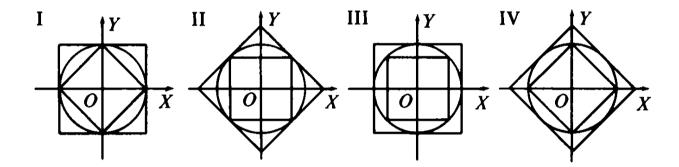
SELECTION TESTS

1973

- 6. If 554 is the base b representation of the square of the number whose base b representation is 24, then b, when written in base 10, equals
 - (A) 6

- (B) 8 (C) 12 (D) 14 (E) 16
- 11. A circle with a circumscribed and an inscribed square centered at the origin O of a rectangular coordinate system with positive xand y axes OX and OY is shown in each figure I to IV below.



The inequalities

$$|x| + |y| \le \sqrt{2(x^2 + y^2)} \le 2 \operatorname{Max}(|x|, |y|)$$

are represented geometrically by the figure numbered

- (A) I
- (B) II
- (C) III
- (D) IV (E) none of these

- 13. The fraction $\frac{2(\sqrt{2} + \sqrt{6})}{3\sqrt{2 + \sqrt{3}}}$ is equal to
 - (A) $\frac{2\sqrt{2}}{2}$ (B) 1 (C) $\frac{2\sqrt{3}}{2}$ (D) $\frac{4}{3}$ (E) $\frac{16}{9}$

- 16. If the sum of all the angles except one of a convex polygon is 2190°, then the number of sides of the polygon must be
 - (A) 13
- (B) 15 (C) 17 (D) 19
- (E) 21

1974

10. What is the smallest integral value of k such that

$$2x(kx - 4) - x^2 + 6 = 0$$

has no real roots?

- (A) -1
- (B) 2 (C) 3 (D) 4 (E) 5
- 11. If (a, b) and (c, d) are two points on the line whose equation is y = mx + k, then the distance between (a, b) and (c, d), in terms of a, c and m, is
 - (A) $|a-c|\sqrt{1+m^2}$ (B) $|a+c|\sqrt{1+m^2}$ (C) $\frac{|a-c|}{\sqrt{1+m^2}}$
- (D) $|a-c|(1+m^2)$ (E) |a-c||m|
- 12. If $g(x) = 1 x^2$ and $f(g(x)) = \frac{1 x^2}{x^2}$ when $x \neq 0$, then f(1/2) equals

- (A) 3/4 (B) 1 (C) 3 (D) $\sqrt{2}/2$ (E) $\sqrt{2}$

15. If x < -2 then |1 - |1 + x|| equals

(A)
$$2 + x$$

(A)
$$2 + x$$
 (B) $-2 - x$ (C) x (D) $-x$ (E) -2

$$(D) -x$$

$$(E) -2$$

18. If $\log_8 3 = p$ and $\log_3 5 = q$, then, in terms of p and q, $\log_{10} 5$ equals

(A)
$$pq$$
 (B) $\frac{3p+q}{5}$ (C) $\frac{1+3pq}{p+q}$ (D) $\frac{3pq}{1+3pq}$

(C)
$$\frac{1+3pq}{p+q}$$

(D)
$$\frac{3pq}{1+3pq}$$

(E)
$$p^2 + q^2$$

1975

10. The sum of the digits in base ten of $(10^{4n^2+8}+1)^2$, where n is a positive integer, is

$$(A)$$
 4

(C)
$$2 + 2n$$

(D)
$$4n^2$$

(A) 4 (B)
$$4n$$
 (C) $2 + 2n$ (D) $4n^2$ (E) $n^2 + n + 2$

12. If $a \neq b$, $a^3 - b^3 = 19x^3$ and a - b = x, which of the following conclusions is correct?

$$(A) a = 3x$$

(A)
$$a = 3x$$
 (B) $a = 3x$ or $a = -2x$

(C)
$$a = -3x$$
 or $a = 2x$ (D) $a = 3x$ or $a = 2x$ (E) $a = 2x$

(D)
$$a = 3x$$
 or $a = 2x$

$$(E) a = 2x$$

19. Which positive numbers x satisfy the equation $(\log_3 x)(\log_x 5) =$ $log_35?$

(A) 3 and 5 only

- (B) 3, 5 and 15 only
- (C) only numbers of the form $5^n \cdot 3^m$, where n and m are positive integers
- (D) all positive $x \neq 1$

(E) none of these

21. Suppose f(x) is defined for all real numbers x; f(x) > 0 for all x; and f(a)f(b) = f(a+b) for all a and b. Which of the following statements are true?

