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Introduction

In 1965 I first taught an undergraduate course in abstract algebra. It was fun to
teach because the material was interesting and the class was outstanding. Five of
those students later earned a Ph.D. in mathematics. Since then I have taught the
course about a dozen times from various texts. Over the years I developed a set of
lecture notes and in 1985 I had them typed so they could be used as a text. They
now appear (in modified form) as the first five chapters of this book. Here were some
of my motives at the time.

1) To have something as short and inexpensive as possible. In my experience,
students like short books.

2) To avoid all innovation. To organize the material in the most simple-minded
straightforward manner.

3) To order the material linearly. To the extent possible, each section should use
the previous sections and be used in the following sections.

4) To omit as many topics as possible. This is a foundational course, not a topics
course. If a topic is not used later, it should not be included. There are three
good reasons for this. First, linear algebra has top priority. It is better to go
forward and do more linear algebra than to stop and do more group and ring
theory. Second, it is more important that students learn to organize and write
proofs themselves than to cover more subject matter. Algebra is a perfect place
to get started because there are many “easy” theorems to prove. There are
many routine theorems stated here without proofs, and they may be considered
as exercises for the students. Third, the material should be so fundamental
that it be appropriate for students in the physical sciences and in computer
science. Zillions of students take calculus and cookbook linear algebra, but few
take abstract algebra courses. Something is wrong here, and one thing wrong
is that the courses try to do too much group and ring theory and not enough
matrix theory and linear algebra.

5) To offer an alternative for computer science majors to the standard discrete
mathematics courses. Most of the material in the first four chapters of this text
is covered in various discrete mathematics courses. Computer science majors
might benefit by seeing this material organized from a purely mathematical
viewpoint.
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Over the years I used the five chapters that were typed as a base for my algebra
courses, supplementing them as I saw fit. In 1996 I wrote a sixth chapter, giving
enough material for a full first year graduate course. This chapter was written in the
same “style” as the previous chapters, i.e., everything was right down to the nub. It
hung together pretty well except for the last two sections on determinants and dual
spaces. These were independent topics stuck on at the end. In the academic year
1997-98 I revised all six chapters and had them typed in LaTeX. This is the personal
background of how this book came about.

It is difficult to do anything in life without help from friends, and many of my
friends have contributed to this text. My sincere gratitude goes especially to Marilyn
Gonzalez, Lourdes Robles, Marta Alpar, John Zweibel, Dmitry Gokhman, Brian
Coomes, Huseyin Kocak, and Shulim Kaliman. To these and all who contributed,
this book is fondly dedicated.

This book is a survey of abstract algebra with emphasis on linear algebra. It is
intended for students in mathematics, computer science, and the physical sciences.
The first three or four chapters can stand alone as a one semester course in abstract
algebra. However they are structured to provide the background for the chapter on
linear algebra. Chapter 2 is the most difficult part of the book because groups are
written in additive and multiplicative notation, and the concept of coset is confusing
at first. After Chapter 2 the book gets easier as you go along. Indeed, after the
first four chapters, the linear algebra follows easily. Finishing the chapter on linear
algebra gives a basic one year undergraduate course in abstract algebra. Chapter 6
continues the material to complete a first year graduate course. Classes with little
background can do the first three chapters in the first semester, and chapters 4 and 5
in the second semester. More advanced classes can do four chapters the first semester
and chapters 5 and 6 the second semester. As bare as the first four chapters are, you
still have to truck right along to finish them in one semester.

The presentation is compact and tightly organized, but still somewhat informal.
The proofs of many of the elementary theorems are omitted. These proofs are to
be provided by the professor in class or assigned as homework exercises. There is a
non-trivial theorem stated without proof in Chapter 4, namely the determinant of the
product is the product of the determinants. For the proper flow of the course, this
theorem should be assumed there without proof. The proof is contained in Chapter 6.
The Jordan form should not be considered part of Chapter 5. It is stated there only
as a reference for undergraduate courses. Finally, Chapter 6 is not written primarily
for reference, but as an additional chapter for more advanced courses.
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This text is written with the conviction that it is more effective to teach abstract
and linear algebra as one coherent discipline rather than as two separate ones. Teach-
ing abstract algebra and linear algebra as distinct courses results in a loss of synergy
and a loss of momentum. Also I am convinced it is easier to build a course from a
base than to extract it from a big book. Because after you extract it, you still have to
build it. Basic algebra is a subject of incredible elegance and utility, but it requires
a lot of organization. This book is my attempt at that organization. Every effort
has been extended to make the subject move rapidly and to make the flow from one
topic to the next as seamless as possible. The goal is to stay focused and go forward,
because mathematics is learned in hindsight. I would have made the book shorter,
but I did not have any more time.

Unfortunately mathematics is a difficult and heavy subject. The style and
approach of this book is to make it a little lighter. This book works best when
viewed lightly and read as a story. I hope the students and professors who try it,
enjoy it.

