# 57-th Romanian Mathematical Olympiad 2006 

Final Round<br>Iaşi, April 17, 2006

## 7-th Form

1. Consider points $M$ and $N$ on respective sides $A B$ and $B C$ of a triangle $A B C$ such that $2 C N / B C=A M / A B$. Let $P$ be a point on line $A C$. Prove that lines $M N$ and $N P$ are perpendicular if and only if $P N$ bisects $\angle M P C$.
2. A square of side $n$ is divided into $n^{2}$ unit squares each of which is colored red, yellow or green. Find the smallest value of $n$ such that, for any coloring, there exist a row and a column having at least three equally colored unit squares.
3. In an acute triangle $A B C$, the angle at $C$ equals $45^{\circ}$. Points $A_{1}$ and $B_{1}$ are the feet of the altitudes from $A$ and $B$ respectively, and $H$ is the orthocenter. Points $D$ and $E$ are taken on segments $A A_{1}$ and $B C$ respectively such that $A_{1} D=A_{1} E=A_{1} B_{1}$. Show that
(a) $A_{1} B_{1}=\sqrt{\frac{A_{1} B^{2}+A_{1} C^{2}}{2}}$;
(b) $C H=D E$.
4. Let $A$ be a set of at least two positive integers. Suppose that for each $a, b \in A$ with $a>b$ we have $\frac{[a, b]}{a-b} \in A$. Show that set $A$ has exactly two elements.

## 8-th Form

1. In a hexagonal prisma, five of the six lateral faces are cyclic quadrilateral. Prove that the remaining lateral face is also a cyclic quadrilateral.
2. Let $n$ be a positive integer. Show that there exist an integer $k \geq 2$ and numbers $a_{1}, a_{2}, \ldots, a_{k} \in\{-1,1\}$ such that

$$
n=\sum_{1 \leq i<j \leq k} a_{i} a_{j} .
$$

3. Let $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be a cube and $P$ be a variable point on edge $A B$. A plane through $P$ perpendicular to $A B$ intersects line $A C^{\prime}$ at point $Q$. Denote by $M$ and $N$ the midpoints of $A^{\prime} P$ and $B Q$, respectively.
(a) Prove that $M N$ and $B C^{\prime}$ are perpendicular if and only if $P$ is the midpoint of $A B$.
(b) Find the smallest measure of the angle between $M N$ and $B C^{\prime}$.
4. Prove that if $\frac{1}{2} \leq a, b, c \leq 1$, then

$$
2 \leq \frac{a+b}{1+c}+\frac{b+c}{1+a}+\frac{c+a}{1+b} \leq 3
$$

## 9-th Form

1. Find the maximum value of the expression $\left(x^{3}+1\right)\left(y^{3}+1\right)$ if $x$ and $y$ are real numbers with $x+y=1$.
2. The isosceles triangles $A B C$ and $D B C$ have the common base $B C$ and $\angle A B D=90^{\circ}$. Let $M$ be the midpoint of $B C$. Points $E, F, P$ are such that $E, P$ and $C$ are interior to the segments $A B, M C$ and $A F$ respectively, and $\angle B D E=\angle A D P=\angle C D F$. Show that $P$ is the midpoint of $E F$ and $D P \perp E F$.
3. A quadrilateral $A B C D$ is inscribed in a circle of radius $r$ so that there exists a point $P$ on side $C D$ satisfying $C B=B P=P A=A B$.
(a) Show that such points $A, B, C, D, P$ indeed exist.
(b) Prove that $P D=r$.
4. A tennis tournament with $2 n$ participants $(n \geq 5)$ extends over 4 days. Each day, every participant plays exactly one match (but one pair may meet more than once). After the tournament, it turns out that there is a single winner and three players sharing the second place, and that there is no player who lost all four matches. How many players did win exactly one and two matches, respectively?