I.
$$f(0) = 1$$

II.
$$f(-a) = 1/f(a)$$
 for all a

III.
$$f(a) = \sqrt[3]{f(3a)}$$
 for all a IV. $f(b) > f(a)$ if $b > a$

IV.
$$f(b) > f(a)$$
 if $b > a$

- (A) III and IV only (B) I, III and IV only
- (C) I, II and IV only (D) I, II and III only (E) All are true.
- 2. For how many real numbers x is $\sqrt{-(x+1)^2}$ a real number?
 - (A) none (B) one (C) two
- (D) a finite number greater than two (E) infinitely many
- 10. If m, n, p and q are real numbers and f(x) = mx + n and g(x) = px + q, then the equation f(g(x)) = g(f(x)) has a solution
 - (A) for all choices of m, n, p and q
 - (B) if and only if m = p and n = q
 - (C) if and only if mq np = 0
 - (D) if and only if n(1-p) q(1-m) = 0
 - (E) if and only if (1-n)(1-p)-(1-q)(1-m)=0

- 19. A polynomial p(x) has remainder three when divided by x-1and remainder five when divided by x - 3. The remainder when p(x) is divided by (x-1)(x-3) is
 - (A) x-2 (B) x+2 (C) 2 (D) 8 (E) 15

- 20. Let a, b and x be positive real numbers distinct from one. Then

$$4(\log_a x)^2 + 3(\log_b x)^2 = 8(\log_a x)(\log_b x)$$

- (A) for all values of a, b and x (B) if and only if $a = b^2$
- (C) if and only if $b = a^2$
- (D) if and only if x = ab
- (E) none of these
- 27. If

$$N = \frac{\sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5} - 2}}{\sqrt{\sqrt{5} + 1}} - \sqrt{3 - 2\sqrt{2}},$$

then N equals

- (B) $2\sqrt{2} 1$ (C) $\frac{\sqrt{5}}{2}$ (D) $\sqrt{\frac{5}{2}}$

- (E) none of these
- 28. Lines $L_1, L_2, \ldots, L_{100}$ are distinct. All lines L_{4n} , n a positive integer, are parallel to each other. All lines L_{4n-3} , n a positive integer, pass through a given point A. The maximum number of points of intersection of pairs of lines from the complete set $\{L_1, L_2, \dots, L_{100}\}$ is
 - (A) 4350 (B) 4351 (C) 4900 (D) 4901 (E) 9851

6. If x, y and $2x + \frac{y}{2}$ are not zero, then

$$\left(2x+\frac{y}{2}\right)^{-1}\left[\left(2x\right)^{-1}+\left(\frac{y}{2}\right)^{-1}\right]$$

equals

(B) xy^{-1} (C) $x^{-1}y$ (D) $(xy)^{-1}$ (A) 1

(E) none of these

7. If $t = \frac{1}{1 - \sqrt[4]{2}}$, then t equals

(A) $(1 - \sqrt[4]{2})(2 - \sqrt{2})$ (B) $(1 - \sqrt[4]{2})(1 + \sqrt{2})$ (C) $(1 + \sqrt[4]{2})(1 - \sqrt{2})$ (D) $(1 + \sqrt[4]{2})(1 + \sqrt{2})$

8. For every triple (a, b, c) of non-zero real numbers, form the number

$$\frac{a}{|a|} + \frac{b}{|b|} + \frac{c}{|c|} + \frac{abc}{|abc|}.$$

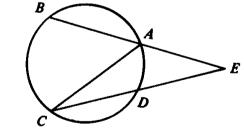
The set of all numbers formed is

(A) $\{0\}$ (B) $\{-4,0,4\}$ (C) $\{-4,-2,0,2,4\}$ (D) $\{-4,-2,2,4\}$ (E) none of these

9. In the adjoining figure $\angle E = 40^{\circ}$ and arc AB, arc BC and arc CD all have equal length. Find the measure of $\angle ACD$.

(A) 10°

(E) 30°



10. If $(3x - 1)^7 = a_7 x^7 + a_6 x^6 + \dots + a_0$, then $a_7 + a_6 + \dots + a_0$ equals

(A) 0 (B) 1 (C) 64 (D) -64 (E) 128

21. For how many values of the coefficient a do the equations

$$x^2 + ax + 1 = 0,$$

$$x^2 - x - a = 0$$

have a common real solution?

