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Selected Problems from Open Contests

1. Find all positive integers N with at most 4 digits such that the number obtained by
reversing the order of digits of N is divisible by N and differs from N. (Juniors.)

Answer: 1089 and 2178.

Solution. Let N be any number satisfying the conditions. Let N′ be the number with
digits in reversed order. Then N′ = k · N for some integer k ≥ 2. Clearly, N must have
at least 2 digits. It cannot end with 0 as otherwise N′

< N, which is impossible. Let

N = a . . . b and N′ = b . . . a where a and b are digits. Then b ≥ ka ≥ 2a. On the other
hand, a multiple of b ends with a. The pairs (a, b) that meet all conditions imposed by
the observations made so far are the following:

(1, 3), (1, 7), (1, 9), (2, 4), (2, 6), (2, 7), (2, 8), (2, 9), (3, 7), (3, 9), (4, 8), (4, 9).

For pairs (1, 3), (2, 4), (2, 7), (2, 9), (3, 7), (3, 9), (4, 8), (4, 9), the conditions ka ≤ b and
kb ≡ a (mod 10) are contradictory. Among the remaining pairs, (1, 7) gives k = 3,
while the first digit of 3 · 1 . . . 7 cannot be 7. Analogously, (2, 6) gives k = 2, while the
first digit of 2 · 2 . . . 6 cannot be 6. Hence only the pairs (1, 9) and (2, 8) are possible.

As 91 is not divisible by 19 and 82 is not divisible by 28, no two-digit numbers satisfy
the conditions. For three-digit numbers, there must be either N = 1c9 and N′ = 9c1
with k = 9 or N = 2c8 and N′ = 8c2 with k = 4. The first case leads to equality
900 + 10c + 1 = 9 · (100 + 10c + 9) which gives 80c + 80 = 0, so no suitable c exists. The
second case fails analogously.

In the case of four-digit numbers, we have either N = 1cd9 and N′ = 9dc1 with k = 9

or N = 2cd8 and N′ = 8dc2 with k = 4. In the first case, the equality 9000 + 100d +
10c + 1 = 9 · (1000 + 100c + 10d + 9) leads to d = 89c + 8. The only solution in digits is
c = 0, d = 8. In the second case, the equality 8000 + 100d + 10c + 2 = 4 · (2000 + 100c +
10d + 8) leads to 2d = 13c + 1. The only solution in digits is c = 1, d = 7.

2. Call a scalene triangle K disguisable if there exists a triangle K′ similar to K with
two shorter sides precisely as long as the two longer sides of K, respectively. Call a
disguisable triangle integral if the lengths of all its sides are integers.

(a) Find the side lengths of the integral disguisable triangle with the smallest possible
perimeter.

(b) Let K be an arbitrary integral disguisable triangle for which no smaller integral
disguisable triangle similar to it exists. Prove that at least two side lengths of K are
perfect squares.

(Juniors.)

Answer: (a) 4, 6, 9.

Solution. (a) Let K be a triangle with side lengths a, b, c, where a < b < c. We show that
K is disguisable iff b2 = ac. First let K be disguisable and let K′ be a similar triangle to K
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with side lengths a′, b′, c′ where a′ = b and b′ = c. Then

b

a
=

a′

a
=

b′

b
=

c

b
,

hence b2 = ac. Second let K satisfy b2 = ac. Taking a′ = b, b′ = c and c′ =
c2

b
, we see

that

a′

a
=

b′

b
=

c′

c
,

i.e., triangle K′ with side lengths a′, b′, c′ is just like required by the definition of disguis-
ability.

If a, b, c are integers then obviously b ≥ 2. A case study of possible values of b shows
that, for b = 2, . . . , 5, there exist no integers a and c such that a < b < c and ac = b2 and
c < a + b. For b = 6, we can take a = 4 and c = 9, giving perimeter 19. Thus we have
one more condition: a + b + c ≤ 19. As a ≥ 1 and c ≥ b + 1, this implies 2b + 2 ≤ 19
and b ≤ 8. So it suffices to check that for b = 7 and b = 8, no integers a and c such that
a < b < c and ac = b2 and c < a + b exist.

(b) Let K be a triangle satisfying the conditions of the problem. Then gcd(a, b, c) = 1
and b2 = ac. This implies that gcd(a, c) = 1 (as each common prime divisor of a and c
would also divide b). Thus, both a and c are perfect squares.

3. In a school tennis tournament with m ≥ 2 participants, each match consists of 4
sets. A player who wins more than half of all sets during a match gets 2 points for
this match. A player who wins exactly half of all sets during the match gets 1 point,
and a player who wins less than half of all sets gets 0 points. During the tournament,
each participant plays exactly one match against each remaining player. Find the least
number of participants m for which it is possible that some participant wins more sets
than any other participant but obtains less points than any other participant. (Juniors.)

Answer: 6.

Solution. Let m = 5. A participant who wins more sets than any other during the
tournament must win more than half of all sets he plays. This implies that he must win
more sets than his opponent in at least one match, i.e., he must win at least one match.
But in order to obtain less points than anyone else, he must lose more matches than
win. As each participant plays 4 matches, this special participant must win exactly one
match and lose at least two. Under such conditions, he can win at most 8 sets during
the tournament but this is not more than half of the number 16 of all sets.

Thus, for m = 5, the described situation is impossible. If it were possible for some m
such that m < 5, we could obtain a suitable tournament table also for m = 5 by adding
an appropriate number of players whose matches all end in draw.

The following table shows a situation for m = 6 where all conditions are fulfilled:

Player Marks Sets won
1. 4 : 0 4 : 0 1 : 3 1 : 3 1 : 3 4 11
2. 0 : 4 2 : 2 3 : 1 2 : 2 3 : 1 6 10
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3. 0 : 4 2 : 2 2 : 2 3 : 1 2 : 2 5 9
4. 3 : 1 1 : 3 2 : 2 2 : 2 2 : 2 5 10
5. 3 : 1 2 : 2 1 : 3 2 : 2 2 : 2 5 10
6. 3 : 1 1 : 3 2 : 2 2 : 2 2 : 2 5 10

4. Call a k-digit positive integer a hyperprime if all its segments consisting of 1, 2, . . . ,
k consecutive digits are prime. Find all hyperprimes. (Juniors.)

Answer: 2, 3, 5, 7, 23, 37, 53, 73, 373.

Solution. One-digit hyperprimes are precisely the one-digit primes 2, 3, 5, 7.

In a larger hyperprime, all digits must be prime. The last digit can be neither 2 nor
5, and no two consecutive digits can be equal (this would form a composite segment).
Adding one digit to all one-digit primes, while following these requirements, we obtain
numbers 23, 27, 37, 53, 57, 73. Among these, only 23, 37, 53, 73 are primes.

Note that all segments of any hyperprime are hyperprime. Thus all three-digit hyper-
primes can be obtained from two-digit hyperprimes by adding one digit to the end.
Following the requirements above, we get hyperprime candidates 237, 373, 537, 737,
among which only 373 is really a prime and a hyperprime.

Hyperprimes with more than 3 digits are impossible since their every segment of 3
digits should be 373.

5. In an exam with k questions, n students are taking part. A student fails the exam
if he answers correctly less than half of all questions. Call a question easy if more than
half of all students answer it correctly. For which pairs (k, n) of positive integers is it
possible that

(a) all students fail the exam although all questions are easy;

(b) no student fails the exam although no question is easy?

(Juniors.)

Answer: (a) there are no such pairs; (b) all pairs (k, n) with both k and n even.

Solution. Let v be the total number of correct answers given by all students.

