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Selected Problems from Open Contests

1. A farmer noticed that, during the last year, there were exactly as many calves born
as during the two preceding years together. Even better, the number of pigs born during
the last year was one larger than the number of pigs born during the two preceding
years together. The farmer promised that if such a trend will continue then, after some
years, at least twice as many pigs as calves will be born in his cattle, even though this far
this target has not yet ever been reached. Will the farmer be able to keep his promise?
(Juniors.)

Answer: no.

Solution. Let F, and G, be the numbers of calves and pigs born during the nth year,
respectively. We will prove that if the farmer’s promise has been false during the pre-
vious years, it will remain so after the nth year as well. From the problem statement,
we have F;, = F,_1 + F, 2 and G, = G,_1 + G, + 1. If the number of born pigs
was less than twice the number of born calves during the previous years, we must have
Gy-1 <2F,_1 —1and G, < 2F,_» — 1. Consequently,

Gn = G1771+Gn72+1 <2F 1 —142F 2—-141=
=2(Fy1+Fy0) —1=2F,—1

or G, < 2F, — 1, i.e. the promise will not be true during the nth year. Since the farmer
has kept the cattle for at least two years, we can claim by induction that the promise will
never come true.

2. Let ABCD be a parallelogram, M the midpoint of AB and N the intersection of CD
and the angle bisector of ABC. Prove that CM and BN are perpendicular iff AN is the
angle bisector of DAB. (Juniors.)

Solution. The triangle CNB is isosceles since /CNB = ZMBN = ZCBN (see Figure 1).
Thus we have |[NC| = |BC|.

Assume first CM L BN. Since BN is both bisector and altitude for triangle BMC, we
have |[BM| = |BC|. Consequently |BM| = |CN/|, implying that N is the midpoint of CD
and MN is a segment joining the midpoints of the sides of the parallelogram. Then we
must have |AM| = |[DN| = [NC| and |AD| = |[MN| = |BC]|. Thus the sides of AMND
are equal and we have a rhombus. Its diagonal AN bisects DAM.

Assume now that AN bisects DAB. Then /DNA = ZBAN = ZDAN, which implies
|IDN| = |DA]|. On the other hand, |DA| = |CB| = [NC]|. Thus N is the midpoint of CD.
Since M is the midpoint of AB, we have that MBCN is a rhombus with the diagonals
CM and BN being perpendicular.

3. Does there exist a natural number with the sum of digits of its kth power being
equaltok,if a) k =2004; b) k =2006? (Juniors.)

Answer: a) no; b) no.

Solution. a) Assume there exists such a number a. Since the sum of digits of a?°** is
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divisible by 3, a2%* is divisible by 3 and so is a. But then a?*™ is also divisible by 9

making the sum of its digits divisible by 9. Since 2004 is not divisible by 9, the sum of
the digits of #2°* can not be equal to 2004, a contradiction.

b) Assume there exists such a number a. We will use the fact that a natural number and
its sum of digits give the same remainder when divided by 3. It follows that a2 =
2006 = 2 mod 3. On the other hand, the number a?%% = ('9%)2 js a perfect square that
can not give the remainder 2 when divided by 3, a contradiction.

4. A9 x9square is divided into unit squares. Is it possible to fill
each unit square with a number 1,2,...,9 in such a way that, when-
ever one places the tile so that it fully covers nine unit squares, the
tile will cover nine different numbers? (Juniors.)

l

Answer: no.

Solution 1. Assume that the numbers can be written in the required way. Put the tile over
the central square; w.l.o.g. we can assume that the numbers are placed like in Figure 2,
left. Next move the tile like in Figure 2, middle. Two upper left vacant squares can have
neither 6 nor 7. Thus we must have 8 and 9 there, in some order. Now place the tile like
in Figure 2, right. We can see that either way we must cover number 8 twice, hence the
required configuration of numbers does not exist.
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Solution 2. Put the tile over the central square; w.l.o.g. we can assume that the numbers
are written like in Figure 3, left. We will analyse which number can be written into the
gray central square. Moving the tile one position left, we see that the central square can
not contain 1, 2, 3 or 4. Moving the tile one position right, we see that the central square
can not contain 5. Moving the tile one position down, we see that the central square can
not contain 6, 7, 8 or 9. Thus the required numbering is not possible.

5. Find all real numbers with the following property: the difference of its cube and
its square is equal to the square of the difference of its square and the number itself.
(Juniors.)
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Answer: 0,1 and 2.

Solution 1. Let x be a number with this property. Then x> — x2 = (x? — x)2, which
leads to the equation x* — 3x® +2x2 = 0 or x*(x®> —3x +2) = 0. Hence > = 0 or
x> — 3x 42 = 0. Solving these quadratic equations, we get xo = 0, x; = 1, xp = 2.
Solution 2. Transform the equation x> — x? = (x% — x)? to obtain x?(x — 1) = x*(x — 1)2.
Therefore x*(x — 1)2 — x?(x — 1) = 0 or x*(x — 1)(x — 2) = 0. Clearly, the solutions of
the last equation are 0, 1, 2.

possible to exactly fill a cube with these figures if the side length of the

6. A solid figure consisting of unit cubes is shown in the picture. Is it ﬁ
cubeis a) 15; b) 30? (Juniors.)

Answer: a) no; b) yes.

Solution. a) Since the figure consists of four unit cubes, the number of unit cubes in every
solid composable from these figures is divisible by 4. Since the cube with side length 15
contains an odd number of unit cubes, this cube is not among these solids.

b) From two figures, it is possible to assemble a cube with side length 2 (see Figure 4).
From these cubes, it is possible to assemble a cube with side length 30.