- (A) 0
- **(B)** 1

- (C) 2 (D) 3 (E) infinitely many
- 22. If f(x) is a real valued function of the real variable x, and f(x)is not identically zero, and for all a and b

$$f(a + b) + f(a - b) = 2f(a) + 2f(b),$$

then for all x and y

- (A) f(0) = 1 (B) f(-x) = -f(x) (C) f(-x) = f(x)
- (D) f(x + y) = f(x) + f(y) (E) there is a positive number T such that f(x + T) = f(x)
- 23. If the solutions of the equation $x^2 + px + q = 0$ are the cubes of the solutions of the equation $x^2 + mx + n = 0$, then

 - (A) $p = m^3 + 3mn$ (B) $p = m^3 3mn$ (C) $p + q = m^3$
 - (D) $\left(\frac{m}{n}\right)^3 = \frac{p}{a}$ (E) none of these
- 24. Find the sum

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \cdots + \frac{1}{(2n-1)(2n+1)} + \cdots + \frac{1}{255\cdot 257}.$$

- (A) $\frac{127}{255}$ (B) $\frac{128}{255}$ (C) $\frac{1}{2}$ (D) $\frac{128}{257}$ (E) $\frac{129}{257}$

28. Let $g(x) = x^5 + x^4 + x^3 + x^2 + x + 1$. What is the remainder when the polynomial $g(x^{12})$ is divided by the polynomial g(x)?

(A) 6 (B) 5-x (C) $4-x+x^2$ (D) $3-x+x^2-x^3$

(E) $2-x+x^2-x^3+x^4$

1978

9. If x < 0, then $|x - \sqrt{(x - 1)^2}|$ equals

(A) 1 (B) 1-2x (C) -2x-1 (D) 1+2x (E) 2x-1

11. If r is positive and the line whose equation is x + y = r is tangent to the circle whose equation is $x^2 + y^2 = r$, then r equals

(A) $\frac{1}{2}$ (B) 1 (C) 2 (D) $\sqrt{2}$ (E) $2\sqrt{2}$

13. If a, b, c, and d are non-zero numbers such that c and d are the solutions of $x^2 + ax + b = 0$ and a and b are the solutions of $x^2 + cx + d = 0$, then a + b + c + d equals

(A) 0 (B) -2 (C) 2 (D) 4 (E) $(-1 + \sqrt{5})/2$

18. What is the smallest positive integer n such that $\sqrt{n} - \sqrt{n-1}$ < .01?

(A) 2499

(B) 2500 (C) 2501 (D) 10,000

(E) There is no such integer.

20. If a, b, c are non-zero real numbers such that

$$\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},$$

and

$$x = \frac{(a+b)(b+c)(c+a)}{abc},$$

and x < 0, then x equals

- (A) -1 (B) -2 (C) -4 (D) -6 (E) -8

21. For all positive numbers x distinct from 1,

$$\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x}$$

equals

- (A) $\frac{1}{\log_{60} x}$ (B) $\frac{1}{\log_{x} 60}$ (C) $\frac{1}{(\log_{x} x)(\log_{x} x)(\log_{x} x)}$

(D)
$$\frac{12}{(\log_3 x) + (\log_4 x) + (\log_5 x)}$$

(E)
$$\frac{\log_2 x}{(\log_3 x)(\log_5 x)} + \frac{\log_3 x}{(\log_2 x)(\log_5 x)} + \frac{\log_5 x}{(\log_2 x)(\log_3 x)}$$

1979

- 22. Find the number of pairs (m, n) of integers which satisfy the equation $m^3 + 6m^2 + 5m = 27n^3 + 9n^2 + 9n + 1$.

- (A) 0 (B) 1 (C) 3 (D) 9 (E) infinitely many

- 25. If $q_1(x)$ and r_1 are the quotient and remainder, respectively, when the polynomial x^8 is divided by $x + \frac{1}{2}$, and if $q_2(x)$ and r_2 are the quotient and remainder, respectively, when $q_1(x)$ is divided by $x + \frac{1}{2}$, then r_2 equals

 - (A) $\frac{1}{256}$ (B) $-\frac{1}{16}$ (C) 1 (D) -16 (E) 256

- 26. The function f satisfies the functional equation

$$f(x) + f(y) = f(x + y) - xy - 1$$

for every pair x, y of real numbers. If f(1) = 1, then the number of integers $n \neq 1$ for which f(n) = n is

- (A) 0 (B) 1 (C) 2 (D) 3 (E) infinite

1980

8. How many pairs (a, b) of non-zero real numbers satisfy the equation

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{a+b}$$
?