(a) If all students fail then each of them gives less than
k

2
correct answers, i.e., v <

n · k

2
=

nk

2
. If all questions are easy then, for each of them, more than

n

2
correct answers

are given, i.e., v > k · n

2
=

nk

2
, contradiction.

(b) If no student fails then each of them gives at least
k

2
correct answers, i.e., v ≥ n · k

2
=

nk

2
; the equality holds iff each student gives exactly

k

2
correct answers. On the other

hand, if no question is easy then no more than
n

2
correct answers are given to each of

them, i.e., v ≤ k · n

2
=

nk

2
, whereby equality holds iff each question gets exactly

n

2
correct

answers. These two inequalities can both hold only if v =
nk

2
. Consequently, each

student answers exactly
k

2
questions correctly and each question is answered correctly
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by exactly
n

2
students. Thus k and n must be even.

It remains to show that the situation is possible for arbitrary even k and n. For this,
enumerate the questions by numbers from 1 to k and the students by numbers 1 to
n. Let every student with an odd number answer correctly exactly the questions with
an odd number and every student with an even number answer correctly exactly the
questions with an even number. The requirements are fulfilled.

6. Let an = 1 + 2 + . . . + n for every n ≥ 1; the numbers an are called triangular. Prove
that if 2am = an then a2m−n is a perfect square. (Seniors.)

︸

︷
︷

︸

am

︸ ︷︷ ︸

a2m −n

(n − m )2

Figure 1

Solution. We depict an as a set of points orga-
nized triangularly as shown in Fig. 1. From
two ends of the base, separate two triangles
both containing am points. For counting 2am

points, we count the points in the intersec-
tion of the two triangles twice, while leav-
ing the points in the upper rhomboid un-
counted; for counting an points, every point
is taken into account once. Thus if 2am = an

then the intersection contains as many points
as the rhomboid. The former contains a2m−n

points while the latter contains (n − m)2.

Remark. One can also prove the claim al-
gebraically using the formula of the sum of
arithmetic progression.

7. Three circles with centres A, B, C touch each other pairwise externally, and touch
circle c from inside. Prove that if the centre of c coincides with the orthocentre of triangle
ABC, then ABC is equilateral. (Seniors.)

Solution 1. Let the tangent point of circles with centres A and B be C′, the tangent point
of circles with centres B and C be A′ and the tangent point of circles with centres C and
A be B′ (see Fig. ??). Let A′′, B′′, C′′ be the tangent points of circle c with the circles with
centre A, B, C, respectively. Let H and I be the orthocentre and the incentre of ABC,
respectively. Assume that H is the centre of c.

We prove first that triangle ABC is acute. Line HA′′ passes through A and contains both
a radius of c and the altitude of ABC drawn from A. If angle BAC were not acute then
the orthocentre of ABC would be on ray AA′′ while the centre of c would be outside
this ray since |AA′′| < |HA′′|. Analogously, the other angles of ABC must be acute.

Draw tangents to c from points A′′, B′′, C′′. As ABC is acute, point H lies inside it. Hence
each of the three arcs of c with endpoints A′′, B′′, C′′ is less than 180◦. Consequently,
these tangents intersect each other pairwise, forming a triangle DEF whose incircle is c.
As both BC and EF are perpendicular to HA′′, they are parallel. Analogously, CA and
FD are parallel, and AB and DE, too. Thus triangles ABC and DEF are similar.

Prove now that the orthocentre of DEF is I. Points A′, B′, C′ lie on the sides of ABC;
it is known that they are also the points where the incircle of ABC touches the sides.
Thus IA′, C′′D and B′′D are the radical axes of c and two circles touching it and each
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other. The radical axes meet at D. Thus ID, IE and IF are perpendicular to BC, CA, AB,
respectively, and consequently also to the corresponding sides of DEF.

From all this, we get that the distance between the orthocentre and the incentre is the
same in triangles ABC and DEF. As these triangles are similar but not equal, this can
happen only if the distance is zero, i.e., the orthocentre and incentre coincide. This
implies that ABC is equilateral.

D E

F

A′ B ′

C ′

A′′B ′′

C ′′

AB

C

H

Figure 2

A′′B ′′

C ′′

AB

C

H

K L

M

Figure 3

Solution 2. Let r be the radius of c and let rA, rB, rC be the radii of circles with centre A,
B, C, respectively. Let hA be the length of the altitude of ABC drawn from A. Let A′, B′,
C′ be the feet of altitudes of triangle ABC drawn from vertices A, B, C, respectively.

From triangle HA′C, we get |HA′|2 = |CH|2 − |CA′|2; from triangle AA′C, we get
|CA′|2 = |AC|2 − |AA′|2. Here, |CH| = r − rC, |AC| = rA + rC and |AA′| = hA. Thus

|HA′|2 = (r − rC)2 − (rA + rC)2 + h2
A = r2 − 2(r + rA)rC − r2

A + h2
A.

Analogously, we obtain

|HA′|2 = r2 − 2(r + rA)rB − r2
A + h2

A.

These two equalities together give rB = rC. Analogously, rB = rA. Thus the radii of the
circles drawn around A, B, C touching pairwise each other are equal. This can be only
if the sides of ABC are all equal.

Solution 3. Let rA, rB, rC be defined as in Solution 2. Like in Solution 1, note that H lies
inside triangle ABC. As H is the centre of c, radii HA′′ and HB′′ are equal (see Fig. ??)
which means that |HA| + rA = |HB| + rB. Adding rC to both sides of this equality, we
get

|HA| + |AC| = |HB| + |BC|. (1)

Take triangle KLM whose midlines are the sides of ABC; then triangles KLM and ABC
are similar. Thereby, AH is the perpendicular bisector of side LM as LM ‖ BC and
|LA| = |AM|. Also, BH is the perpendicular bisector of side MK. Thus H is the circum-

centre of triangle KLM and ∠MHA =
1

2
∠MHL = ∠MKL = ∠CAB.

From the right triangle MAH, we get |HA| = r cos ∠MHA = r cos ∠CAB where r is
the radius of the circumcircle of KLM. Analogously, |HB| = r cos ∠CBA. Substituting

5

these into (??), we obtain

r cos ∠CAB + |AC| = r cos ∠CBA + |BC|. (2)

As the opposite angle of a bigger side is bigger in every triangle, |AC| < |BC| would
imply ∠CBA < ∠CAB and cos ∠CBA > cos ∠CAB, leading to r cos ∠CAB + |AC| <

r cos ∠CBA + |BC| which contradicts (2). Analogously, also |AC| > |BC| cannot be.
Consequently, |AC| = |BC|. In the same way, we get |AB| = |AC|, i.e., triangle ABC is
equilateral.

Remark. The claim of the problem holds also without the assumption that the tangency
of c with the three circles is inner.

8. Let b be an even positive integer for which there exists a natural number n such

that n > 1 and
bn − 1

b − 1
is a perfect square. Prove that b is divisible by 8. (Seniors.)

Solution. As b is even, the perfect square
bn − 1

b − 1
is odd. Hence it is congruent to 8

modulo 1, i.e., the number

bn − 1

b − 1
− 1 = b + b2 + . . . + bn−1 = b

(

1 + b + . . . + bn−2
)

is divisible by 8. As the factor 1 + b + . . . + bn−2 is odd, it is relatively prime to 8 and
hence b is divisible by 8.

Remark. One can also prove the claim by considering b modulo 8.

9. The Fibonacci sequence is determined by conditions F0 = 0, F1 = 1, and Fk =
Fk−1 + Fk−2 for all k ≥ 2. Let n be a positive integer and let P(x) = amxm + . . . + a1x + a0

be a polynomial that satisfies the following two conditions:

(1) P(Fn) = F2
n ; (2) P(Fk) = P(Fk−1) + P(Fk−2) for all k ≥ 2.