7. Two non-intersecting circles, not lying inside each other, are drawn in the plane.
Two lines pass through a point P which lies outside each circle. The first line intersects
the first circle at A and A’ and the second circle at B and B’; here A and B are closer
to P than A’ and B’, respectively, and P lies on segment AB. Analogously, the second
line intersects the first circle at C and C’ and the second circle at D and D’. Prove that
the points A, B, C, D are concyclic if and only if the points A', B, C', D' are concyclic.
(Juniors.)

Solution 1. Since A, A’, C’, C are concyclic (see Figure 5), we have LAA'C + LACC =
180°, hence /B'A'C' = ZACD. Analogously /C'D'B' = Z/DBA. Points A, B, C, D are
concyclic if and only if ZACD = /DBA, which is equivalent to /B’A’C' = /C'D'B/,
the last equality holds if and only if points A’, B/, C’, D’ are concyclic.

Figure 5

Solution 2. Independently of the location of P, the equalities
|[PA| - |PA"| = |PC| - |PC/|, |PB| - |PB'| = |PD| - |PD/|
are valid. Multiplying these, we get
|PA| - |PB| - |PA’| - |PB'| = |PC| - |PD] - |PC'| - |PD’|.
Points A, B, C, D are concyclic if and only if
|PA| - |PB| = |PC| - |PD|
or, taking into account the previous equality, if and only if
|PA’| - |PB| = [PC'| - [PD'],

which holds if and only if A’, B/, C’, D’ are concyclic.
Note. As can be seen from solution 2, the assertion of the problem holds regardless of
positions of the circles.

8. A computer outputs the values of the expression (n+1)-2" forn =1,n =2,n =3,
etc. What is the largest number of consecutive values that are perfect squares? (Juniors.)

Answer: 2.

Solution. Two consecutive values can be perfect squares, for example, for n = 7 and
n=8weget8-27 = (25)2and 9-28 = (3-2%)2.

Now prove that three consecutive values cannot be perfect squares. Assume that (n +
1) -2" and (n + 3) - 22 are both perfect squares. If 1 is even then both 2" and 22
are perfect squares. Therefore also 7 41 and n + 3 must be perfect squares, which is
impossible. If n is odd, i.e. n = 2k + 1 for some k > 0, then (n +1)-2" = (2k +2) -
22 — (k1) - 2% 2 and (n +3) - 2"2 = (2k +4) - 223 = (k +2) - 224 Here, the
factors 2272 and 2%** are perfect squares, therefore also k + 1 and k + 2 must be perfect
squares, which is impossible for non-negative k.

9. Leta, b, c be positive integers. Prove that the inequality

(x—y)"(x — 2y —2) 20
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holds for all reals x, y, z if and only if 4, b, c are even. (Juniors.)

Solution. If a, b, c are positive then the inequality holds. On the other hand, assume that
the inequality holds for all reals x, y, z. Choosing z < x < y and dividing the given
inequality by a positive number (x — z)¥(y — 2)°, we get the inequality (x — y)* > 0,
from which we conclude due to x —y < 0 that a is even. Analogously, choosing y <
z < x, we conclude that c is even. Finally, choosing x < y < z, we get after dividing
the inequality by a positive number (x — y)?(y — z)° that (x — z)” > 0 from which we
conclude due to x — z < 0 that b is even.

10. All the streets in a city run in one of two perpendicular directions, forming unit
squares. Organizers of a car race want to mark down a closed race track in the city in
such a way that it would not go through any of the crossings twice and that the track
would turn 90° right or left at every crossing. Find all possible values of the length of
the track. (Seniors.)

Answer: all positive integers divisible by 4, except for 8.

Solution. Define natural coordinates with the origin at some crossing and consider two
consecutive track fragments of length 1. One of them is parallel to x-axis and the other
one to y-axis; moving along the first one, parity of the x-coordinate changes, and mov-
ing along the second one, parity of the y-coordinate changes. Moving along the track,
parities of x- and y-coordinates change alternately, but when returning to the initial
point, both parities must be the same as in the beginning. Since the pairs of parities
repeat after every four track fragments, the length of the track must be divisible by 4.
There exists a suitable track of length 4 going around one block. There is no track of
length 8. If there were one, it would have four fragments parallel to x-axis and four
fragments parallel to y-axis. Hence, we could not deviate more than 2 units in either
direction and the whole track should fit into 2 x 2 square. It is easy to see that the track
can not contain three corners of the square, but then there will be less that 8 possible
turning points left.

All the other positive integers divisible by 4 are attainable. Figure 6 shows a track of
length 12 and we can increase this length repeatedly by 4 units using the operation in
Figure 7.

11. After the schoolday is over, Juku must attend an extra math class. The teacher
writes a quadratic equation x2 + p;x 4 g, = 0 with integer coefficients on the blackboard
and Juku has to find its solutions. If they are not both integers, Juku may go home. If the
solutions are integers, then the teacher writes a new equation x~ + px + q» = 0, where
p2 and g5 are the solutions of the previous equation taken in some order, and everything

starts all over. Find all possible values for p; and g; such that the teacher can hold Juku
at school forever. (Seniors.)

Answer: either p; is any integer and g1 =0 or p; = land q; = —2.

Solution. 1If g; = 0 then we have the equation x> 4 p;x = 0 with solutions —p; and 0.
The teacher can write another equation x* — p;x = 0 with solutions p; ja 0, then again
x2 4+ p1x = 0, etc. Thus all pairs (p1,0) satisfy the conditions of the problem.

If g1 = —1 then the product of the solutions must be —1 and the solutions —1 and 1
in some order. Since the equations x> — x +1 = 0 and x* + x — 1 = 0 have no integer
solutions, no pairs of the form (p;, —1) satisfy the conditions of the problem.