## 10-th Form

1. Let $M$ be an $n$-element subset and $\mathcal{P}(M)$ be he set of all its subsets (including $\emptyset$ and $M$ ). Determine all functions $f: \mathcal{P}(M) \rightarrow\{0,1, \ldots, n\}$ with the following properties:
(a) $f(A) \neq 0$ for $A \neq \emptyset$;
(b) $f(A \cup B)=f(A \cap B)+f(A \Delta B)$ for all $A, B \in \mathcal{P}(M)$, where $A \Delta B=$ $(A \cup B) \backslash(A \cap B)$.
2. Prove that for all $a, b \in\left(0, \frac{\pi}{4}\right)$ and $n \in \mathbb{N}$

$$
\frac{\sin ^{n} a+\sin ^{n} b}{(\sin a+\sin b)^{n}} \geq \frac{\sin ^{n} 2 a+\sin ^{n} 2 b}{(\sin 2 a+\sin 2 b)^{n}}
$$

3. Show that the sequence given by $a_{n}=[n \sqrt{2}]+[n \sqrt{3}], n=0,1, \ldots$ contains infinitely many even numbers and infinitely many odd numbers.
4. Given an integer $n \geq 2$, determine $n$ pairwise disjoint sets $A_{i}, 1 \leq i \leq n$ with the following properties:
(a) For every circle $\mathcal{C}$ in the plane and for all $i, A_{i} \cap \operatorname{Int}(C) \neq \emptyset$;
(b) For every line $d$ in the plane and for all $i$, the projection of $A_{i}$ onto $d$ is all of $d$.

## 11-th Form

1. Let $A$ be a complex $n \times n$ matrix and let $A^{*}$ be its adjoint matrix. Prove that if there exists an integer $m \geq 1$ such that $\left(A^{*}\right)^{m}=0$, then $\left(A^{*}\right)^{2}=0$.
2. We say that a matrix $B \in \mathcal{M}_{n}(\mathbb{C})$ is a pseudoinverse of $A \in \mathcal{M}_{n}(\mathbb{C})$ if $A=A B A$ and $B=B A B$.
(a) Show that every square matrix has a pseudoinverse.
(b) For which matrices is there a unique pseudoinverse?
3. Let $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ be distinct points in the plane. Show that there exists a point $P$ such that

$$
P A_{1}+P A_{2}+\cdots+P A_{n}=P B_{1}+P B_{2}+\cdots+P B_{n} .
$$

4. Consider a function $f:[0, \infty) \rightarrow \mathbb{R}$ with the property that for each $x>0$, the sequence $f(n x), n=0,1,2, \ldots$ is strictly increasing.
(a) If $f$ is continuous on $[0,1]$, is $f$ necessarily strictly increasing?
(b) The same question if $f$ is continuous on $\mathbb{Q}^{+}$.

## 12-th Form

1. Let $K$ be a finite field. Prove that the following statements are equivalent:
(a) $1+1=0$;
(b) For each $f \in K[x]$ with $\operatorname{deg} f \geq 1, f\left(x^{2}\right)$ is reducible.
2. Prove that

$$
\lim _{n \rightarrow \infty} n\left(\frac{\pi}{4}-n \int_{0}^{1} \frac{x^{n}}{1+x^{2 n}} d x\right)=\int_{0}^{1} f(x) d x
$$

where $f(x)=\frac{\arctan x}{x}$ for $0<x \leq 1$ and $f(0)=1$.
3. Let $G$ be an $n$-element group ( $n \geq 2$ ) and let $p$ be a prime factor of $n$. Prove that if $G$ has a unique subgroup $H$ of $p$ elements, then $H$ is contained in the center of $G$. (The center of $G$ is $Z(G)=\{a \in G \mid a x=x a, \forall x \in G\}$.)
4. A function $f:[0,1] \rightarrow \mathbb{R}$ satisfies $\int_{0}^{1} f(x) d x=0$. Prove that there exists $c \in(0,1)$ such that

$$
\int_{0}^{c} x f(x) d x=0 .
$$