Find the sum of the coefficients of P. (Seniors.)

Answer. Fn.

Solution. We are asked to find P(1). If n = 1 then P(1) = P(F1) = F2
1 = 1, giving

P(1) = F1. If n ≥ 2 then using condition P(Fk) = P(Fk−1) + P(Fk−2), 2 ≤ k ≤ n,
repeatedly, we get

P(Fn) = P(Fn−1) + P(Fn−2) = 2P(Fn−2) + P(Fn−3) = 3P(Fn−3) + 2P(Fn−4) = . . .

= FnP(F1) + Fn−1P(F0) = FnP(1) + Fn−1P(0).

Using the given condition again for k = 2, we obtain

P(1) = P(F2) = P(F1) + P(F0) = P(1) + P(0),

which gives P(0) = 0. Altogether, F2
n = P(Fn) = FnP(1), showing that P(1) = Fn.

Remark. We could ask whether there exist polynomials for every n satisfying the con-
ditions of the problem. Using the condition P(Fk) = P(Fk−1) + P(Fk−2), 2 ≤ k ≤ n,
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for finding the other values P(Fk), 2 ≤ k ≤ n, we get P(Fk) = FnFk, for all k such that
0 ≤ k ≤ n. Elsewhere, the values of the polynomial are not determined. One suitable
polynomial is P(x) = Fnx.

10. Does there exist a natural number n such that n > 2 and the sum of squares of
some n consecutive integers is a perfect square? (Seniors.)

Answer: yes.

Solution 1. For n = 11, we can construct the following example:

(−4)2 + (−3)2 + (−2)2 + (−1)2 + 02 + 12 + 22 + 32 + 42 + 52 + 62 = 112.

Solution 2. It is easy to prove by induction that 12 + 22 + . . . + n2 =
n

6
(n + 1)(2n + 1).

If n = 24 then all three factors in the last product are perfect squares (4, 25 and 49,
respectively). Thus the product is also a perfect square.

Remark 1. For n = 3, . . . , 10, no suitable examples exist because there is a number mod-
ulo which no sum of squares of n consecutive integers is a quadratic residue.

n sum expression bad modulus

3 (a − 1)2 + . . . + (a + 1)2 3a2 + 2 3

4 (a − 1)2 + . . . + (a + 2)2 4a2 + 4a + 6 4

5 (a − 2)2 + . . . + (a + 2)2 5a2 + 10 25

6 (a − 2)2 + . . . + (a + 3)2 6a2 + 6a + 19 4

7 (a − 3)2 + . . . + (a + 3)2 7a2 + 28 49

8 (a − 3)2 + . . . + (a + 4)2 8a2 + 8a + 44 16

9 (a − 4)2 + . . . + (a + 4)2 9a2 + 60 9

10 (a − 4)2 + . . . + (a + 5)2 10a2 + 10a + 85 25

Remark 2. Using diophantine equation theory, it has been proven that the sum of squares
of numbers from 1 to n is a perfect square only for n = 0, n = 1 and n = 24. Thus the
choice n = 24 in Solution 2 is the only possibility to succeed.

Remark 3. Sloane’s Encyclopedia of Integer Sequences contains the sequence A001032 with
description “Numbers n such that the sum of squares of n consecutive positive integers
can be a perfect square” (i.e., in addition to the conditions of our problem, the numbers
whose squares are considered must be positive). The sequence starts with numbers 1,
2, 11, 23, 24, 26, 33, 47, 49, 50, 59, 73, 74, 88, 96, 97, 107, 121, 122, 146, 169, 177, 184, 191,
193, 194, 218, 239, 241, 242, 249, 289, 297, 299, 311, 312, 313, 337, 338, 347, 352, 361, 362,
376, 383, 393, 407, 409, 431, 443, 457, 458, 479, 481, 491.

11. Tangents l1 and l2 common to circles c1 and c2 intersect at point P, whereby tangent
points remain to different sides from P on both tangent lines. Through some point
T, tangents p1 and p2 to circle c1 and tangents p3 and p4 to circle c2 are drawn. The
intersection points of l1 with lines p1, p2, p3, p4 are A1, B1, C1, D1, respectively, whereby
the order of points on l1 is: A1, B1, P, C1, D1. Analogously, the intersection points of l2
with lines p1, p2, p3, p4 are A2, B2, C2, D2, respectively. Prove that if both quadrangles
A1A2D1D2 and B1B2C1C2 are cyclic then radii of c1 and c2 are equal. (Seniors.)
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Solution 1. Let r1 and r2 be the radii of c1 and c2, respectively. Since quadrangle
A1A2D1D2 is cyclic, ∠A2A1D1 = ∠D1D2A2. In addition, ∠A1PA2 = ∠D2PD1 (see
Fig. 4). Thus triangles A1A2P and D2D1P are similar. Their incircles are c1 and c2, hence

|A1P|
|D2P| =

r1

r2
.

Since quadrangle B1B2C1C2 is cyclic, ∠B2B1C1 = ∠C1C2B2, whence ∠TB1A1 =
∠TC2D2. As also ∠TA1B1 = ∠TD2C2, triangles A1B1T and D2C2T are similar. Their
incircles are c1 and c2 again, hence

|A1T|
|D2T| =

r1

r2
.

Now consider triangles A1PT and D2PT. We have
|A1P|
|D2P| =

|A1T|
|D2T| and ∠TA1P =

∠TD2P. Thus these triangles are similar and

r1

r2
=

|A1P|
|D2P| =

|PT|
|PT| = 1.

Solution 2. Let r1 and r2 be the radii of c1 and c2, respectively. Let s be the line that passes
through P and is perpendicular to the line joining the centres of c1 and c2. Consider the
composition of two plane transformations: reflection w.r.t. s and homothety w.r.t. P

with factor
r2

r1
. This composite transformation takes c1 to c2 and P to P.

Denote the image of any point X under this transformation by X′. As the transformation
respects all angles between lines, the equality of angles in cyclic quadrilateral B1B2C1C2
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implies ∠B′
2B′

1P = ∠B2B1P = ∠C1C2P. As lines B′
1B′

2 and C2C1 both touch circle c2 and
intersect PC2 under the same angle, line B′

1B′
2 coincides with line C2C1. Analogously,

A′
1A′

2 coincides with line D2D1.

Hence the transformation takes the intersection point of lines A1A2 and B1B2 to the
intersection point of lines C2C1 and D2D1, i.e., T is taken to T. But if r1 6= r2 then the
transformation obviously can have only one fixpoint. Consequently, r1 = r2.

12. Find all positive integers n such that one can write an integer 1 to n2 into each unit
square of a n2 × n2 table in such a way that, in each row, each column and each n × n
block of unit squares, each number 1 to n2 occurs exactly once. (Seniors.)

Answer: 1.

Solution. In the case n = 1, the conditions can be fulfilled trivially. Assume n ≥ 2.

1

2

...

n

n + 1

1 2 . . . n n + 1

Figure 5

Denote the unit square in the ith row and jth column by
(i, j). Let A be the n × n block containing both (1, 1) and
(n, n). Let B and C be the n× n blocks obtained from A by
shifting it by one unit down and right, respectively (see
Fig. 5).

The numbers in the bottommost row of B must be the
same as the numbers in the topmost row of A in some or-
der since both blocks must contain each number 1, . . . , n2

exactly once. Analogously, the rightmost column of C
must contain the same numbers as the leftmost column
of A in some order. Now, the number in (n + 1, n + 1)
cannot occur in the topmost row of A since all these occur already in the row number
n + 1 left from the square under consideration. Analogously, this number cannot occur
in the leftmost column of A. As A contains all numbers 1 to n2, this number must occur
elsewhere in A. But then it occurs twice in the n × n block that contains squares (2, 2)
and (n + 1, n + 1) which is prohibited.