E. H. Connell

Department of Mathematics
University of Miami
Coral Gables, FL 33124
ec@math.miami.edu
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Chapter 1

Background and Fundamentals of
Mathematics

This chapter is fundamental, not just for algebra, but for all fields related to mathe-
matics. The basic concepts are products of sets, partial orderings, equivalence rela-
tions, functions, and the integers. An equivalence relation on a set A is shown to be
simply a partition of A into disjoint subsets. There is an emphasis on the concept
of function, and the properties of surjective, injective, and bijective. The notion of a
solution of an equation is central in mathematics, and most properties of functions
can be stated in terms of solutions of equations. In elementary courses the section
on the Hausdorff Maximality Principle should be ignored. The final section gives a
proof of the unique factorization theorem for the integers.

Notation Mathematics has its own universally accepted shorthand. The symbol
∃ means “there exists” and ∃! means “there exists a unique”. The symbol ∀ means
“for each” and ⇒ means “implies”. Some sets (or collections) are so basic they have
their own proprietary symbols. Five of these are listed below.

N = Z+ = the set of positive integers = {1, 2, 3, ...}
Z = the ring of integers = {...,−2,−1, 0, 1, 2, ...}
Q = the field of rational numbers = {a/b : a, b ∈ Z, b 6= 0}
R = the field of real numbers
C = the field of complex numbers = {a + bi : a, b ∈ R} (i2 = −1)

Sets Suppose A,B,C,... are sets. We use the standard notation for intersection
and union.

A ∩ B = {x : x ∈ A and x ∈ B} = the set of all x which are elements

1
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of A and B.

A ∪ B = {x : x ∈ A or x ∈ B} = the set of all x which are elements of

A or B.

Any set called an index set is assumed to be non-void. Suppose T is an index set and
for each t ∈ T , At is a set.

⋃
t∈T

At = {x : ∃ t ∈ T with x ∈ At}

⋂
t∈T

At = {x : if t ∈ T, x ∈ At} = {x : ∀t ∈ T, x ∈ At}

Let ∅ be the null set. If A ∩ B = ∅, then A and B are said to be disjoint.

Definition Suppose each of A and B is a set. The statement that A is a subset
of B (A ⊂ B) means that if a is an element of A, then a is an element of B. That
is, a ∈ A ⇒ a ∈ B.

Exercise Suppose each of A and B is a set. The statement that A is not a subset
of B means .

Theorem (De Morgan’s laws) Suppose S is a set. If C ⊂ S (i.e., if C is a subset
of S), let C ′, the complement of C in S, be defined by C ′ = S−C = {x ∈ S : x 6∈ C}.
Then for any A,B ⊂ S,

(A ∩ B)′ = A′ ∪ B′ and

(A ∪ B)′ = A′ ∩ B′

Cartesian Products If X and Y are sets, X × Y = {(x, y) : x ∈ X and y ∈ Y }.
In other words, the Cartesian product of X and Y is defined to be the set of all
ordered pairs whose first term is in X and whose second term is in Y .

Example R × R = R2 = the plane.
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Definition If each of X1, ..., Xn is a set, X1 × · · · × Xn = {(x1, ..., xn) : xi ∈ Xi

for 1 ≤ i ≤ n} = the set of all ordered n-tuples whose i-th term is in Xi.

Example R × · · · × R = Rn = real n-space.

Question Is (R × R2) = (R2 × R) = R3 ?

Relations

If A is a non-void set, a non-void subset R ⊂ A × A is called a relation on A. If
(a, b) ∈ R we say that a is related to b, and we write this fact by the expression a ∼ b.
Here are several properties which a relation may possess.

1) If a ∈ A, then a ∼ a. (reflexive)
2) If a ∼ b, then b ∼ a. (symmetric)
2′) If a ∼ b and b ∼ a, then a = b. (anti-symmetric)
3) If a ∼ b and b ∼ c, then a ∼ c. (transitive)

Definition A relation which satisfies 1), 2′), and 3) is called a partial ordering.
In this case we write a ∼ b as a ≤ b. Then

1) If a ∈ A, then a ≤ a.
2′) If a ≤ b and b ≤ a, then a = b.
3) If a ≤ b and b ≤ c, then a ≤ c.

Definition A linear ordering is a partial ordering with the additional property
that, if a, b ∈ A, then a ≤ b or b ≤ a.

Example A = R with the ordinary ordering, is a linear ordering.

Example A = all subsets of R2, with a ≤ b defined by a ⊂ b, is a partial ordering.

Hausdorff Maximality Principle (HMP) Suppose S is a non-void subset of A
and ∼ is a relation on A. This defines a relation on S. If the relation satisfies any
of the properties 1), 2), 2′), or 3) on A, the relation also satisfies these properties
when restricted to S. In particular, a partial ordering on A defines a partial ordering
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on S. However the ordering may be linear on S but not linear on A. The HMP is
that any linearly ordered subset of a partially ordered set is contained in a maximal
linearly ordered subset.