If g1 = —2 then the product of the solutions must be —2 and the solutions are either
2 and —1 or 1 and —2. In the first case, the teacher can choose between the equations
x?+2x—1 = 0and x* — x +2 = 0, none of them having integer solutions. In the second
case, the teacher can write the equation x2 4+ x — 2 = 0 with solutions 1 and —2. Thus
we see that the pair (1, —2) staisfies the conditions of the problem.

Now let g1 be an integer not equal to 0, —1 nor —2. If x; and x; are the solutions of
2+ p1x + g1 = 0, Viete formulae imply that x; + x, = —p1, x1x2 = g1 and

x% + x% = (X1 4+ x2)> = 2x10 = p% —2q1 < p% —+ q%.

Thus the sum of squares of the coefficients of the equation strictly decreases for q; ¢
[—2;0]. Since sum of squares is non-negative, we must sooner or later reach one of the
two situations: the solutions are not integers or the constant term belongs to the interval
[~2;0]. The latter case is impossible, since every equation x* + px + ¢ = 0 uniquely
determines its predecessor ¥~ — (p + q)x + pq = 0, hence the pairs (p1,0) ja (1, —2) can
only arise from equations with constant terms 0 or —2, respectively. Thus there are no
other pairs of numbers satisfying the conditions of the problem.

12. Let ABC be an acute triangle and choose points A;, By and C; on sides BC, CA
and AB, respectively. Prove that if the quadrilaterals ABA; By, BCB1C; and CAC; A are
cyclic then their circumcentres lie on the sides of ABC. (Seniors.)

Solution. Since BCB1C; is cyclic (see Figure 8), we have /BB,C = /BC;C = «. Similar-
ily, let /CC1A = ZCA1A = Band ZAA1B = ZABB = 1. Considering the angles with
vertices at points A1, B; and C;, we get the following system of equations:

B+ = 180°
y+a = 180°
a+p = 180°.

Adding the equalities and dividing by 2 gives & +  + v = 270°, implyinga = f = 7 =
90°. Thus the segments BC, CA and AB are the diameters of the circles and contain their
circumcentres.

13. Martin invented the following algorithm. Let two irreducible fractions i—l and
1

t_2 be given as inputs, with the numerators and denominators being positive integers.
2
Divide s; and s, by their greatest common divisor ¢ and obtain a; and a;, respectively.

Similarily, divide t; and t; by their greatest common divisor d and obtain by and by,
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Figure 8

ayby + arby

respectively. After that, form a new fraction , reduce it, and multiply the

102
numerator of the result by c. Martin claims that this algorithm always finds the sum of
the original fractions as an irreducible fraction. Is his claim correct? (Seniors.)

Answer: yes.
Solution. Since

s1 tr  s2 B

e (2
c-(a1by +azby) (c d ¢ d) _ sihh st sy n 5o
t1bo - t B t1tn T b

tl'E

the resulting fraction has correct value. We still need to prove that it is irreducible. For
that, it is enough to show that the numbers c and t;b, are relatively prime.

Suppose there exists a prime p dividing both ¢ and #1b,. Since ¢ = ged(sq,s2), we have
that p also divides both s; and s;. Consequently, t; and t, can not be divisible by p,

s s . - . .
because the fractions t_l and t_z are irreducible. Thus p does not divide t;f,, implying
1 2

.. tr . .
that p can not divide t1b, = t; - Ez either, a contradiction.

14. Two players A and B play the following game. Initially, there are m equal positive
integers n written on a blackboard. A begins and the players move alternately. The
player to move chooses one of the non-zero numbers on the board. If this number k is
the smallest among all positive integers on the board, the player replaces it with k — 1;
if not, the player replaces it with the smallest positive number on the board. The player
who first turns all the numbers into zeroes, wins. Who wins if both players use their
best strategies? (Seniors.)

Answer: A wins if mn is odd; B wins if mn is even.

Solution. If the quantity m of numbers is even then B has the following winning strategy.
B divides all the numbers into pairs and if A makes a move and changes some number,
B changes the other number in the pair, ensuring that after his move all pairs contain
equal numbers. This is possible, since after A’s move the number A wrote must be the
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smallest on the board and strictly less than the other number in the pair. The situation
with all numbers being equal to zero can this way only occur after B’s move.

Now let m be odd and 7 even. If none of the numbers is yet zero, B can ensure that after
his move the following conditions hold: the smallest number on the board is even, the
quantity of the smallest numbers is odd and the number of occurrencies of every other
number is even. Indeed, if A changes the smallest number then B can change it again,
but if A changes some other number then B can change another number equal to the
one A changed. It goes on until some number becomes zero, afterwards B can divide
all the remaining numbers into pairs and use the strategy described above.

Finally, let m and n be odd. Then after A’s first move, there is a position described in
the previous paragraph on the board. Thus A can use the strategy of B and win.

15. Kati cut two equal regular n-gons out of paper. To the vertices of both n-gons, she
wrote the numbers 1 to # in some order. Then she stabbed a needle through the centres
of these n-gons so that they could be rotated with respect to each other. Kati noticed
that there is a position where the numbers at each pair of aligned vertices are different.
Prove that the n-gons can be rotated to a position where at least two pairs of aligned
vertices contain equal numbers. (Seniors.)

Solution. Assume that the lower n-gon is fixed and move the upper n-gon. Let the initial
position of n-gons be the one found by Kati. For each vertex of the upper n-gon, there
is an angle by which rotating clockwise the upper n-gon brings this vertex atop of the
vertex of the lower n-gon with the same number. There are 1 different vertices, but only
n — 1 different rotation angles since the angle 0° is excluded by conditions. Hence for
two vertices of the upper n-gon, the rotation angles are equal.