13. Consider triangles whose each side length squared is a rational number. Is it true
that

(a) the square of the circumradius of every such triangle is rational;

(b) the square of the inradius of every such triangle is rational?

(Seniors.)

Answer: (a) yes; (b) no.

Solution 1. (a) Fix a triangle from the family under consideration. Let a, b, c be its side
lengths, γ the size of the angle opposite to the last side and R the circumradius. The

cosine law gives cos γ =
a2 + b2 − c2

2ab
, whence cos2 γ =

(a2 + b2 − c2)2

4a2b2
. As a2, b2, c2 are

rational, also cos2 γ is rational. Therefore 1− cos2 γ, i.e., sin2 γ, is rational. The sine law

gives R =
c

2 sin γ
, hence R2 =

c2

4 sin2 γ
. Thus R2 is rational.

(b) Consider the right isosceles triangle with side lengths 1, 1,
√

2. Let r be its inradius.

The area of this triangle, computed via leg lengths, is
1

2
; computing the area via the
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inradius and the perimeter gives
2 +

√
2

2
r. Thus

1

2
=

2 +
√

2

2
r, whence r =

1

2 +
√

2
=

2 −
√

2

2
= 1 −

√
2

2
. Therefore r2 = 1 +

1

2
−
√

2 =
3

2
−
√

2, so r2 is not rational.

Solution 2. (a) By the formula S =
abc

4R
, we get R2 =

a2b2c2

16S2
. Thus it suffices to prove

that S2 is rational. By Heron’s formula,

S2 = p(p − a)(p − b)(p − c) =
1

16

((

2a2(b2 + c2)− (b2 − c2)2 − (a2)2
))

.

The last expression clearly evaluates to a rational number.

(b) In part (a), it was proven that S2 is rational. For the triangle with side lengths 1, 1

and
√

2, we get p2 =

(

2 +
√

2

2

)2

=
6 + 4

√
2

4
=

3

2
+

√
2, hence p2 is not rational and

neither is r2 =
S2

p2
.

Selected Problems from the Final Round of National

Olympiad

1. Two medians drawn from vertices A and B of triangle ABC are perpendicular.
Prove that side AB is the shortest side of ABC. (Grade 9.)

Solution. Let the medians intersect in point M and let the median drawn from vertex
C intersect AB in point F (see Fig. 6). Then, F is the midpoint of the hypotenuse of
the right triangle ABM and thus the midpoint of the circumcircle of ABM, so we get
|AB| = 2|FM|. Since M divides median CF in ratio 2 : 1, we have |AB| = |CM|. The
largest angle of triangle AMC is the obtuse angle AMC, therefore AC is the longest side
of this triangle. We get |AC| > |MC| = |AB|. The proof of |BC| > |AB| is analogous.

Remark. One can also solve the problem using the Pythagorean theorem and the fact
that the centroid divides the medians in ratio 2 : 1.

2. Juhan wants to order by weight five balls of pairwise different weight, using only
a balance scale. First, he labels the balls with numbers 1 to 5 and creates a list of weigh-
ings, such that each element in the list is a pair of two balls. Then, for every pair in
the list, he weighs the two balls against each other. Can Juhan sort the balls by weight,
using a list with less than 10 pairs? (Grade 9.)

Answer: no.

Solution. There are 10 possible pairs of 5 balls. Suppose w.l.o.g. that Juhan does not
weigh the pair (1, 2). Then, it is not possible to distinguish orderings 1, 2, 3, 4, 5 and
2, 1, 3, 4, 5, since the remaining 9 weighings give the same result. Thus, Juhan’s list must
contain all 10 pairs.

3. Two radii OA and OB of a circle c with midpoint O are perpendicular. Another
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circle touches c in point Q and the radii in points C and D, respectively. Determine
∠AQC. (Grade 10.)

Answer: 45◦.

A B

C

DE

F

M

xy

2x 2y

b

2

b

2

a

2

a

2

Figure 6

O
A

B

C

D

Q

O′

A′

Figure 7

Solution. By symmetry, ∠AQC = ∠BQD (see Fig. 7). Since AQB is an internal angle
of a regular octagon, we have ∠AQB = 135◦. Let now O′ be the midpoint of the circle
through C, D and Q. The quadrilateral OCO′D has three right angles: ∠COD = 90◦ by
assumption, while angles OCO′ and ODO′ are angles between a radius and a tangent.

Thus, CO′D is also a right angle, so ∠CQD =
1

2
∠CO′D = 45◦ and

∠AQC =
1

2
(∠AQB −∠CQD) =

1

2
(135◦ − 45◦) = 45◦.

Remark. One can also make use of the similarity of triangles QO′D and QOA′ (where A′

is the other endpoint of the diameter of c drawn through A), yielding that angle AQA′

subtends the diameter. Another approach is to apply the tangent chord property on
tangent AC and secant CD to obtain that triangles AQC and CQD are similar.

4. Prove that the sum of the squares of any three pairwise different positive odd in-
tegers can be represented as the sum of the squares of six (not necessarily different)
positive integers. (Grade 10.)

Solution. Let a > b > c be positive integers. Then

a2 + b2 + c2 =
a2

2
+

b2

2
+

b2

2
+

c2

2
+

c2

2
+

a2

2
=

=

(
a + b

2

)2

+

(
a − b

2

)2

+

(
b + c

2

)2

+

(
b − c

2

)2

+

(
a + c

2

)2

+

(
a − c

2

)2

.

Since a, b and c are all odd, the latter is a sum of squares of six positive integers.

5. Two triangles are drawn on a plane in such a way that the area covered by their
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3 vertices 4 vertices 5 vertices 6 vertices 7 vertices

8 vertices 9 vertices 10 vertices 12 vertices

Figure 8

union is an n-gon (not necessarily convex). Find all possible values of the number of
vertices n. (Grade 10.)

Answer: all integers from 3 to 12, except 11.

Solution. The n-gon must have at least 3 vertices. We show first that the number of
vertices is at most 12. Indeed, each vertex of the n-gon is either a vertex of one of the
triangles or an intersection point of some two sides of the two triangles. There are 6
triangle vertices and 6 possible intersection points, since every side of the first triangle
can intersect at most two sides of the second triangle. Thus, n ≤ 12.

Next, suppose that the n-gon has 11 vertices. If 6 of those vertices are vertices of the two
triangles, then neither triangle can contain a vertex of the other triangle. Thus, each side
of each triangle intersects the other triangle either never or twice, so we cannot have an
odd number of intersection points. On the contrary, if the n-gon has 6 intersection points
as vertices, every side of each triangle must intersect the second triangle twice, and thus
all vertices of one triangle must be outside the other triangle. Thus, all 6 triangle vertices
are also vertices of the n-gon, and n = 12.

The remaining configurations from 3 to 12 are all possible (see Fig. 8).

6. The identifier of a book is an n-tuple of numbers 0, 1, . . . , 9, followed by a check-
sum. The checksum is computed by a fixed rule that satisfies the following property:
whenever one increases a single number in the n-tuple (without modifying the other
numbers), the checksum also increases. Find the smallest possible number of required
checksums if all possible n-tuples are in use. (Grade 10.)

Answer: 9n + 1.

Solution. Consider the checksum of (0, 0, . . . , 0). Increasing the first number, we get n-
tuples (1, 0, . . . , 0), . . . , (9, 0, . . . , 0) with 9 new checksums. Increasing the second num-
ber in the last n-tuple, we get (9, 1, . . . , 0), . . . , (9, 9, . . . , 0), and again obtain 9 new val-
ues. Continuing like this, we see that the number of different check values is at least
9n + 1.