Exercise Define a relation on A = R2 by (a, b) ∼ (c, d) provided a ≤ c and
b ≤ d. Show this is a partial ordering which is linear on S = {(a, a) : a < 0}. Find at
least two maximal linearly ordered subsets of R2 which contain S.

In this book, the only applications of the HMP are to obtain maximal monotonic
collections of subsets.

Definition A collection of sets is said to be monotonic if, given any two sets of
the collection, one is contained in the other.

Corollary to HMP Suppose X is a non-void set and A is some non-void
collection of subsets of X, and S is a subcollection of A which is monotonic. Then ∃
a maximal monotonic subcollection of A which contains S.

Proof Define a partial ordering on A by V ≤ W iff V ⊂ W, and apply HMP.

The HMP is used twice in this book. First, to show that infinitely generated
vector spaces have free bases, and second, in the Appendix, to show that rings have
maximal ideals (see pages 87 and 109). In each of these applications, the maximal
monotonic subcollection will have a maximal element. In elementary courses, these
results may be assumed, and thus the HMP may be ignored.

Equivalence Relations A relation satisfying properties 1), 2), and 3) is called
an equivalence relation.

Exercise Define a relation on A = Z by n ∼ m iff n − m is a multiple of 3.
Show this is an equivalence relation.

Definition If ∼ is an equivalence relation on A and a ∈ A, we define the equiva-
lence class containing a by cl(a) = {x ∈ A : a ∼ x}.
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Theorem

1) If b ∈ cl(a) then cl(b) = cl(a). Thus we may speak of a subset of A

being an equivalence class with no mention of any element contained

in it.

2) If each of U, V ⊂ A is an equivalence class and U ∩ V 6= ∅, then

U = V .

3) Each element of A is an element of one and only one equivalence class.

Definition A partition of A is a collection of disjoint non-void subsets whose union
is A. In other words, a collection of non-void subsets of A is a partition of A provided
any a ∈ A is an element of one and only one subset of the collection. Note that if A
has an equivalence relation, the equivalence classes form a partition of A.

Theorem Suppose A is a non-void set with a partition. Define a relation on A by
a ∼ b iff a and b belong to the same subset of the partition. Then ∼ is an equivalence
relation, and the equivalence classes are just the subsets of the partition.

Summary There are two ways of viewing an equivalence relation — one is as a
relation on A satisfying 1), 2), and 3), and the other is as a partition of A into
disjoint subsets.

Exercise Define an equivalence relation on Z by n ∼ m iff n−m is a multiple of 3.
What are the equivalence classes?

Exercise Is there a relation on R satisfying 1), 2), 2′) and 3) ? That is, is there
an equivalence relation on R which is also a partial ordering?

Exercise Let H ⊂ R2 be the line H = {(a, 2a) : a ∈ R}. Consider the collection
of all translates of H, i.e., all lines in the plane with slope 2. Find the equivalence
relation on R2 defined by this partition of R2.

Functions

Just as there are two ways of viewing an equivalence relation, there are two ways
of defining a function. One is the “intuitive” definition, and the other is the “graph”
or “ordered pairs” definition. In either case, domain and range are inherent parts of
the definition. We use the “intuitive” definition because everyone thinks that way.
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Definition If X and Y are (non-void) sets, a function or mapping or map with
domain X and range Y , is an ordered triple (X,Y, f) where f assigns to each x ∈ X
a well defined element f(x) ∈ Y . The statement that (X,Y, f) is a function is written

as f : X → Y or X
f→ Y .

Definition The graph of a function (X,Y, f) is the subset Γ ⊂ X × Y defined
by Γ = {(x, f(x)) : x ∈ X}. The connection between the “intuitive” and “graph”
viewpoints is given in the next theorem.

Theorem If f : X → Y , then the graph Γ ⊂ X × Y has the property that each
x ∈ X is the first term of one and only one ordered pair in Γ. Conversely, if Γ is a
subset of X × Y with the property that each x ∈ X is the first term of one and only
ordered pair in Γ, then ∃! f : X → Y whose graph is Γ. The function is defined by
“f(x) is the second term of the ordered pair in Γ whose first term is x.”

Example Identity functions Here X = Y and f : X → X is defined by
f(x) = x for all x ∈ X. The identity on X is denoted by IX or just I : X → X.

Example Constant functions Suppose y0 ∈ Y . Define f : X → Y by f(x) =
y0 for all x ∈ X.

Restriction Given f : X → Y and a non-void subset S of X, define f | S : S → Y
by (f | S)(s) = f(s) for all s ∈ S.

Inclusion If S is a non-void subset of X, define the inclusion i : S → X by
i(s) = s for all s ∈ S. Note that inclusion is a restriction of the identity.

