (ξ4, ζ4,2), are respectively: +1, +1, +1, −1 and −1. In this case,
we obtain the list of half-branches:[ (

(Br(2,3,1,3,1), Br(2,3,1,2,2)), A1,1, ()
)

(
(Br(2,3,1,3,1), Br(2,3,1,2,2)), A3,1, ()

)
(

(Br(2,3,1,3,3), Br(2,3,1,2,4)), A3,2, ()
)

(
(), A4,1, (Br(1,4,1,4,1), Br(1,4,1,1,2))

)
(

(), A4,2, (Br(1,4,1,4,3), Br(1,4,1,4,4))
) ]

2) The table 1 say that the real branches π1 and π2 lie in the quadrants
4→ 1. So, we have four real half-branches right of ξ2: π1,4, π2,4, π1,1 and π2,1.
But π1,4, π2,4 < π1,1, π2,1, by step 2 in the procedure of the ordering. Now, by
proposition 4 (1), we have also that, π2,4 < π1,4, (because −2

√
2+3 < 2

√
2+3),

and π1,1 < π2,1, (because −2
√

2 + 3 < 2
√

2 + 3). Finally, π1,4 < π2,4 < π1,1 <
π2,1. At the point A2,1, we obtain this list of half-branches:

[ (
(), A2,1, (Br(1,4,1,4,1), Br(1,4,2,4,2), Br(1,4,1,1,3), Br(1,4,2,1,4))

) ]
• Algorithm 11: TRANSCLOSURE

1) As we can see from figure 7, the real algebraic curve has 4 analytic
components:

1.
(
Br(2,3,1,3,1), A1,1, Br(2,3,1,2,2)

)
2.
(
Br(1,4,1,4,1), A4,1, Br(1,4,1,1,2)

)
3.
(
Br(1,4,1,4,3), A4,2, Br(1,4,1,4,4)

)
4.
(
Br(1,4,1,4,1), Br(2,3,1,3,1), A3,1, Br(2,3,1,2,2), Br(1,4,2,4,2), A2,1,

Br(1,4,2,1,4), Br(2,3,1,2,4), A3,2, Br(2,3,1,3,3), Br(1,4,1,1,3)

)

3.2.4 The final algorithm

Algorithm 12 AnalyticComponentsRealCurve – abbrev. ACRC

input : The polynomial f(x, y).
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output : A list of one-dimensional analytic components of the real curve.

– DESCRIPTION

• step 1 : Compute TRREXP with input the polynomial f(x, y), see algo-
rithm 8.

• step 2 : Compute ORDERBr with input the result of the previous algo-
rithm, see algorithm 10.

• step 3 : Compute TRANSCLOSURE with input the result of the previous
algorithm, see algorithm 11.

Remark 3 The above algorithm gives also a graph homeomorphic to the set:
{(a, b) ∈ R̃2/f(a, b) = 0}.

4 The implementation

The terminology used throughout this section will be AXIOM based, but any
type or object oriented language could be used to describe the process.

4.1 The Real Closure

For the determination of RRP-expansions we must utilize an implementation
of finite extensions of an ordered field, but the implementations of explicit
towers of extensions are not efficient, see [L]. In [LRR] we proposed a new way
to implement the real closure of an ordered field which is both generic and
efficient. So from a computer algebra point of view the main algorithm ACRC,
can be generically implemented. Basic references are: [L] and [LRR].

The domain RealClosure is the implementation in AXIOM of the mathe-
matical quantities of the real closure. This domain is the common implemen-
tation for the two techniques, interval and Thom’s coding, to code a single real
algebraic number. The only argument is an object of the type Field in AXIOM.

4.2 The algorithms RREXP and RRPSQ

The packages of the two algorithms RREXP and RRPSQ, are respectively:

RealRationalExpansionsPackage , abbrev. (RREP)
and

RealRationalPuiseuxSeriesQPackage , abbrev. (RRPSP)

In the first package the main function realRatExp takes as argument
a polynomial p(x, y) in the domain RealClosure, such that p(0, 0) = 0, and
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gives the set of real branches, i.e. the set of R−RRDs (see def. 9), {π1, . . . , πs},
such that the real root of each last term τki of πi, 1 ≤ i ≤ s, is simple.