It is easy to see that the sum of all numbers in the n-tuple is a valid checksum. On the
other hand, the sum of n numbers 0, 1, . . . , 9 is at least 0 and at most 9n, so with this
rule, we have exactly 9n + 1 different checksums.

7. Find all real numbers a such that all solutions to the quadratic equation x2 − ax +
a = 0 are integers. (Grade 11.)
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Answer: a = 0 and a = 4.

Solution. Let x and y be the solutions of the quadratic equation. Viète formulae give
x + y = xy = a. The case y = 1 gives a contradiction 1 + x = x, while y 6= 1 gives

x =
y

y − 1
. Thus, x is an integer if and only if y = 2 or y = 0. Now, y = 2 gives x = 2

and a = x + y = 4; y = 0 gives x = 0 and a = x + y = 0.

Remark. One can also proceed from the fact that the sum a as well as the difference
√

a2 − 4a =
√

(a − 2)2 − 4 of the solutions is integral.

8. A 3-dimensional chess board consists of 4 × 4 × 4 unit cubes. A rook can step from
any unit cube K to any other unit cube that has a common face with K. A bishop can
step from any unit cube K to any other unit cube that has a common edge with K, but
does not have a common face. One move of both a rook and a bishop consists of an
arbitrary positive number of consecutive steps in the same direction. Find the average
number of possible moves for either piece, where the average is taken over all possible
starting cubes K. (Grade 11.)

Answer: the rook has on average 9 moves, the bishop has 10.5.

R R

B B
B

Figure 9

Solution. The rook has always 3 pos-
sible moves in the direction of one
axis, regardless of the choice of the
starting cube K (see Fig. 9), and thus
9 possible moves on average.

In any of the 8 “middle” cubes of the
chess board, the bishop has 5 possi-
ble moves in the direction of every
axis, and thus 15 moves in total. In
any of the 24 cubes that have a com-
mon face with a middle cube, the

bishop has 5 moves on the plane parallel to the common face, and 3 moves on each
of the remaining two planes, or 11 moves in total. For the remaining 32 cubes on the
edge of the board, the bishop has 3 moves in the direction of every axis, and 9 moves in
total. Averaging over all cubes, we get the result.

Remark. The number of possible moves shows to some extent the strength of every piece.
The solution to this problem implies that in 3-dimensional chess, a bishop is perhaps
stronger than a rook (as opposed to regular chess). On the other hand, the bishop is
weakened by the fact that it can always reach only half of the cubes or squares.

While a 3-dimensional 4× 4× 4 board and a regular 8× 8 board have the same number
of cells, a regular rook and bishop have 14 and 8,75 moves on average, respectively.

9. A circle passing through the endpoints of the leg AB of an isosceles triangle ABC
intersects the base BC in point P. A line tangent to the circle in point B intersects the
circumcircle of ABC in point Q. Prove that P lies on line AQ if and only if AQ and BC
are perpendicular. (Grade 11.)

Solution 1. Let line AQ intersect base BC in point R (see Fig. 10). On one hand, ABC
is isosceles, so ∠ACR = ∠ABP. On the other hand, the tangent chord property gives
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∠CAR = ∠CBQ = ∠PAB, so triangles ACR and ABP are similar. If AQ ⊥ BC, then AR
is the height of ABC and ∠ARC = ∠APB = 90◦, so P = R and thus P lies on AQ. If P
lies on AQ, then again P = R and ∠CRA = ∠CPA = 180◦ −∠BPA = 180◦ −∠CRA, or
∠CRA = 90◦, so AQ ⊥ BC.

A

B CP

Q

R

Figure 10

Solution 2. First consider the case where AB
is the diameter of the circle through A, B and
P. Then ∠APB = 90◦ and ∠QBA = 90◦ giv-
ing that AQ is the diameter of circumcircle
of ABC. Thus AQ ⊥ BC and P lies on line
AQ.

On the other hand, when the centre of
the circle passing through points A and B
moves away from the leg AB on the half-
plane containing point C, points Q and P
will move toward points B and C, respec-
tively. When the centre of the circle moves
away from AB on the other halfplane, points
Q and P will move toward points C and B,
respectively. Therefore in either case point P
neither lies on line AQ nor AQ is perpendic-
ular to BC.

10. Find all pairs (m, n) of positive integers such that mn − nm = 3. (Grade 11.)

Answer: (4, 1).

Solution. First, m and n must have different parity, for otherwise the lhs is even.

• If m is odd and n even, then mn ≡ 1 (mod 4), so nm ≡ 2 (mod 4), which is possible
only for m = 1. But then mn = 1 and the lhs is smaller than 3. Thus, in this case
there are no solutions.

• If now m is even and n odd, then nm ≡ 1 (mod 8), so mn ≡ 4 (mod 8). Thus,
n ≤ 2, and n odd gives n = 1, m = 4 as the only solution.

11. Some circles of radius 2 are drawn on the plane. Prove that the numerical value of
the total area covered by these circles is at least as big as the total length of arcs bounding
the area. (Grade 11.)

Solution 1. The boundary line of the area consists of circular arcs, each corresponding to

a circular sector. According to the formula S =
rl

2
, where r is the radius and l the length

of arc, we obtain that in the case r = 2 the area of circular sector equals numerically the
length of the circular arc on its boundary.

We prove that no two such sectors have common interior points. First, the sectors from
the same circle share only the centre of the circle. Now let one sector be part of circle w1

with centre O1 and the other be part of circle w2 with centre O2. Assuming that the sec-
tors have a common interior point C, we draw the radii O1A and O2B of circles w1 and
w2 through C, respectively. Obviously A and B lie on the boundary of the area covered
by circles, meaning that B and A do not lie in the interior of w1 and w2, respectively.
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Therefore |O1B| ≥ |O1A| and |O2A| ≥ |O2B|. We draw the mediator of segment AB
(see Fig. 11). The inequalities imply that O1 and A lie on the one side of the mediator
and O2 and B lie on the other side. Hence segments O1A and O2B cannot have common
points, a contradiction. A

B

O1

O2

Figure 11

We have obtained that the total length of the bound-
ary line of the area equals the sum of the lengths of
circular arcs. But the total area is greater or equal
than the sum of the areas of the sectors.

Solution 2. We shall use induction on the number of
circles. For one circle, the circumference and the area
are equal (4π). We prove that whenever we add a
circle, the area a covered by the intersection of the
new circle with the old area is at most as big as the
perimeter p of that intersection.

First, notice that a ≤ 4π. Assume now that also p ≤ 4π. We write p = 2πr, so r ≤
2. Since a circle maximizes the area for a fixed perimeter, we see that the area of the
intersection is a ≤ πr2 ≤ 2πr = p as desired.

12. Consider a cylinder and a cone with a common base such that the volume of the
part of the cylinder enclosed in the cone equals the volume of the part of the cylinder
outside the cone. Find the ratio of the height of the cone to the height of the cylinder.
(Grade 12.)

Answer: 1 +
1√
3

.

Solution. Denote by v and V, h and H the volume and the height of the cylinder and the
cone, respectively, and denote by S the area of the common base. The vertex of the cone
must lie outside the cylinder, for otherwise the volume of the intersection would be at

most
1

3
of the total volume of the cylinder.

Denote
h

H
= x. The part of the cone that lies outside the cylinder is a cone similar to

the original cone with scale factor
H − h

H
= 1 − x and volume (1 − x)3V. The volume

of the part of the cylinder inside the cone is thus V − (1 − x)3V =
v

2
. From v = Sh and

V =
1

3
SH we get (x3 − 3x2 + 3x) =

3

2
x, so x =

3 ±
√

3

2
. Since h < H implies x < 1, the

only possible solution is x =
3 −

√
3

2
and we get the desired ratio.