Composition Given W
f→ X

g→ Y define g ◦ f : W → Y by
(g ◦ f)(x) = g(f(x)).

Theorem (The associative law of composition) If V
f→ W

g→ X
h→ Y , then

h ◦ (g ◦ f) = (h ◦ g) ◦ f. This may be written as h ◦ g ◦ f .
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Definitions Suppose f : X → Y .

1) If T ⊂ Y , the inverse image of T is a subset of X, f−1(T ) = {x ∈ X :

f(x) ∈ T}.

2) If S ⊂ X, the image of S is a subset of Y , f(S) = {f(s) : s ∈ S} =

{y ∈ Y : ∃s ∈ S with f(s) = y}.

3) The image of f is the image of X , i.e., image (f) = f(X) =

{f(x) : x ∈ X} = {y ∈ Y : ∃x ∈ X with f(x) = y}.

4) f : X → Y is surjective or onto provided image (f) = Y i.e., the image

is the range, i.e., if y ∈ Y , f−1(y) is a non-void subset of X.

5) f : X → Y is injective or 1-1 provided (x1 6= x2) ⇒ f(x1) 6= f(x2), i.e.,

if x1 and x2 are distinct elements of X, then f(x1) and f(x2) are

distinct elements of Y .

6) f : X → Y is bijective or is a 1-1 correspondence provided f is surjective

and injective. In this case, there is function f−1 : Y → X with f−1 ◦ f =

IX : X → X and f ◦ f−1 = IY : Y → Y . Note that f−1 : Y → X is

also bijective and (f−1)−1 = f .

Examples

1) f : R → R defined by f(x) = sin(x) is neither surjective nor injective.

2) f : R → [−1, 1] defined by f(x) = sin(x) is surjective but not injective.

3) f : [0, π/2] → R defined by f(x) = sin(x) is injective but not surjective.

4) f : [0, π/2] → [0, 1] defined by f(x) = sin(x) is bijective. (f−1(x) is

written as arcsin(x) or sin−1(x).)

5) f : R → (0,∞) defined by f(x) = ex is bijective. (f−1(x) is written as

ln(x).)

Note There is no such thing as “the function sin(x).” A function is not defined
unless the domain and range are specified.
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Exercise Show there are natural bijections from (R × R2) to (R2 × R) and
from (R2 × R) to R × R × R. These three sets are disjoint, but the bijections
between them are so natural that we sometimes identify them.

Exercise Suppose X is a set with 6 elements and Y is a finite set with n elements.

1) There exists an injective f : X → Y iff n .

2) There exists a surjective f : X → Y iff n .

3) There exists a bijective f : X → Y iff n .

Pigeonhole Principle Suppose X is a set with n elements, Y is a set with m
elements, and f : X → Y is a function.

1) If n = m, then f is injective iff f is surjective iff f is bijective.

2) If n > m, then f is not injective.

3) If n < m, then f is not surjective.

If you are placing 6 pigeons in 6 holes, and you run out of pigeons before you fill
the holes, then you have placed 2 pigeons in one hole. In other words, in part 1) for
n = m = 6, if f is not surjective then f is not injective. Of course, the pigeonhole
principle does not hold for infinite sets, as can be seen by the following exercise.

Exercise Show there is a function f : Z+ → Z+ which is injective but not
surjective. Also show there is one which is surjective but not injective.

Exercise Suppose f : [−2, 2] → R is defined by f(x) = x2. Find f−1(f([1, 2])).
Also find f(f−1([3, 5])).

Exercise Suppose f : X → Y is a function, S ⊂ X and T ⊂ Y . Find the
relationship between S and f−1(f(S)). Show that if f is injective, S = f−1(f(S)).
Also find the relationship between T and f(f−1(T )). Show that if f is surjective,
T = f(f−1(T )).

Strips If x0 ∈ X, {(x0, y) : y ∈ Y } = (x0, Y ) is called a vertical strip.
If y0 ∈ Y, {(x, y0) : x ∈ X} = (X, y0) is called a horizontal strip.
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Theorem Suppose S ⊂ X × Y . The subset S is the graph of a function with
domain X and range Y iff each vertical strip intersects S in exactly one point.

This is just a restatement of the property of a graph of a function. The purpose
of the next theorem is to restate properties of functions in terms of horizontal strips.

Theorem Suppose f : X → Y has graph Γ. Then

1) Each horizontal strip intersects Γ in at least one point iff f is .

2) Each horizontal strip intersects Γ in at most one point iff f is .

3) Each horizontal strip intersects Γ in exactly one point iff f is .

Solutions of Equations Now we restate these properties in terms of solutions of
equations. Suppose f : X → Y and y0 ∈ Y . Consider the equation f(x) = y0. Here
y0 is given and x is considered to be a “variable”. A solution to this equation is any
x0 ∈ X with f(x0) = y0. Note that the set of all solutions to f(x) = y0 is f−1(y0).
Also f(x) = y0 has a solution iff y0 ∈ image(f) iff f−1(y0) is non-void.