16. A real-valued function f satisfies for all reals x and y the equality

fxy) = f(x)y +xf(y)-
Prove that this function satisfies for all reals x and y # 0 the equality
f (f) _ Sy —xf(y)
y v
(Seniors.)
) = flxy) —xf(y)
¥

Solution. From the given expression we obtain f(x , this equality

holds for any reals x and y # 0. Taking ; at place of x, we get

(- (G ’y>y AV £y 1)

Note. It is possible to prove (for example, using reduction to the Cauchy equation), that
the only continuous functions satisfying the given conditions are

_ JaxIn|x|, ifx#0,
f&x) = {0, if x = 0.



Figure 9

17. Four points A, B, C, D are chosen on a circle in such a way that arcs AB, BC, and
CD are of the same length and the arc DA is longer than these three. Line AD and the
line tangent to the circle at B intersect at E. Let F be the other endpoint of the diameter
starting at C of the circle. Prove that triangle DEF is equilateral. (Seniors.)

Solution 1. Let O be the centre of the circle and let G be the point where BE intersects
the tangent drawn from D to the circle. Since the total length of arcs DA and AB is
larger than the total length of arcs BC and CD, the points G and E lie on different sides
from B (see Figure 9). Points B and D are symmetric with respect to the line CF, hence

G lies on the line CF and /BGF = ZDGF. Now /BED = %(ABOD — LAOB) =

1
EZCOD = ZCFD, therefore /GED = ZGFD. Consequently G, E, F, D are concyclic.

Since ZEGF = ZDGF, chords EF and DF of the circumcircle of quadrangle GEFD are
equal.

Solution 2. Since the lengths of the arcs BA and BC are equal, the lines EB and AC
are parallel. Therefore ZBED = ZCAD = ZBDA. Thus triangle BED is equilateral.
Further, ZCBF = 90°. By symmetry, the lines BC and AD are parallel, hence BF is
perpendicular to AD. Segment BF is the altitude of the equilateral triangle BED, it
bisects its base ED. This segment is also the altitude of the triangle DEF and it bisects
its base. This is possible only when the triangle DEF is equilateral.

Note. The assertion of the problem holds also in the case when the arc DA is shorter
than the other three, the point G then lies on the other side.

18. In the sequence (a,) with general term a, = 1> — (21 +1)2, does there exist a term
that is divisible by 2006? (Seniors.)

Answer: yes.

Solution. First, a, = 4% —9* = —17 and a; = 7° — 15> = 118. Since n® — (2n + 1)?
is a polynomial, a4, 17 is divisible by 17 and a7, 11g; is divisible by 118 for all natural
numbers k and [. Since 119 is divisible by 17, adding 118 decreases the remainder by 1
on division by 17. Therefore, when 361 = 7 4 118 - 3 is divided by 17, the remainder

is 7 —1-3 = 4. This means that the term a34; is divisible by both 17 and 118, i.e. it is
divisible by 2006.

Note 1. Since 17 and 118 are relatively prime, the existence of the suitable # follows from
the Chinese Remainder Theorem: the remainders of n upon division by 17 and 118 must
be 4 and 7, respectively.

Note 2. The least number satisfying the given conditions corresponds to n = 87, in this
case agy; = 627878 = 313 - 2006.

19. Letn > 2be a fixed integer and let ; ; (1 < i < j < n) be some positive integers.
For a sequence x1, ..., x, of reals, let K(x1,...,x,) be the product of all expressions
(x; — xj)" where 1 < i < j < n. Prove that if the inequality K(xy,...,x,) > 0 holds
independently of the choice of the sequence xy, ..., x, then all integers a;; are even.
(Seniors.)

Solution 1. Suppose the contrary: some of the numbers 4; ; are odd. Let I be the smallest
index for which there are odd numbers among the numbers a;; (1 < i < I); also let k
be the largest index for which g is odd. Then ai is the only odd number among the
numbers a;, i where k <7 < j < 1. Now choose x7, ..., x, as follows:

X1 >X2> 000 > X1 > X] 2> Xjg ] > o0e > X[ > Xjg > X[ > o> Xy

i.e., choose some n numbers in decreasing order and swap the positions of the k-th and
the I-th number. Then in the given expression, the factors (x; — x;)"/, where i < k or
j > 1, are positive, since the bases of the power are positive. All the remaining factors
(x; — x;)"7 where k < i < j < I have even exponents with the exception of (x; — x;)"!,
which has negative base and odd exponent. So the whole product is negative.

Solution 2. Assume that g, is odd for some indices k and I. Fix x1, ..., Xx_1, Xk41, -+, Xn
in such a way that they are pairwise different and consider the product K(x1, ..., x,) as
a polynomial of one variable K(x). The root x; of this polynomial has odd multiplicity.
Therefore the graph of K(xy) intersects the x-axis at x; and we can choose x; such that
K(xy) is negative, a contradiction.

Selected Problems from the Final Round of National
Olympiad

1. Find all pairs of positive integers (a,b) such that
ab = ged(a,b) +1lem(a, b).
(Grade 9.)

Answer: (2,2).