13. Let x, y, z be positive real numbers such that xn, yn and zn are side lengths of some
triangle for all positive integers n. Prove that at least two of x, y and z are equal. (Grade
12.)

Solution. Assume that x, y, z are all different and assume w.l.o.g. x < y < z. For any n,
the triangle inequality implies xn + yn

> zn, or

(
x

y

)n

+ 1 >

(
z

y

)n

.
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Since
x

y
< 1,

(
x

y

)n

+ 1 < 2 holds for all n. On the other hand, since
z

y
> 1, there exists

an integer N such that

(
z

y

)N

> 2, contradiction.

14. Does there exist an equilateral triangle

(a) on a plane; (b) in a 3-dimensional space;

such that all its three vertices have integral coordinates? (Grade 12.)

Answer: (a) no; (b) yes.

Solution 1. (a) Suppose that such a triangle ABC exists. Then vectors
−→
AB and

−→
AC have

integral coordinates. Denote
−→
AB = (x, y), then the vector of the height drawn from

vertex C is

√
3

2
(y,−x). The coordinates of

−→
AC are then either

−→
AC =

1

2
(x, y) +

√
3

2
(y,−x) =

(

x +
√

3y

2
,

y −
√

3x

2

)

or

−→
AC =

1

2
(x, y) −

√
3

2
(y,−x) =

(

x −
√

3y

2
,

y +
√

3x

2

)

.

In either case, the coordinates are integral only for x = y = 0.

(b) Triangle ABC with A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1) is equilateral.

Solution 2. (a) W.l.o.g. assume that one vertex of the triangle is A(0, 0). We also assume
w.l.o.g. that the ordinates of B and C are non-negative and these vertices do not lie on
the y-axis.

Since all the coordinates are integral, the slopes of AB and AC are rational. Denote the
slope angles of lines AB and AC by β and γ, respectively, then γ = β ± 60◦. Denote
tan β = k. We have

tan γ =
tan β ± tan 60◦

1 ∓ tan β tan 60◦
=

k ±
√

3

1 ∓ k
√

3
=

(k ±
√

3)(1 ± k
√

3)

1 − 3k2
.

But (k ±
√

3)(1 ± k
√

3) = k ± k2
√

3 ±
√

3 + 3k = 4k ± (k2 + 1)
√

3. As k2 + 1 > 0, it is
impossible that tan γ and k would be simultaneously rational.

Remark. There are several other solutions to this problem. One may w.l.o.g. denote
the vertices A(0, 0), B(x1, y1) and C(x1, y1), where x1, y1, x2 and y2 are relatively prime,
derive the equalities x2

1 + y2
1 = x2

2 + y2
2 = 2(x1x2 + y1y2) and consider all cases of re-

mainders of x1, y1, x2 and y2 modulo 2.

Another approach would be to notice that (x1 + x2)
2 + (y1 + y2)

2 is divisible by 3 and
use the fact that perfect squares have only remainders 0 and 1 modulo 3.

The most straightforward way is to compute the area S of the triangle with vertices

A(x1, y1), B(x2, y2) and C(x3, y3) in two different ways: 2S =

∣
∣
∣
∣
∣
∣

x1 x2 x3

y1 y2 y3

1 1 1

∣
∣
∣
∣
∣
∣

and 2S =
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a2
√

3

2
(where a is the side of the triangle). Since all the coordinates as well as the side

length are integral, such a triangle cannot exist.

15. Let a, b, c be positive integers such that gcd(a, b, c) = 1 and the product of every
two of these integers is divisible by the third one.

(a) Prove that every one of these integers equals the least common multiple of the re-
maining two integers divided by the greatest common divisor of these two integers.

(b) Give an example of such integers a > 1, b > 1 and c > 1.

(Grade 12.)

Answer: (b) For example, a = 6, b = 10, c = 15.

Solution 1. (a) Let d = gcd(a, b), a = a′d and b = b′d, where gcd(a′, b′) = 1. Then

lcm(a, b) = a′b′d and
lcm(a, b)

gcd(a, b)
= a′b′. We prove that a′b′ = c.

On the one hand, since ab = a′b′d2 is divisible by c and gcd(d, c) = 1 because of
gcd(a, b, c) = 1, a′b′ must be divisible by c. On the other hand, the conditions of the
problem imply that ca = ca′d is divisible by b = b′d, i.e. ca′ is divisible by b′. As
gcd(a′ , b′) = 1, c is divisible by b′. Analogously, c is divisible by a′. Since a′ and b′ are
coprime, c is divisibly by a′b′. Altogether we have c = a′b′ as desired. The claims about
a and b are proven analogously.

(b) Let x, y and z be different numbers that are pairwise coprime, e.g. different primes.
Having a = xy, b = yz and c = xz, the numbers a, b and c satisfy the conditions of the
problem. Indeed,

lcm(a, b)

gcd(a, b)
=

xyz

y
= xz = c,

analogously for other cases. For an example we may take x = 2, y = 3, z = 5 that yields
6, 15 and 10.

Solution 2. (a) Let p be some prime factor of at least one of a, b and c. Since gcd(a, b, c) =
1, we may assume w.l.o.g. that p does not divide c. At the same time, since ca is divisible
by b and cb is divisible by a, the factor p must have the same exponent α in both a and
b. Similarly, the exponents of any prime factor p′ in the prime factorization of a, b and c
are α′, α′ and 0 in some order. Since every exponent in such a triple equals the difference
of the maximum and the minimum of the remaining two, the result follows.

16. Some squares of an n× n grid are marked in such a way that in every 4× 4 square,
at least half of the squares are marked. Find the smallest possible number of marked
squares in the grid. (Grade 12.)

Answer: 8q2 for n = 4q or n = 4q + 1; 8q2 + 4q for n = 4q + 2; 8q2 + 8q + 1 for n = 4q + 3
and q ≥ 1; 0 for n = 3.

Solution. Let A(n) be the smallest possible number of marked squares. Write n = 4q + r,
where 0 ≤ r < 4. First, we bound A(n) from above.

• If r = 0, we mark half of the squares in groups of two rows as shown in Fig. 12, so
A(4q) ≤ 8q2.

17

n = 4q n = 4q + 1 n = 4q + 2 n = 4q + 3

Figure 12
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Figure 13

• If r = 1, we mark groups of 8 squares. Since there are q2 such groups, we again get
A(4q + 1) ≤ 8q2.

• If r = 2, we mark as in the first case, but leave the last two rows empty. This way,
we mark 2q rows with n squares, or 2q(4q + 2) squares in total. Thus, A(4q + 2) ≤
8q2 + 4q.

• If r = 3 and q > 0, we mark every fourth row and column and the middle squares
of the remaining 3 × 3 groups. There are (q + 1)2 marked middle squares and q
marked rows and columns, giving (q + 1)2 + 2(4q + 3)q − q2 marked squares in
total. Thus, A(4q + 3) ≤ 8q2 + 8q + 1. For q = 0, we get n = 3 and A(3) = 0.

We now show that these bounds are tight.

• For r = 0 or r = 1, we can divide a 4q × 4q grid into q2 squares of size 4 × 4. In
every such square, at least 8 squares must be marked, so A(n) ≥ 8q2.

• For r = 2 or r = 3, cut an r × r square from the lower left corner and divide the
remaining squares into q L-shaped strips of width 4 (see Fig. 13, right). The ith strip
then contains 2i 4 × 4 squares. The last two squares intersect in the corner of the L
and the intersection is a square of size (4 − r) × (4 − r). Every strip also contains
an r × r square in the corner.

