
JUNE 27, 2018/#PROGRAMMING 

How to explain object-oriented 
programming concepts to a 6-year-old 

 

by Alexander Petkov 

 

 

 

https://www.freecodecamp.org/news/tag/programming/


Have you noticed how the same cliche questions always get 
asked at job interviews — over and over again? 

I’m sure you know what I mean. 

For example: 

Where do you see yourself in five years? 

or, even worse: 

What do you consider to be your greatest weakness? 

Ugh…give me a break. I consider answering this question a 
great weakness! Anyway, not my point. 

As trivial as questions like these may be, they are important 
because they give clues about you. Your current state of mind, 
your attitude, your perspective. 

When answering, you should be careful, as you may reveal 
something you later regret. 

Today I want to talk about a similar type of question in the 
programming world: 

What are the main principles of Object-Oriented Programming? 

I’ve been on both sides of this question. It’s one of those topics 
that gets asked so often that you can’t allow yourself to not 
know. 

Junior and entry-level developers usually have to answer it. 
Because it’s an easy way for the interviewer to tell three things: 



1. Did the candidate prepare for this interview? 
Bonus points if you hear an answer immediately — it shows a 
serious approach. 

2. Is the candidate past the tutorial phase? 
Understanding the principles of Object-Oriented Programming 
(OOP) shows you’ve gone beyond copy and pasting from 
tutorials — you already see things from a higher perspective. 

3. Is the candidate’s understanding deep or shallow? 
The level of competence on this question often equals the level 
of competence on most other subjects. Trust me. 
The four principles of object-oriented programming 
are encapsulation, abstraction, inheritance, and polymorph
ism. 
These words may sound scary for a junior developer. And the 
complex, excessively long explanations in Wikipedia sometimes 
double the confusion. 

That’s why I want to give a simple, short, and clear explanation 
for each of these concepts. It may sound like something you 
explain to a child, but I would actually love to hear these 
answers when I conduct an interview. 

Encapsulation 

Say we have a program. It has a few logically different objects 
which communicate with each other — according to the rules 
defined in the program. 

Encapsulation is achieved when each object keeps its 
state private, inside a class. Other objects don’t have direct 
access to this state. Instead, they can only call a list of public 
functions — called methods. 
So, the object manages its own state via methods — and no 
other class can touch it unless explicitly allowed. If you want to 



communicate with the object, you should use the methods 
provided. But (by default), you can’t change the state. 

Let’s say we’re building a tiny Sims game. There are people and 
there is a cat. They communicate with each other. We want to 
apply encapsulation, so we encapsulate all “cat” logic into 
a Cat class. It may look like this: 

You can feed the cat. But you can’t directly change how hungry 
the cat is. 
Here the “state” of the cat is the private 
variables mood, hungry and energy. It also has a private 
method meow(). It can call it whenever it wants, the other 
classes can’t tell the cat when to meow. 



What they can do is defined in the public 
methods sleep(), play() and feed(). Each of them modifies the 
internal state somehow and may invoke meow(). Thus, the 
binding between the private state and public methods is made. 
This is encapsulation. 

Abstraction 

Abstraction can be thought of as a natural extension of 
encapsulation. 

In object-oriented design, programs are often extremely large. 
And separate objects communicate with each other a lot. So 
maintaining a large codebase like this for years — with changes 
along the way — is difficult. 

Abstraction is a concept aiming to ease this problem. 

Applying abstraction means that each object 
should only expose a high-level mechanism for using it. 
This mechanism should hide internal implementation details. It 
should only reveal operations relevant for the other objects. 

Think — a coffee machine. It does a lot of stuff and makes 
quirky noises under the hood. But all you have to do is put in 
coffee and press a button. 

Preferably, this mechanism should be easy to use and should 
rarely change over time. Think of it as a small set of public 
methods which any other class can call without “knowing” how 
they work. 

Another real-life example of abstraction? 
Think about how you use your phone: 



Cell phones are complex. But using them is simple. 
You interact with your phone by using only a few buttons. 
What’s going on under the hood? You don’t have to know — 
implementation details are hidden. You only need to know a 
short set of actions. 

Implementation changes — for example, a software update — 
rarely affect the abstraction you use. 

Inheritance 

OK, we saw how encapsulation and abstraction can help us 
develop and maintain a big codebase. 

But do you know what is another common problem in OOP 
design? 



Objects are often very similar. They share common logic. But 
they’re not entirely the same. Ugh… 
So how do we reuse the common logic and extract the unique 
logic into a separate class? One way to achieve this is 
inheritance. 

It means that you create a (child) class by deriving from 
another (parent) class. This way, we form a hierarchy. 

The child class reuses all fields and methods of the parent class 
(common part) and can implement its own (unique part). 

For example: 



A private teacher is a type of teacher. And any teacher is a type 
of Person. 
If our program needs to manage public and private teachers, 
but also other types of people like students, we can implement 
this class hierarchy. 

This way, each class adds only what is necessary for it while 
reusing common logic with the parent classes. 

Polymorphism 

We’re down to the most complex word! Polymorphism means 
“many shapes” in Greek. 



So we already know the power of inheritance and happily use 
it. But there comes this problem. 

Say we have a parent class and a few child classes which inherit 
from it. Sometimes we want to use a collection — for example a 
list — which contains a mix of all these classes. Or we have a 
method implemented for the parent class — but we’d like to 
use it for the children, too. 

This can be solved by using polymorphism. 

Simply put, polymorphism gives a way to use a class exactly 
like its parent so there’s no confusion with mixing types. But 
each child class keeps its own methods as they are. 
This typically happens by defining a (parent) interface to be 
reused. It outlines a bunch of common methods. Then, each 
child class implements its own version of these methods. 

Any time a collection (such as a list) or a method expects an 
instance of the parent (where common methods are outlined), 
the language takes care of evaluating the right implementation 
of the common method — regardless of which child is passed. 

Take a look at a sketch of geometric figures implementation. 
They reuse a common interface for calculating surface area and 
perimeter: 



Triangle, Circle, and Rectangle now can be used in the same 
collection 
Having these three figures inheriting the parent Figure 
Interface lets you create a list of mixed triangles, circles, 
and rectangles. And treat them like the same type of object. 
Then, if this list attempts to calculate the surface for an 
element, the correct method is found and executed. If the 
element is a triangle, triangle’s CalculateSurface() is called. If 
it’s a circle — then circle’s CalculateSurface() is called. And so 
on. 



If you have a function which operates with a figure by using its 
parameter, you don’t have to define it three times — once for a 
triangle, a circle, and a rectangle. 

You can define it once and accept a Figure as an argument. 
Whether you pass a triangle, circle or a rectangle — as long as 
they implement CalculateParamter(), their type doesn’t 
matter. 
I hope this helped. You can directly use these exact same 
explanations at job interviews. 

If you find something still difficult to understand — don’t 
hesitate to ask in the comments below. 

What’s next? 

Being prepared to answer one of the all-time interview 
question classics is great — but sometimes you never get called 
for an interview. 

Next, I’ll focus on what employers want to see in a junior 
developer and how to stand out from the crowd when job 
hunting. 

Stay tuned. 

 

freeCodeCamp is a donor-supported tax-exempt 501(c)(3) nonprofit organization 

(United States Federal Tax Identification Number: 82-0779546) 

Our mission: to help people learn to code for free. We accomplish this by creating 

thousands of videos, articles, and interactive coding lessons - all freely available to the 

public. We also have thousands of freeCodeCamp study groups around the world. 



 