Solution. As the left-hand side and summand lem(a, b) on the right-hand side are both
divisible by 4, also ged(a, b) has to be divisible by a. On the other hand, ged(a,b) < a as
a is positive. Thus ged(a,b) = a. Analogously we obtain that ged(a, b) = b. Therefore
a = b and the equation has the form a° = a+a or a(a —2) = 0. The only positive
solution of the equation is 2 = 2 and thus also b = 2.
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Solution 2. It is known that ab = ged(a, b) lem(a, b) for positive integers a and b. Thus
we obtain the equality ged(a, b) lem(a,b) = ged(a, b) + lem(a, b) which is equivalent to
(ged(a,b) — 1) (Iem(a, b) — 1) = 1. The last equality expresses 1 as a product of two non-
negative integers; this is only possible if both of them are equal to 1. Thus ged(a, b) —
1=1andlem(a,b) —1=1orged(a,b) =2andlem(a,b) = 2. Hencea = b = 2.
Solution 3. Let gcd(a,b) = d. We represent integers a and b as a = da’ and b = db’
where a’ and ' are relatively prime. Then lem(a,b) = da’b’. The equation gets the
form d?a'b’ = d + dd'V’, or 'V = P As a'l’ is an integer, we must haved — 1 = 1
and a'b’ = 1. Henced = 2 and a’ = b’ = 1. Therefore the solution of the equation is
a=dad =2andb=db =2.

2. Let there be n > 2 real numbers such that none of them is greater than the arith-
metic mean of the other numbers. Prove that all the numbers are equal. (Grade 9.)

Solution. Let a be the greatest among the numbers. Suppose, by contradiction, that not
all the numbers are equal. Then there must be some numbers less than a. Considering
numbers other than a, we therefore know that their arithmetic mean is less than 4. But
this contradicts the conditions of the problem. Hence all the numbers are equal.

3. Triangle ABC is isosceles with AC = BC and ZC = 120°. Points D and E are
chosen on segment AB so that |AD| = |DE| = |EB|. Find the sizes of the angles of
triangle CDE. (Grade 9.)

Answer: all the angles are 60°.

Solution 1. The base angle of the isosceles triangle ABC is (180° — 120°) : 2 = 30°. Let
H be the foot of the altitude drawn from vertex C (see Figure 10). Reflect the triangle
ABC with respect to side AB, the point C going to C'. As ZCAC' = 60° and |AC| =
|AC'|, triangle ACC' is equilateral and AH is its median. Moreover, point D divides the
median with ratio 2 : 1. Thus the medians of ACC’ meet at D, and CD is both a median
and an angle bisector to ACC’. We obtain /DCH = 30° and ZDCE = 60°. As CDE is
isosceles, ZCDE = ZCED = 60°.

Solution 2. Denote |[CA| = |CB| = a4, |CD| = |CE| = band |AD| = |DE| = |EB| = ¢ for
brevity. Let & be the altitude drawn from vertex C to side AB. In triangle CHA, we have

11

3¢ o 1 7\/§c > 42 a2 32,
h.fftan30 7ﬁ,thereforeh7?. Hence b* = h +(§) =7 ch,
giving b = c¢. We now have that CDE is an equilateral triangle and its angles are 60°.

. CH . 1 DH 1 g
Solution 3. As ‘|CA\| = sin30° = 3 and ﬁ =5 segment CD satisfies the Angle

Bisector Property. Hence CD bisects angle ACH whose size is 60° and ZDCH = 30°.
Then the vertex angle of the isosceles triangle CDE is 60° and the base angles are also
60°.

Solution 4. Let the medians of triangle CDE meet at M. By the Ray Property, |[DM| =
%|AC\ = %|BC| = |EM|. We obtain |CH| = %|AC| as in the previous solution and thus

|CM| = %\AC\. So |CM| = |DM| = |EM], i.e., the intersection point M of medians of
CDE is also the circumcentre of CDE. It follows that CDE is an equilateral triangle and
all its angles are of size 60°.

Solution 5. Assume that ZDCE > 60°. Then ZCED < 60°. Hence |DE| > |CD| giving
also |AD| > |CD|. Then in triangle ACD, we have ZACD > 30°, and in triangle
BCE by symmetry, ZBCE > 30°. Adding the inequalities, we get ZACB > 120° —
a contradiction. Analogously we obtain a contradiction by starting with assumption
/DCE < 60°. Hence Z/DCE = 60° and thus ZCDE = ZCED = 60°.

4. Consider a rectangular grid of 10 x 10 unit squares. We call a ship a figure made
up of unit squares connected by common edges. We call a fleet a set of ships where no
two ships contain squares that share a common vertex (i.e. all ships are vertex-disjoint).
Find the least number of squares in a fleet to which no new ship can be added. (Grade
9.)

Answer: 16.

Solution. Call a fleet full if no new ships can be added. We have to find the least number
of squares in a full fleet.

First we show that a full fleet covering 16 unit squares exists. Put on the grid 16 one-
square ships as shown in Figure 11. Note that then each square of the grid has a common
vertex with one of those ships and thus no ship can be added.

Second we prove that there can not be fewer than 16 unit squares in a full fleet. Suppose
a full fleet is fixed. Consider the set of 16 unit squares painted gray in Figure 11. For
each of these 16 squares, there is a square of the full fleet that shares (at least) a common

Figure 11

12



Figure 12 Figure 13

vertex with it. All these squares of the fleet must be different. Hence there are at least
16 squares in the fleet.

5. Consider a rectangular grid of 10 x 10 unit squares. We call a ship a figure made
up of unit squares connected by common edges. We call a fleet a set of ships where no
two ships contain squares that share a common vertex (i.e. all ships are vertex-disjoint).
Find the greatest natural number that, for each its representation as a sum of positive
integers, there exists a fleet such that the summands are exactly the numbers of squares
contained in individual ships. (Grade 10.)

Answer: 25.