In the second package, the main function realRatExpSer take as argu-
ment the polynomial p(x, y), and an integer n, and gives the set of real branches
{π1, . . . , πs} as previously. But now, each πs has exactly n R−RT s.

In the following examples we indicate the CPU computing times in secs
the main functions realRatExp and realRatExpSer. Comparisons are not
possible because relative programmes, by our knowledge, are not given. The
computations have been processed with the method of interval coding using R.
Rioboo’s implementation, see [LRR]. All of these examples have been tested in
an IBM RISC/6000 of the LITP Université P. et M. Curie in Paris.

polynomial CPU/sec CPU/sec ]terms
realRatExp realRatExpSer

y2+x3−x2 0.5 0.7 5
double point

y3−x3 0.06 0.04 5
cusp

(x2+y2−1)(y−x) 0.02 0.06 5
circumference and line
y3−2x2y2+3xy−x+y 0.01 0.18 5

random curve
x3+y3−3xy 0.01 0.62 5

Descartes’s folium
(x2+y2)2−(2x2+3y2) 0.03 0.5 5

lemniscate
(x2+y2)2−(x2−y2) 1.01 1.35 5

Bernouli’s lemniscate
(x2+y2)2−4x(x2−y2) 0.05 2.02 5

trifolium
y4−2y3+y2−3x2y+2x4 0.1 0.84 5

tacnode
(y2−2x2−3x)2−4x2(1−x)(2−x) 0.05 10.26 5

Ruiz Castizo’s quatric
x4+x2y2−2x2y−xy2+y2 0.49 0.48 5

ramphoid cusp
y6+3y4x2+3y2x4−4y2x2+x6 0.08 7.51 5

ordinary triple point
(x2+y2−1)2(x2−y2)+xy 0.07 10.54 5

Traverso-Cellini-Gianni

4.3 The algorithm ACRC

The main algorithm ACRC is the package
AnalyticComponentsPackage (abbrev. ACP)
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with arguments : an object R of type Field, which is the field of the coeffi-
cients of the defining polynomial of the curve and a boolean which takes the
value true for the Thom’s coding method and false for the interval coding
method. For the moment, the algorithm with the Thom’s coding method, com-
pute also the analytic components of the perturbed curves, the curve definined
by the polynomials of the general form p(x, y) ± εxnym, where ε an positive
infinitesimal, see figure 10 and figure 11, but this version of the ACRC is not
efficient. On the contrary, the version with the interval coding method is more
efficient but not so generic.

The basic functions are the following :

• TopologicalTypeOf : UP(y,UP(x,R)) → List List
Record (inPoint:Symbol,Left:Symbol,Right:Symbol)

• AnalyticComponentsOf :
UP(y,UP(x,R)) → List List Symbol

where : UP abbreviates the UnivariatePolynomial package, the inPoint
is the branch-point Ai,j (see 1 in 2.2.2) and the Symbol in Left and Right

has the form Br
i4,i5
i1,i2,i3

, as the half-branch in 2 section 2.2.2.

Examples : The computations of the following examples have been processed
with the method of interval coding using R. Rioboo’s implementation, see [LRR].
Let p := (y2 + x2 − 1)((x− 1)2 + 4y2 − 4) be a polynomial in
RealClosure(Fraction(Integer)).

1) Let q := p + 2−2, see figure 8a. The function TopologicalTypeOf(q)
gives:

[ [[inPoint=A1,1,Left=[],Right=[Br
4,1
1,4,1,Br

1,2
1,4,1]],

[inPoint=A1,2,Left=[],Right=[Br
4,3
1,4,1,Br

1,4
1,4,1]]]

,

[[inPoint=A2,1,Left=[Br
2,1
2,4,1],Right=[Br

4,1
2,4,1]],

[inPoint=A2,2,Left=[Br
3,2
2,3,1,Br

2,3
2,3,1],Right=[]],

[inPoint=A2,3,Left=[Br
2,4
2,4,1],Right=[Br

4,2
2,4,1]]]