Theorem Suppose f : X → Y .

1) The equation f(x) = y0 has at least one solution for each y0 ∈ Y iff

f is .

2) The equation f(x) = y0 has at most one solution for each y0 ∈ Y iff

f is .

3) The equation f(x) = y0 has a unique solution for each y0 ∈ Y iff

f is .

Right and Left Inverses One way to understand functions is to study right and
left inverses, which are defined after the next theorem.

Theorem Suppose X
f→ Y

g→ W are functions.

1) If g ◦ f is injective, then f is injective.
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2) If g ◦ f is surjective, then g is surjective.

3) If g ◦ f is bijective, then f is injective and g is surjective.

Example X = W = {p}, Y = {p, q}, f(p) = p, and g(p) = g(q) = p. Here
g ◦ f is the identity, but f is not surjective and g is not injective.

Definition Suppose f : X → Y is a function. A left inverse of f is a function
g : Y → X such that g ◦ f = IX : X → X. A right inverse of f is a function
h : Y → X such that f ◦ h = IY : Y → Y .

Theorem Suppose f : X → Y is a function.

1) f has a right inverse iff f is surjective. Any such right inverse must be

injective.

2) f has a left inverse iff f is injective. Any such left inverse must be

surjective.

Corollary Suppose each of X and Y is a non-void set. Then ∃ an injective
f : X → Y iff ∃ a surjective g : Y → X. Also a function from X to Y is bijective
iff it has a left inverse and a right inverse.

Note The Axiom of Choice is not discussed in this book. However, if you worked
1) of the theorem above, you unknowingly used one version of it. For completeness,
we state this part of 1) again.

The Axiom of Choice If f : X → Y is surjective, then f has a right inverse
h. That is, for each y ∈ Y , it is possible to choose an x ∈ f−1(y) and thus to define
h(y) = x.

Note It is a classical theorem in set theory that the Axiom of Choice and the
Hausdorff Maximality Principle are equivalent. However in this text we do not go
that deeply into set theory. For our purposes it is assumed that the Axiom of Choice
and the HMP are true.

Exercise Suppose f : X → Y is a function. Define a relation on X by a ∼ b if
f(a) = f(b). Show this is an equivalence relation. If y belongs to the image of f , then
f−1(y) is an equivalence class and every equivalence class is of this form. In the next
chapter where f is a group homomorphism, these equivalence classes will be called
cosets.
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Projections If X1 and X2 are non-void sets, we define the projection maps
π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2 by πi(x1, x2) = xi.

Theorem If Y, X1, and X2 are non-void sets, there is a 1-1 correspondence
between {functions f: Y → X1×X2} and {ordered pairs of functions (f1, f2) where
f1: Y → X1 and f2 : Y → X2}.

Proof Given f , define f1 = π1 ◦ f and f2 = π2 ◦ f . Given f1 and f2 define
f : Y → X1 × X2 by f(y) = (f1(y), f2(y)). Thus a function from Y to X1 × X2 is
merely a pair of functions from Y to X1 and Y to X2. This concept is displayed in
the diagram below. It is summarized by the equation f = (f1, f2).

X1 X2X1 × X2

Y

?
-¾

¡
¡

¡
¡

¡ª

@
@

@
@

@R

f1 f2
f

π1 π2

One nice thing about this concept is that it works fine for infinite Cartesian
products.

Definition Suppose T is an index set and for each t ∈ T , Xt is a non-void set.
Then the product

∏
t∈T

Xt =
∏

Xt is the collection of all “sequences” {xt}t∈T = {xt}
where xt ∈ Xt. (Thus if T = Z+, {xt} = {x1, x2, ...}.) For each s ∈ T , the projection
map πs :

∏
Xt → Xs is defined by πs({xt}) = xs.

Theorem If Y is any non-void set, there is a 1-1 correspondence between
{functions f : Y → ∏

Xt} and {sequences of functions {ft}t∈T where ft : Y → Xt}.
Given f , the sequence {ft} is defined by ft = πt ◦ f. Given {ft}, f is defined by
f(y) = {ft(y)}.
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A Calculus Exercise Let A be the collection of all functions f : [0, 1] → R
which have an infinite number of derivatives. Let A0 ⊂ A be the subcollection of
those functions f with f(0) = 0. Define D : A0 → A by D(f) = df/dx. Use the mean
value theorem to show that D is injective. Use the fundamental theorem of calculus
to show that D is surjective.

Exercise This exercise is not used elsewhere in this text and may be omitted. It
is included here for students who wish to do a little more set theory. Suppose T is a
non-void set.