Solution. First we prove that, for all n > 25, we can divide n into summands so that a
fleet with respective ship sizes can not be put on the grid. In particular, we prove that
one can not put more than 25 ships of size 1 on the grid. Let us divide the grid into
squares of 2 x 2 (as in Figure 12), there are 25 of them. As each 2 x 2 square can contain
at most one ship of size 1, then the total number of such ships is at most 25.

Second we show that, for any representation of 25 as a sum of positive integers, there is a
fleet with respective ship sizes. Let us initially put 25 ships of size 1 on the grid as shown
in Figure 13. Then, starting from the upper left corner, shift along the line together
as many ships as the first summand of the representation tells; then shift together as
many ships as the second summand tells etc. The fleet obtained this way satisfies the
conditions of the problem.

6. Find the greatest possible value of sin(cos x) + cos(sin x) and determine all real
numbers x, for which this value is achieved. (Grade 11.)

Answer: the greatest possible value is sin1 + 1, which is achieved iff x = 2k7r, where k
is an arbitrary integer.

Solution. Since the value of cos x is in the interval [—1;1] and since sin x is increasing
in this interval, the greatest possible value of the first addend is sin 1, and the value is
achieved iff cos x = 1, or x = 2k, where k is an arbitrary integer. The greatest possible
value of the second addend is 1, which is achieved iff sinx = 0, or x = I7t, where [ is
an arbitrary integer. Both terms achieve the maximal value simultaneously iff x = 2k,
where k is an arbitrary integer; the value of the expression is then sin1 + 1.

7. In a right triangle, the length of one side is a prime and the lengths of the other
side and the hypotenuse are integral. The ratio of the triangle perimeter and the incircle
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diameter is also an integer. Find all possible side lengths of the triangle. (Grade 11.)

Answer: 3,4 and 5.

Solution. Let p and m be the lengths of the sides of the triangle and let n be the length of
the hypotenuse, where p is a prime (Figure 14). Then p* + m? = n?, implying p? = (n —
m)(n + m). Since p is prime, the terms of the right-hand side must satisfy n —m = 1,
n+m=p.

The perimeter of the triangle is p + m + n. In order to find the incircle diameter d, we
note that the total length of the segments tangent to the incircle, originating from the
vertex of the right angle, equals the length of the incircle diameter, whereas the total
length of the four tangents originating from the other two vertices is 2n. Thus, d + 2n =
p +m + n. According to the assumption, p + m + n is divisible by d = p+m — n.
Substituting m + n and m — n from above, we get that p + p> = p(p + 1) is divisible by
p — 1. Since p and p — 1 are coprime, it must be that p 4- 1 is divisible by p — 1. Hence,
p—1=1orp—1=2 Wesee that p = 2 is impossible, since n — m and n + m cannot
be of different parity. Thus, p = 3, m = 4 and n = 5. A triangle with side lengths 3, 4, 5
is clearly a right triangle.

Figure 14

8. The sequence (F,) of Fibonacci numbers satisfies F; = 1, , = land F, = F,_1 +
F,_» for all n > 3. Find all pairs of positive integers (m, n), such that F, - F, = mn.
(Grade 11.)

Answer: (1,1), (1,5), (4,6), (5,1), (5,5) and (6,4).

Solution. By induction on n, it is easy to prove that F, > n foralln > 6 and F,, > 2n for
alln > 8. Thus,if m > 6 and n > 6, then F,, - F, > m - n. W.lLo.g., we may now assume
m < 5 (the remaining solutions can be obtained by exchanging m and n).

o Ifm=1,thenl-F, =1-n, or F, = n. From above, the only solutions are n = 1
and n = 5 and the suitable pairs are (1,1), (1,5), (5,1) and (5,5).

o If m =2, wegetl-F, =2-n,or F, = 2n. Since there are no solutions for n < 8,
there are no solutions at all.

3 3
o Ifm=3 weget2-F,=3-n,0orF, = En. Since En < 2n, there are no solutions, as
in the previous case.

e Ifm=4,then3-F, =4-n,orF, = %n. Here, the only solution is n = 6, giving
pairs (4,6) and (6,4).
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e If m =5,then5-F, =5-n, or F, = n; this case is analysed above.

9. In a triangle ABC with circumcentre O and centroid M, lines OM and AM are
perpendicular. Let AM intersect the circumcircle of ABC again at A". Let lines BA” and
AC intersect at D and let lines CA” and AB intersect at E. Prove that the circumcentre
of triangle ADE lies on the circumcircle of ABC. (Grade 11.)

Figure 15

Solution. Let F, G and H be the base points of the medians drawn from vertices A, B
and C, respectively (see Figure 15). Then, triangle A’OA is isosceles with height OM
and |A’M| = |[MA|. Since the centroid divides a median in ratio 2 : 1, we get |[FM| =
%|MA|, and |A'F| = |FM|. On the other hand, |BF| = |FC|. Hence, A’'BMC is a
parallelogram. Parallel sides then imply that triangles ABD and AHC are similar with
similarity ratio 2 — the ratio of the lengths of AB and AH. Analogously, triangles ACE
and AGB are similar with the same ratio. Homothecy with centre A and ratio 2 brings
triangle ABC to triangle AED, while the circumcentre O of triangle ABC is transformed
to the second intersection point of AO and the said circumcircle.

Note. The use of homothecy can be avoided by finding the second intersection point
P of line AO and the circle and by proving that |[AP| = 2|AO|, |DP| = 2|CO| and
|EP| = 2|BO].

10. A pawn is placed on a square of a n x n board. There are two types of legal
moves: (a) the pawn can be moved to a neighbouring square, which shares a common
side with the current square; or (b) the pawn can be moved to a neighbouring square,
which shares a common vertex, but not a common side with the current square. Any
two consecutive moves must be of different type. Find all integers n > 2, for which it is
possible to choose an initial square and a sequence of moves such that the pawn visits
each square exactly once (it is not required that the pawn returns to the initial square).
(Grade 11.)