- (D) one pair for each $b \neq 0$
- (A) none (B) 1 (C) 2 (E) two pairs for each $b \neq 0$
- 14. If the function f defined by

$$f(x) = \frac{cx}{2x+3}$$
, $x \neq -\frac{3}{2}$, c a constant,

satisfies f(f(x)) = x for all real numbers x except $-\frac{3}{2}$, then

- (A) -3 (B) $-\frac{3}{2}$ (C) $\frac{3}{2}$ (D) 3

- (E) not uniquely determined by the given information

27. The sum $\sqrt[3]{5 + 2\sqrt{13}} + \sqrt[3]{5 - 2\sqrt{13}}$ equals

(A) $\frac{3}{2}$ (B) $\frac{\sqrt[3]{65}}{4}$ (C) $\frac{1+\sqrt[6]{13}}{2}$ (D) $\sqrt[3]{2}$

(E) none of these

28. The polynomial $x^{2n} + 1 + (x + 1)^{2n}$ is not divisible by $x^2 + x + 1$ if n equals

(A) 17 (B) 20 (C) 21

(D) 64 (E) 65

1981

6. If $\frac{x}{x-1} = \frac{y^2 + 2y - 1}{y^2 + 2y - 2}$, then x equals

(A) $y^2 + 2y - 1$ (B) $y^2 + 2y - 2$ (C) $y^2 + 2y + 2$ (D) $y^2 + 2y + 1$ (E) $-y^2 - 2y + 1$

10. The lines L and K are symmetric to each other with respect to the line y = x. If the equation of line L is y = ax + b with $a \neq 0$ and $b \neq 0$, then the equation of K is y =

(A) $\frac{1}{a}x + b$ (B) $-\frac{1}{a}x + b$ (C) $-\frac{1}{a}x - \frac{b}{a}$

(D) $\frac{1}{a}x + \frac{b}{a}$ (E) $\frac{1}{a}x - \frac{b}{a}$

15. If b > 1, x > 0 and $(2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$, then x is

(A) $\frac{1}{216}$ (B) $\frac{1}{6}$ (C) 1 (D) 6

(E) not uniquely determined

17. The function f is not defined for x = 0, but, for all non-zero real numbers x,

 $f(x) + 2f(\frac{1}{x}) = 3x$. The equation f(x) = f(-x) is satisfied by

- (A) exactly one real number
- (B) exactly two real numbers
- (C) no real numbers
- (D) infinitely many, but not all, non-zero real numbers
- (E) all non-zero real numbers
- 18. The number of real solutions to the equation

$$\frac{x}{100} = \sin x$$

is

- (A) 61 (B) 62 (C) 63 (D) 64 (E) 65

1982

- 1. When the polynomial $x^3 2$ is divided by the polynomial $x^2 - 2$, the remainder is
 - (A) 2 (B) -2 (C) -2x-2 (D) 2x+2 (E) 2x-2
- 6. The sum of all but one of the interior angles of a convex polygon equals 2570°. The remaining angle is

 - (A) 90° (B) 105° (C) 120° (D) 130° (E) 144°

12. Let $f(x) = ax^7 + bx^3 + cx - 5$, where a, b and c are constants. If f(-7) = 7, then f(7) equals

(A) - 17 (B) - 7 (C) 14 (D) 21

- (E) not uniquely determined
- 13. If a > 1, b > 1 and $p = \frac{\log_b(\log_b a)}{\log_b a}$, then a^p equals

(A) 1 (B) b (C) $\log_a b$ (D) $\log_b a$ (E) $a^{\log_b a}$

17. How many real numbers x satisfy the equation

$$3^{2x+2} - 3^{x+3} - 3^x + 3 = 0$$
?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

SOLUTIONS

16. (B) Let n denote the number of sides of the given convex polygon and x the number of degrees in the excepted angle. Then 180(n-2) = 2190 + x, so that

$$n-2=\frac{2190}{180}+\frac{x}{180}.$$

Since the polygon is convex, 0 < x < 180; it follows that

$$\frac{2190}{180} < n - 2 < \frac{2190}{180} + 1,$$

i.e. $12\frac{1}{6} < n - 2 < 13\frac{1}{6}$. Since n is an integer, this forces n-2=13, so n=15. (Incidentally, (13)(180) = 2340 = 2190 + 150, so the excepted angle has measure 150°.)