1) If Y is a non-void set, define Y T to be the collection of all functions with domain
T and range Y . Show that if T and Y are finite sets with n and m elements, then
Y T has mn elements. In particular, when T = {1, 2, 3}, Y T = Y × Y × Y has
m3 elements. Show that if m ≥ 3, the subset of Y {1,2,3} of all injective functions has
m(m − 1)(m − 2) elements. These injective functions are called permutations on Y
taken 3 at a time. If T = N, then Y T is the infinite product Y × Y × · · · . That is,
Y N is the set of all infinite sequences (y1, y2, . . .) where each yi ∈ Y . For any Y and
T , let Yt be a copy of Y for each t ∈ T. Then Y T =

∏
t∈T

Yt.

2) Suppose each of Y1 and Y2 is a non-void set. Show there is a natural bijection
from (Y1×Y2)

T to Y T
1 ×Y T

2 . (This is the fundamental property of Cartesian products
presented in the two previous theorems.)

3) Define P(T ), the power set of T , to be the collection of all subsets of T (including
the null set). Show that if T is a finite set with n elements, P(T ) has 2n elements.

4) If S is any subset of T , define its characteristic function χ
S

: T → {0, 1} by
letting χ

S
(t) be 1 when t ∈ S, and be 0 when t ∈| S. Define α : P(T ) → {0, 1}T by

α(S) = χ
S
. Define β : {0, 1}T → P(T ) by β(f) = f−1(1). Show that if S ⊂ T then

β ◦ α(S) = S, and if f : T → {0, 1} then α ◦ β(f) = f . Thus α is a bijection and
β = α−1.

P(T ) ←→ {0, 1}T

5) Suppose γ : T → {0, 1}T is a function and show that it cannot be surjective. If
t ∈ T , denote γ(t) by γ(t) = ft : T → {0, 1}. Define f : T → {0, 1} by f(t) = 0 if
ft(t) = 1, and f(t) = 1 if ft(t) = 0. Show that f is not in the image of γ and thus
γ cannot be surjective. This shows that if T is an infinite set, then the set {0, 1}T

represents a “higher order of infinity”.

6) A set Y is said to be countable if it is finite or if there is a bijection from N to
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Y. Consider the following three collections.

i) P(N), the collection of all subsets of N.
ii) {0, 1}N, the collection of all functions f : N → {0, 1}.
iii) The collection of all sequences (y1, y2, . . .) where each yi is 0 or 1.

We know that ii) and iii) are equal and there is a natural bijection between i)
and ii). We also know there is no surjective map from N to {0, 1}N, i.e., {0, 1}N is
uncountable. Show there is a bijection from {0, 1}N to the real numbers R. (This is
not so easy.)

Notation for the Logic of Mathematics

Each of the words “Lemma”, “Theorem”, and “Corollary” means “true state-
ment”. Suppose A and B are statements. A theorem may be stated in any of the
following ways:

Theorem Hypothesis Statement A.
Conclusion Statement B.

Theorem Suppose A is true. Then B is true.

Theorem If A is true, then B is true.

Theorem A ⇒ B (A implies B ).

There are two ways to prove the theorem — to suppose A is true and show B is
true, or to suppose B is false and show A is false. The expressions “A ⇔ B”, “A is
equivalent to B”, and “A is true iff B is true ” have the same meaning (namely, that
A ⇒ B and B ⇒ A).

The important thing to remember is that thoughts and expressions flow through
the language. Mathematical symbols are shorthand for phrases and sentences in the
English language. For example, “x ∈ B ” means “x is an element of the set B.” If A
is the statement “x ∈ Z+” and B is the statement “x2 ∈ Z+”, then “A ⇒ B”means
“If x is a positive integer, then x2 is a positive integer”.

Mathematical Induction is based upon the fact that if S ⊂ Z+ is a non-void
subset, then S contains a smallest element.
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Theorem Suppose P (n) is a statement for each n = 1, 2, ... . Suppose P (1) is true
and for each n ≥ 1, P (n) ⇒ P (n + 1). Then for each n ≥ 1, P (n) is true.

Proof If the theorem is false, then ∃ a smallest positive integer m such that
P (m) is false. Since P (m − 1) is true, this is impossible.

Exercise Use induction to show that, for each n ≥ 1, 1+2+ · · ·+n = n(n+1)/2.

The Integers

In this section, lower case letters a, b, c, ... will represent integers, i.e., elements
of Z. Here we will establish the following three basic properties of the integers.

1) If G is a subgroup of Z, then ∃ n ≥ 0 such that G = nZ.
2) If a and b are integers, not both zero, and G is the collection of all linear

combinations of a and b, then G is a subgroup of Z, and its
positive generator is the greatest common divisor of a and b.

3) If n ≥ 2, then n factors uniquely as the product of primes.

All of this will follow from long division, which we now state formally.

Euclidean Algorithm Given a, b with b 6= 0, ∃! m and r with 0 ≤ r <|b| and
a = bm + r. In other words, b divides a “m times with a remainder of r”. For
example, if a = −17 and b = 5, then m = −4 and r = 3, −17 = 5(−4) + 3.