Answer: n = 2k, where k is an arbitrary positive integer.
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Solution. First, we prove that a suitable sequence of moves exists for even n. Divide the
board into blocks of 2 x 2 squares (see Figure 16) and place the pawn on the upper left
corner square. To move through the first block, take the following moves: down-right,
up, down-left, down. Repeat the same combination of moves until the pawn reaches the
bottom-most block in a column of blocks. In the bottom-most block, move down-right,
left, up-right, and right; the first column of blocks is passed. In the bottom-most block
of the second column, move down-right, left, up-right, up, and continue by moving
upwards block by block. By passing the columns alternatingly up and down, the pawn
visits each square exactly once.

Flliaraa

ESEICIES

Figure 16 Figure 17

Next, we prove that a sequence does not exist for odd n. Colour the second, fourth,

1’12—1’1

sixth, etc. row dark (see Figure 17), then there are dark squares. Note that every

diagonal move starts from a dark square or ends on a dark square. Since a suitable
sequence does not visit a square twice and does not contain two consecutive diagonal

moves, each diagonal move corresponds to a different dark square. Thus, we can make
2 2
nc—n nc-—n

at most diagonal moves and, consequently, at most

+ 1 non-diagonal

moves, or 72 — 1 + 1 moves altogether. For n > 3, this number is smaller than n?—1,

the number of moves required to visit all squares.

11. We call a ship a figure made up of unit squares connected by common edges.
Prove that if there is an odd number of possible different ships consisting of n unit
squares on a 10 x 10 board, then # is divisible by 4. (Grade 12.)

Solution. Let n be such that the number of possible different ships of n squares is odd.
Divide all ships in classes, such that all ships in the same class are precisely those that
can be obtained from one another by shifts, vertical and horizontal reflections. Then
there must exist a class with an odd number of ships.

Let L be a ship in such a class. Assume that L is not symmetrical w.r.t. either the vertical
or horizontal axis of symmetry of its tight bounding box. Then no ship in this class is
symmetrical w.r.t. this axis. Thus, we can divide all ships in this class into pairs: a ship
and its reflection from this axis; a contradiction with the odd cardinality of this class.
Therefore, L must be symmetrical w.r.t. both the vertical and the horizontal axis.

The side lengths of the rectangle bounding L must be even, for there is an even number
of ways to place a rectangle with an odd side on a board with an even side length
10; again a contradiction in parity. Thus, the vertical and horizontal axes of symmetry
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divide the squares of L into four disjoint reflection symmetrical sets. Since there is an
equal number of squares in each set, the total number of squares of the ship is divisible
by 4.

12. Find the smallest possible distance of points P and Q on a xy-plane, if P lies on
the line y = x and Q lies on the curve y = 2*. (Grade 12.)

1+Inln2
V21In2 '
Solution. We find the minimum point of h(x) = 2* — x. Since /' (x) =2"In2 — 1, we get
2*In2—-1=0,and
1 Inln2

X _ —
2 =2 and X na

Answer:

Since }'(x) is increasing, this is indeed a minimum. The value of / at this point is

h(x) = 1 Inln2  1+Inln2
" In2 In2 In2

Here 1 +Inln2 = In(eIn2). Since 2 < e < 4, we get In(eIn2) > In(2In2) = Inln4 >

> Inlne = 0. Thus, the value of / at the minimum is positive, so the graph of g(x) = 2*

is always higher than the graph of f(x) = x. Consider points A(x, f(x)) and B(x, g(x))

and let C be the projection of B to the graph of f. Then, triangle ABC is a right isosceles
AB

triangle, since ZBAC = 45°. Consequently, |BC| = 14B] = h(x) and the distance |BC|

V2 V2

is minimal iff /i(x) is minimal. The sought distance is thus

h(x) 14Inln2

V2 V21In2 '
log, e — log, log, e

V2

Note. The answer can be expressed in many different ways, e.g., by

13. Prove or disprove the following statements.

a) For every integer n > 3, there exist n pairwise distinct positive integers such that
the product of any two of them is divisible by the sum of the remaining 7 — 2 num-
bers.

b) For some integer n > 3, there exist n pairwise distinct positive integers, such that
the sum of any 1 — 2 of them is divisible by the product of the remaining two num-
bers.

(Grade 12.)

Answer: a) true; b) false.

Solution 1. a) Take n numbers (n2)!, 2(n?)!, 3(n?)!, ..., n(n?)!. The product of any two
of these numbers is divisible by (1n2)!(n?)!, whereas the sum of the remaining numbers
is k(1n%)!, where k is some positive integer smaller than 142 4 ... 4+ 1, which in turn is
smaller than n?.
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b) Assume that for some #, there exist n suitable integers a; < a, < ... < a,,. Then, on
the one hand,

mtay+...tago<apotayo+...+a,0=m—-2)a,_»
but, on the other hand,
ay_1ay = (n—1)a, > (n —2)a,_,.

Thus, a1 +ay+...+a, » < a,_1a,, and the sum of a1, ay, ..., a,_» can not be divisible
by the product of a,_1 and a,.

Solution 2. a) Choose arbitrary pairwise distinct numbers by, by, ..., b, and let m be
the least common multiple of all sums of (n — 2) terms. For eachi = 1,2, ..., n, take
a; = mb;. Then the product of any two numbers a; a; is aya; = (mby) - (mb;), which is
divisible by the sum of the remaining numbers, since 2 is divisible by this sum.