In order to bound A(n) from below, we add the smallest possible number of
marked squares in the 4 × 4 squares and the r × r squares and subtract the largest
possible number of marked squares in the (4 − r)× (4 − r) squares.
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The case r = 2 gives

A(n) ≥ 8 · (2 + 4 + . . . + 2q)+ 0 · (q + 1)− 4 · q = 8 · (2q + 2)q

2
− 4q = 8q2 + 4q.

If r = 3 every 3 × 3 square contains at least one marked square, so

A(n) ≥ 8 · (2 + 4 + . . . + 2q)+ 1 · (q + 1)− 1 · q = 8 · (2q + 2)q

2
+ 1 = 8q2 + 8q + 1.

IMO team selection contest

First day

1. On the control board of a nuclear station, there are n electric switches (n > 0), all
in one row. Each switch has two possible positions: up and down. The switches are
connected to each other in such a way that, whenever a switch moves down from its
upper position, its right neighbour (if it exists) automatically changes position. At the
beginning, all switches are down. The operator of the board first changes the position
of the leftmost switch once, then the position of the second leftmost switch twice etc.,
until eventually he changes the position of the rightmost switch n times. How many
switches are up after all these operations?

Answer: 1.

Solution 1. Enumerate the switches with numbers 1 to n from left to right. We prove first
that the result of two consecutive changes does not depend on the order of the changes.
Let x and y be the numbers of the switches changed, x < y.

• If there exists a number z such that x ≤ z < y and switch number z is down then
changing the position of x can influence only switches from x to z, changing the
position of switch y can influence only this switch and switches right from y. Thus
the results of the changes are independent of each other.

• If no such z exists then changing switch number x causes a change of switch number
y. After that, switches x to y − 1 are all down while all switches in the right from
them are in the same position as if switch number y were changed. Thus after
moving both x and y in either order, switches from x to y − 1 are down and the
switches with larger number are in the position as when switch y were moved
twice.

We prove now that, after all operations, precisely the leftmost switch is up. This claim
holds trivially for n = 1. Assume the claim holding for n switches and consider a board
with n + 1 switches. According to what was proven above, the moves can be performed
in arbitrary order. Therefore, first change switch number 2 once, then switch number 3
twice etc., until the last switch n times. By the induction hypothesis, switch number 2
is up and all the others are down. Each switch has to be moved once more; if we do it
from right to left then switches n + 1 to 3 go up, then moving switch 2 down brings all
them down and finally switch 1 is moved up. Thus 1 is the only switch remaining up.
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Solution 2. Let ai be the number of times the ith switch changes its position during the
whole process. According to the conditions of the problem, each switch moves either
when it is moved directly by the operator or its left neighbour moves down. As all

switches are down at the beginning, the ith switch moves down
⌊ ai

2

⌋

times. Thus a1 = 1

and ai = i +
⌊ ai−1

2

⌋

for all i ≥ 2.

We prove by induction that ai = 2(i − 1) for all i ≥ 2. As a2 = 2 +
⌊ a1

2

⌋

= 2 +

⌊
1

2

⌋

= 2,

this claim holds for i = 2. Assuming that it holds for i, we obtain

ai+1 = i + 1 +
⌊ ai

2

⌋

= i + 1 +

⌊
2(i − 1)

2

⌋

= 2i,

i.e., the claim holds also for i + 1.

Altogehter, this shows that a1 is odd and ai is even for all i ≥ 2. Hence, after the process,
the first switch is up and all the others are down.

Solution 3. Interpret the position of switches on the board as binary numbers so that the
ith switch from the left corresponds to the ith lowest binary digit: being down encodes

0 and being up encodes 1. Changing the ith switch then works like addition of 2i−1

modulo 2n. The initial position encodes number 0 and the final position encodes 1 · 20 +
2 · 21 + . . . + n · 2n−1 modulo 2n.

We prove by induction that 1 · 20 + 2 · 21 + . . . + n · 2n−1 ≡ 1 (mod 2n). If n = 1 then
this holds. Assume that the claim holds for n = k. Multiplying this congruence by 2
gives

1 · 21 + 2 · 22 + . . . + k · 2k ≡ 2 (mod 2k+1).

Adding 20 + 21 + . . . + 2k to both sides gives

1 · 20 + 2 · 21 + 3 · 22 + . . . + (k + 1) · 2k ≡ 2 + 2k+1 − 1 ≡ 1 (mod 2k+1),

i.e., the claim holds for n = k + 1.

Remark. In Solution 3, one could prove by induction a stronger claim: 1 · 20 + 2 · 21 +

. . . + n · 2n−1 = (n − 1) · 2n + 1.

2. Let D be the foot of the altitude of triangle ABC drawn from vertex A. Let E and
F be points symmetric to D w.r.t. lines AB and AC, respectively. Let R1 and R2 be the
circumradii of triangles BDE and CDF, respectively, and let r1 and r2 be the inradii of
the same triangles. Prove that

|SABD − SACD| ≥ |R1r1 − R2r2|

where SK denotes the area of figure K.

Solution 1. Consider first the case where D lies between points B and C (see Fig. 14). As

SABD =
1

2
· |AD| · |BD| and SACD =

1

2
· |AD| · |CD|, we have

SABD − SACD =
1

2
· |AD| · (|BD| − |CD|).
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Let G be the incentre of triangle BDE and let G′ be the projection of G to line BD. Then
|GG′| = r1. By symmetry, ∠BEA = ∠BDA = 90◦, hence quadrangle BEAD is cyclic
and line segment AB is its circumdiameter. Thus |AB| = 2R1. As triangles ADB and

GG′B are similar, we have
|AB|
|AD| =

|GB|
|GG′| , implying 2R1r1 = |AD| · |GB|. Let H be the

incentre of triangle CDF; then analogously 2R2r2 = |AD| · |HC|. Hence

R1r1 − R2r2 =
1

2
· |AD| · (|GB| − |HC|).

Triangle ADG is isosceles because ∠ADG = 90◦ − 1

2
∠BDE = 90◦ − 1

2
∠DAG. Thus

|AD| = |AG|. Analogously, |AD| = |AH|. Thus |AG| = |AH|.
Subtracting equality |AD|2 + |CD|2 = |AC|2 from |AD|2 + |BD|2 = |AB|2 gives |BD|2 −
|CD|2 = |AB|2 − |AC|2 which is equivalent to

(
|BD| − |CD|

)
·
(
|BD|+ |CD|

)
=
(
|AB| −

|AC|
)
·
(
|AB| + |AC|

)
. Consequently,

∣
∣|BD| − |CD|

∣
∣ · |BC| =

∣
∣|GB| − |HC|

∣
∣ ·
(
|AB| + |AC|

)
.

As |BC| < |AB| + |AC|, we must have
∣
∣|BD| − |CD|

∣
∣ ≥

∣
∣|GB| − |HC|

∣
∣, which gives the

desired inequality.

A

B CD

E

F

G

G ′

H

K

L

Figure 14

A

B C C ′
D

E

F

G

H H ′

Figure 15

If D does not lie between B and C (see Fig. 15) then assume w.l.o.g. that it is on ray BC.
Reflect line segment AC w.r.t. line AD; points C and H transform to some points C′ and
H′, respectively. Now apply the solution above for triangle ABC′. The desired claim
follows then by using |C′D| = |CD| and |H′C′| = |HC|.
Solution 2. Denote ∠BAD = β and ∠CAD = γ. Then

SABD =
1

2
· |AD| · |BD| =

1

2
|AD|2 tan β.