Definition If r = 0, we say that b divides a or a is a multiple of b. This fact is
written as b | a. Note that b | a ⇔ the rational number a/b is an integer ⇔ ∃! m
such that a = bm ⇔ a ∈ bZ.

Note Anything (except 0) divides 0. 0 does not divide anything.
± 1 divides anything . If n 6= 0, the set of integers which n divides
is nZ = {nm : m ∈ Z} = {...,−2n,−n, 0, n, 2n, ...}. Also n divides
a and b with the same remainder iff n divides (a − b).

Definition A non-void subset G ⊂ Z is a subgroup provided (g ∈ G ⇒ −g ∈ G)
and (g1, g2 ∈ G ⇒ (g1 + g2) ∈ G). We say that G is closed under negation and closed
under addition.
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Theorem If n ∈ Z then nZ is a subgroup. Thus if n 6= 0, the set of integers
which n divides is a subgroup of Z.

The next theorem states that every subgroup of Z is of this form.

Theorem Suppose G ⊂ Z is a subgroup. Then

1) 0 ∈ G.
2) If g1 and g2 ∈ G, then (m1g1 + m2g2) ∈ G for all integers m1,m2.
3) ∃! non-negative integer n such that G = nZ. In fact, if G 6= {0}

and n is the smallest positive integer in G, then G = nZ.

Proof Since G is non-void, ∃ g ∈ G. Now (−g) ∈ G and thus 0 = g + (−g)
belongs to G, and so 1) is true. Part 2) is straightforward, so consider 3). If G 6= 0,
it must contain a positive element. Let n be the smallest positive integer in G. If
g ∈ G, g = nm + r where 0 ≤ r < n. Since r ∈ G, it must be 0, and g ∈ nZ.

Now suppose a, b ∈ Z and at least one of a and b is non-zero.

Theorem Let G be the set of all linear combinations of a and b, i.e., G =
{ma + nb : m,n ∈ Z}. Then

1) G contains a and b.
2) G is a subgroup. In fact, it is the smallest subgroup containing a and b.

It is called the subgroup generated by a and b.
3) Denote by (a, b) the smallest positive integer in G. By the previous

theorem, G = (a, b)Z, and thus (a, b) | a and (a, b) | b. Also note that
∃ m,n such that ma + nb = (a, b). The integer (a, b) is called
the greatest common divisor of a and b.

4) If n is an integer which divides a and b, then n also divides (a, b).

Proof of 4) Suppose n | a and n | b i.e., suppose a, b ∈ nZ. Since G is the
smallest subgroup containing a and b, nZ ⊃ (a, b)Z, and thus n | (a, b).

Corollary The following are equivalent:

1) a and b have no common divisors, i.e., (n | a and n | b) ⇒ n = ±1.
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2) (a, b) = 1, i.e., the subgroup generated by a and b is all of Z.
3) ∃ m,n ∈Z with ma + nb = 1.

Definition If any one of these three conditions is satisfied, we say that a and b
are relatively prime.

We are now ready for our first theorem with any guts.

Theorem If a and b are relatively prime and a | bc, then a | c.

Proof Suppose a and b are relatively prime, c ∈ Z and a | bc. Then there exist
m,n with ma + nb = 1, and thus mac + nbc = c. Now a | mac and a | nbc. Thus
a | (mac + nbc) and so a | c.

Definition A prime is an integer p > 1 which does not factor, i.e., if p = ab then
a = ±1 or a = ±p. The first few primes are 2, 3, 5, 7, 11, 13, 17,... .

Theorem Suppose p is a prime.

1) If a is an integer which is not a multiple of p, then (p, a) = 1. In other
words, if a is any integer, (p, a) = p or (p, a) = 1.

2) If p | ab then p | a or p | b.
3) If p | a1a2 · · · an then p divides some ai. Thus if each ai is a prime,

then p is equal to some ai.

Proof Part 1) follows immediately from the definition of prime. Now suppose
p | ab. If p does not divide a, then by 1), (p, a) = 1 and by the previous theorem, p
must divide b. Thus 2) is true. Part 3) follows from 2) and induction on n.

The Unique Factorization Theorem Suppose n is an integer which is not 0,1,
or -1. Then n may be factored into the product of primes and, except for order, this
factorization is unique. That is, ∃ a unique collection of distinct primes p1, ..., pk and
positive integers s1, s2, ..., sk such that n = ±ps1

1 ps2
2 · · · psk

k .

Proof Factorization into primes is obvious, and uniqueness follows from 3) in the
theorem above. The power of this theorem is uniqueness, not existence.
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Now that we have unique factorization and part 3) above, the picture becomes
transparent. Here are some of the basic properties of the integers in this light.

Theorem (Summary)

1) Suppose |a |> 1 has prime factorization a = ±ps1
1 · · · psk

k . Then the only
divisors or a are of the form ±pt1

1 · · · ptk
k where 0 ≤ ti ≤ si for i = 1, ..., k.