,

[[inPoint=A3,1,Left=[Br
3,1
2,3,1,Br

2,2
2,3,1],Right=[]]] ]
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The function AnalyticComponentsOf gives one analytic component of
the curve:
[Br4,11,4,1,Br

2,1
2,4,1,A2,1

,Br4,12,4,1,Br
3,1
2,3,1,A3,1,Br

2,2
2,3,1,Br

4,2
2,4,1,

A2,3,Br
2,4
2,4,1,Br

1,4
1,4,1,A1,2,Br

4,3
1,4,1,Br

2,3
2,3,1,A2,2

,Br3,22,3,1,

Br1,21,4,1,A1,1]

In the following diagrams the adjacent real half-branches in a real point are
illustrated by the arrowheads, if it necesary.
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Figure 8a: 1 anal. component
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Figure 8b: 3 anal. components

2) If q := p+ 2−4, the corresponding curve has 3 analytic components as we
can see in figure 8b.

3) Let p := y6 − 12y4 + 36y2 + x6 − 11x4 + 35x2 − 57 be Santos’s curve;
see also 11 below. This curve has one analytic component as we can see
following the arrowheads given by our local topological analysis in figure 9.
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Figure 9: 1 anal. component

4) Let p(x, y) := (x2 + y2 − 1)(y− x− 1), be the circumference and line see 1
below. If ε is an positive infinitesimal, then the version of ACRC with the Thom’s
coding method gives the following shape with two analytic components for the
curve p(x, y) + ε, figure 10,
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Figure 10: 2 anal. components
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and two analytic components for the curve p(x, y)− ε, figure 11.
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Figure 11: 2 anal. components

In the following examples we show the defining polynomials, the correspond-
ing shapes taken by our algorithm, and the CPU computing times in secs. The
first one is the time given by the algorithm in [CP3R], say the ACP, and the
second by our implementation ACRC. All of the examples have been tested in
an IBM RISC/6000 of the LITP Université P. et M. Curie in Paris.

1: (x2 + y2 − 1)(y − x− 1) (circumference and line – 2 anal. components)
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Computing time : ACP : 1 , ACRC : 3.4
2: y3 − 2x2y2 + 3xy − x+ y (random curve – 3 anal. components)
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Computing time : ACP : 526 , ACRC : 136

3: x3 + y3 − 3xy (Descartes’s folium – 1 anal. component)
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Computing time : ACP : 2.8 , ACRC : 3

4: (x2 + y2)2 − (2x2 + 3y2) (lemniscate – 2 anal. components)
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Computing time : ACP : 0.1 , ACRC : 4

5: (x2 + y2)2 − (x2 − y2) (Bernouli’s lemniscate – 1 anal. component)
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Computing time : ACP : 0.67 , ACRC 2.5

6: (x2 + y2)2 − 4x(x2 − y2) (trifolium – 1 anal. component)
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Computing time : ACP : 1 , ACRC : 3
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7: y4 − 2y3 + y2 − 3x2y + 2x4 (tacnode – 1 anal. component)
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Computing time : ACP : > 2000 , ACRC : 185

8: x4+x2y2−2x2y−xy2+y2 = 2y4+(6x−3)y3+(7x2−5x+1)y2+(4x3−2x2)y+x4

(ramphoid cusp – 1 anal. component)

�
�
�
�
�
�
�
�
�
�
@

@
@
@

@
PPPPPPPPPPPPPPP

�
�
�
�
�
�
�
�
�
�

Computing time : ACP : > 2000 , ACRC : 525

9: (y2 − 2x2 − 3x)2 − 4x2(1− x)(2− x) (Ruiz Castizo’s quatric), see figure 7.
Computing time : ACP : 3.5 , ACRC : 5

10: (y2 + x2 − 1)((x− 1)2 + 4y2 − 4) + 2−2, (H. Hong), see figure 8a.
Computing time : ACP : 348 , ACRC : 57

11: y6 − 12y4 + 36y2 + x6 − 11x4 + 35x2 − 57, (F. Santos), see figure 9
Computing time : ACP : > 2000 , ACRC : 162
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