As in Solution 1, show that quadrangle BEAD is cyclic. Let K be the point of intersec-

tion of its diagonals. As R1 =
|AB|

2
, we get R1 =

|AD|
2 cos β

. Furthermore, r1 = |GK| and

∠GDK =
∠BDE

2
=

∠BAD

2
=

β

2
. Thus r1 = |DK| tan

β

2
= |AD| sin β tan

β

2
. Conse-

quently,

R1r1 =
|AD|

2 cos β
· |AD| sin β tan

β

2
=

1

2
|AD|2 tan β tan

β

2
.
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Analogously we obtain

SACD =
1

2
|AD|2 tan γ, R2r2 =

1

2
|AD|2 tan γ tan

γ

2
.

From these equalities, we can conclude that SABD − SACD and R1r1 − R2r2 have the
same sign since β and γ belong to the first quarter where tan is increasing. W.l.o.g.,
assume that both are non-negative (otherwise interchange B and C). Then β ≥ γ and
the desired inequality is equivalent to SABD − R1r1 ≥ SACD − R2r2. Now

SABD − R1r1 =
1

2
|AD|2 tan β

(

1 − tan
β

2

)

=

=
1

2
|AD|2

2 tan
β

2

1 − tan2 β

2

(

1 − tan
β

2

)

= |AD|2
tan

β

2

1 + tan
β

2

,

whence

SABD − R1r1 = |AD|2



1 − 1

1 + tan
β

2






and, analogously,

SACD − R2r2 = |AD|2


1 − 1

1 + tan
γ

2



 .

By β ≥ γ and tan being increasing, the inequality SABD − R1r1 ≥ SACD − R2r2 follows.

3. Let n be a natural number, n ≥ 2. Prove that if
bn − 1

b − 1
is a prime power for some

positive integer b then n is prime.

Solution. Clearly b ≥ 2. Assume that
bn − 1

b − 1
= pl where p is prime, then n ≥ 2 implies

l ≥ 1. If n = xy where both x and y are greater than 1 then consider the representation

bxy − 1

b − 1
=

bxy − 1

by − 1
· by − 1

b − 1
= (1 + by + . . . + by(x−1)) · by − 1

b − 1
.

As the product is a power of p, both factors must be powers of p. As x > 1 and y > 1,
both factors are multiples of p. Then by − 1 is a multiple of p. Thus all addends in the
first factor are congruent to 1 modulo p which implies that the first factor is congruent
to x modulo p. Hence x is divisible by p. As x was an arbitrary non-trivial factor of n,
this shows that n = pm for a positive integer m.

Now consider the representation

bpm − 1

b − 1
=

bpm − 1

bpm−1 − 1
· . . . · bp2 − 1

bp − 1
· bp − 1

b − 1
.
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Each factor is both greater than 1 and a power of p. As
bp − 1

b − 1
is a positive integral

power of p, the numerator is divisible by p, i.e., bp ≡ 1 (mod p). By Fermat’s little
theorem, bp ≡ b (mod p). Thus b ≡ 1 (mod p) and b − 1 is divisible by p. But then
the numerator bp − 1 must be divisible by p2, i.e., bp ≡ 1 (mod p2). If m ≥ 2 then the

representation above contains factor
bp2 − 1

bp − 1
= 1 + bp + . . . + bp(p−1). On one hand,

this is congruent to p modulo p2 as all addends are congruent to 1. On the other hand,
this factor is a power of p while being greater than p, hence it is a multiple of p2. This
contradiction shows that m = 1, qed.

Remark 1. Fermat’s little theorem can easily be avoided in the solution. Cutting this
out from the solution above, it still shows that if m ≥ 2 then bp − 1 is not divisible by

p2. Continuing from this, we see that
bp − 1

b − 1
is divisible by p but not by p2. Hence this

factor must be p. Now

bp − 1

b − 1
= 1 + b + . . . + bp−1

> bp−1 ≥ 2p−1 ≥ p

gives a contradiction.

Remark 2. In the special case b = 2, l = 1, the problem reduces to the well-known fact
that a Mersenne’s number Mn can be prime only if n is prime.

Second day

A B

CD

E

F

G

K

Figure 16

4. In square ABCD, points E and F are chosen in the in-
terior of sides BC and CD, respectively. The line drawn
from F perpendicular to AE passes through the intersec-
tion point G of AE and diagonal BD. A point K is chosen
on FG such that |AK| = |EF|. Find ∠EKF.

Answer: 135◦.

Solution. Since AGFD is a cyclic quadrilateral (see Fig. 16),
∠GAF = ∠GDF = 45◦ and ∠GFA = ∠GDA = 45◦, so
triangle AGF is isosceles and |GA| = |GF|. Now, right
triangles AGK and FGE are congruent, and |GK| = |GE|,
so triangle GKE is also isosceles. Finally, ∠GKE = 45◦ and
∠EKF = 180◦ −∠GKE = 135◦.

5. Find all continuous functions f : R → R such that for all reals x and y

f (x + f (y)) = y + f (x + 1).

Answer: f (x) = 1 + x and f (x) = 1 − x.

Solution. Taking y = − f (x + 1), we see that there is a value a such that f (a) = 0. We
consider two cases.

Let first a 6= 1. Taking y = x + 1, we get f (x + f (x + 1)) = x + 1 + f (x + 1). Let
g(x) = x + f (x + 1), then f (g(x)) = 1 + g(x) for all x. Since f is continuous, so is g.
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Taking y = a in the initial relation, we get f (x) = a + f (x + 1), and so g(x − 1)− g(x) =
a − 1 for all x. Since a 6= 1, g is unbounded and by continuity, takes all real values, so
f (z) = 1 + z for all z.

Let now a = 1, i.e., f (1) = 0. Then x = 0 yields f ( f (y)) = y for all reals y. Taking now
y = f (1 − x) in the initial relation, we get f (x + f ( f (1 − x))) = f (1 − x) + f (x + 1),
or 0 = f (1 − x) + f (x + 1). Finally, taking y = 1 − x yields f (x + f (1 − x)) = 1 −
x + f (x + 1), so f (x + f (1 − x)) = 1 − x − f (1 − x). Let h(x) = x + f (1 − x), then
f (h(x)) = 1 − h(x) holds for all x. Replacing x with −x and taking y = 1 in the initial
relation, we get f (−x) = 1 + f (1 − x), so h(x + 1) − h(x) = 2. Again, h is continuous
and must take all real values, so f (z) = 1 − z for all z.

It is straightforward to verify that both solutions indeed satisfy the initial relation.

6. Consider a 10 × 10 grid. On every move, we colour 4 unit squares that lie in the
intersection of some two rows and two columns. A move is allowed if at least one of the
4 squares is previously uncoloured. What is the largest possible number of moves that
can be taken to colour the whole grid?

Answer: 81.

Solution. By always choosing the first line, the first column and a square of the remaining
9 × 9 grid as the lower right square, the whole grid can be coloured in 81 moves.

We now prove that it is not possible to make more than 81 moves. Consider a sequence
of moves. Select for each move one square that is chosen for the first time during this
move and colour the remaining squares already before starting the sequence. Then,
take all squares that were not selected and colour them in advance, i.e., already before
starting the sequence of moves. Since all selected squares must be different, every move
in the sequence now colours exactly one square.

Next, consider a bipartite graph with the 10 rows and 10 columns as vertices. Every time
a square is coloured, draw an edge between the row and the column corresponding to
this square. We claim that the graph is connected before we start the sequence of moves.
Indeed, suppose that during some move, we pick rows (a, b) and columns (c, d), such
that only the square (b, d) is coloured for the first time, i.e., we add the edge (b, d). But
then b is already connected with d through b − c − a − d, so the number of connected
components does not decrease. Since the graph of a fully coloured grid is connected, it
must also be connected in the beginning. But a connected graph with 20 vertices must
have at least 19 edges, so we can add only 100 − 19 = 81 new edges, and hence any
sequence can have at most 81 moves.
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