14. Let O be the circumcentre of an acute triangle ABC and let A/, B’ and C’ be the
circumcentres of triangles BCO, CAO and ABO, respectively. Prove that the area of
triangle ABC does not exceed the area of triangle A’B'C’. (Grade 12.)

Solution 1. First, we prove that for a fixed circumcircle, a triangle with maximal area
is equilateral. Assume that a triangle KLM with maximal area has two sides of un-
equal lengths, say, KM and LM. Take a point M’ on the circumcircle of KLM such that
|[KM'| = |LM'| (Figure 18). Triangles KLM and KLM’' have a common base but the
altitude of the first triangle is smaller, a contradiction.

, M
i M
Q
M/
X
P
K L K Faly
Figure 18 Figure 19

Next, we prove that for a fixed incircle, a triangle with minimal area is equilateral.
Assume w.l.o.g. that in a triangle KLM with minimal area, /KLM > ZKML. Con-
sider a triangle KL'M’, where points L' and M’ lie on lines KL and KM such that
ZKL'M' = ZKM'L' and L'M’ is tangent to the incircle (Figure 19). Let X be the in-
tersection point of lines LM and L'M’. Draw perpendicular segments LP and MQ from
points L and M to line L’M’. Then |XM’| > |XL'| and |[MQ| > |LP|, since |XQ| > |XP|
and right triangles MQX and LPX are similar. Thus, the area of triangle MM'X is
greater than the area of triangle LL’' X and consequently, the area of KLM is greater than
the area of KL'M’, a contradiction.

Now, let R be the circumradius of ABC. Since the sides of triangle A'B'C’ are perpen-
dicular to OA, OB and OC (see Figure 20) and bisect these segments, point O is the
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Figure 20

R
incentre of A’B'C’ and the inradius is 7 An equilateral triangle with circumradius R

R
and an equilateral triangle with inradius 0 have equal area S by the property of the
centroid. From above, we now get Sapc < S < Sarpcr-
Solution 2. Let R be the circumradius of ABC and let &, B and 7 be the angles at the
vertices of the triangle. Then ZBOC = 2a, ZCOA = 2B, and ZAOB = 2v. Thus,

R2
Sapc = Sgoc + Scoa + Saos = 7(sin21x +sin2B + sin 27y).

Since triangle BOC is isosceles, the midperpendicular OA’ of side BC is also an an-
gle bisector, and ZBOA' = ZCOA' = a. Similarly, ZCOB' = ZAOB' = B and

R
/AOC" = /BOC' = +. Consider triangle B'OC’. The height drawn to side B'C’ is X

R R?

so |B'C'| = E(tan B + tany) and the area of this triangle is Spiocr = ?(tanﬁ +tany).

2 2
Analogously, Scioar = %(tan ¥+ tanwa) and Sqop = %(tanrx + tan ). Thus,

RZ
SA’B’C’ = SB’OC’ + SC’OA’ + sArocr = I(tana + tanﬁ + tan ’)/)

. . T .
Function f(x) = tanx — 2sin2x is concave in the interval [O; E] , since the second
derivative
2sinx
1" .
X) = + 8sin2x
f() cos® x

is non-negative in this interval. Jensen’s inequality now gives

@)+ £8)+ 5n) 237 (“EET) =3 (tan T 25T <o,

so tan« +tan § + tan y > 2 sin2a + 2sin 2 4 2 sin 2. The final equality yields S 4rg/cr >
Sasc-
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15. The Ababi alphabet consists of letters A and B, and the words in the Ababi lan-
guage are precisely those that can be formed by the following two rules:

1) Aisaword.

2) If sisaword, thens @ s and s @ § are words, where § denotes a word that is obtained
by replacing all letters A in s with letters B, and vice versa; and x ® y denotes the
concatenation of x and y.

The Ululu alphabet consists also of letters A and B and the words in the Ululu language
are precisely those that can be formed by the following two rules:

1) Aisaword.

2) If sis a word, then s ® s and s ® 5 are words, where 5 is defined as above and x ® y
is a word obtained from words x and y of equal length by writing the letters of x
and y alternatingly, starting from the first letter of x.

Prove that the two languages consist of the same words. (Grade 12.)

Solution. Since each step doubles the length of a word, both languages contain only
words of length 2", where each such word has been obtained in exactly n steps.

First, we show that each language contains 2" words that can be obtained in exactly n
steps. Indeed, in 0 steps, we obtain only the word A in both languages. Every k-step
word gives two different (k + 1)-step words and any two different k-step words give
different (k + 1)-step words, since the initial word is always a part of the new word.
Thus, the number of k + 1-step words is twice the number of k-step words. Now, it
suffices to prove that every Ababi word is an Ululu word.

Any 0-step Ababi word is clearly an Ululu word. Assume that the claim holds for all
k-step Ababi words and consider a k + 1-step word ¢. Then, for some word s in the
Ababi language, t = s @ s or t = s @ 3. By the induction hypothesis, there must exist a
sequence of k operations by the Ululu rules that allows to construct the word s from the
word A.

e If the word t is obtained in the Ababi language by the rule t = s @© s, apply the
aforementioned sequence of Ululu rules to the word AA. It is easy to see that after
each step, the new word is of the form a @ a, where a is the corresponding inter-
mediate word in the construction process of s, since each Ululu operation has the
same effect on the two equal halves of a word.

e If the word t is obtained by the rule t = s @ 5, apply the aforementioned sequence of
Ululu rules to the Ululu word AB. In this case, after each step, the obtained word is
a @ a, where a is the corresponding intermediate word in the construction process
of s, since if the two halves of a word are “negations” of each other, any Ululu
operation preserves this property.

Consequently, ¢ is a word in the Ululu language.
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