2) If | a |> 1 and | b |> 1, then (a, b) = 1 iff there is no common prime in
their factorizations. Thus if there is no common prime in their
factorizations, ∃ m,n with ma + nb = 1.

3) Suppose |a |> 1 and |b |> 1. Let {p1, . . . , pk} be the union of the distinct
primes of their factorizations. Thus a = ±ps1

1 · · · psk
k where 0 ≤ si and

b = ±pt1
1 · · · ptk

k where 0 ≤ ti. Let ui be the minimum of si and ti. Then
(a, b) = pu1

1 · · · puk
k . For example (23 · 5 · 11, 22 · 54 · 7) = 22 · 5.

3′) Let vi be the maximum of si and ti. Then c = pv1
1 · · · pvk

k is the least
common multiple of a and b. Note that c is a multiple of a and b,
and if n is a multiple of a and b, then n is a multiple of c.
Finally, the least common multiple of a and b is c = ab/(a, b). In
particular, if a and b are relatively prime, then their least common
multiple is just their product.

4) There is an infinite number of primes. (Proof: Suppose there were only
a finite number of primes p1, p2, ..., pk. Then no prime would divide
(p1p2 · · · pk + 1).)

5)
√

2 is irrational. (Proof: Suppose
√

2 = m/n where (m,n) = 1. Then
2n2 = m2 and if n > 1, n and m have a common prime factor.
Since this is impossible, n = 1, and so

√
2 is an integer. This is a

contradiction and therefore
√

2 is irrational.)

6) Suppose c is an integer greater than 1. Then
√

c is rational iff
√

c is an
integer.

Exercise Find (180,28), i.e., find the greatest common divisor of 180 and 28,
i.e., find the positive generator of the subgroup generated by {180,28}. Find integers
m and n such that 180m + 28n = (180, 28). Find the least common multiple of 180
and 28, and show that it is equal to (180 · 28)/(180, 28).
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Exercise We have defined the greatest common divisor (gcd) and the least com-
mon multiple (lcm) of a pair of integers. Now suppose n ≥ 2 and S = {a1, a2, .., an}
is a finite collection of integers with |ai| > 1 for 1 ≤ i ≤ n. Define the gcd and
the lcm of the elements of S and develop their properties. Express the gcd and the
lcm in terms of the prime factorizations of the ai. Show that the set of all linear
combinations of the elements of S is a subgroup of Z, and its positive generator is
the gcd of the elements of S.

Exercise Show that the gcd of S = {90, 70, 42} is 2, and find integers n1, n2, n3

such that 90n1 + 70n2 + 42n3 = 2. Also find the lcm of the elements of S.

Exercise Show that if each of G1, G2, ..., Gm is a subgroup of Z, then
G = G1 ∩G2 ∩ · · · ∩Gm is also a subgroup of Z. Now let G = (90Z) ∩ (70Z) ∩ (42Z)
and find the positive integer n with G = nZ.

Exercise Show that if the nth root of an integer is a rational number, then it
itself is an integer. That is, suppose c and n are integers greater than 1. There is a
unique positive real number x with xn = c. Show that if x is rational, then it is an
integer. Thus if p is a prime, its nth root is an irrational number.

Exercise Show that a positive integer is divisible by 3 iff the sum of its digits is
divisible by 3. More generally, let a = anan−1 . . . a0 = an10n + an−110n−1 + · · · + a0

where 0 ≤ ai ≤ 9. Now let b = an + an−1 + · · · + a0, and show that 3 divides a and b
with the same remainder. Although this is a straightforward exercise in long division,
it will be more transparent later on. In the language of the next chapter, it says that
[a] = [b] in Z3.

Card Trick Ask friends to pick out seven cards from a deck and then to select one
to look at without showing it to you. Take the six cards face down in your left hand
and the selected card in your right hand, and announce you will place the selected
card in with the other six, but they are not to know where. Put your hands behind
your back and place the selected card on top, and bring the seven cards in front in
your left hand. Ask your friends to give you a number between one and seven (not
allowing one). Suppose they say three. You move the top card to the bottom, then
the second card to the bottom, and then you turn over the third card, leaving it face
up on top. Then repeat the process, moving the top two cards to the bottom and
turning the third card face up on top. Continue until there is only one card face
down, and this will be the selected card. Magic? Stay tuned for Chapter 2, where it
is shown that any non-zero element of Z7 has order 7.



Chapter 2

Groups

Groups are the central objects of algebra. In later chapters we will define rings and
modules and see that they are special cases of groups. Also ring homomorphisms and
module homomorphisms are special cases of group homomorphisms. Even though
the definition of group is simple, it leads to a rich and amazing theory. Everything
presented here is standard, except that the product of groups is given in the additive
notation. This is the notation used in later chapters for the products of rings and
modules. This chapter and the next two chapters are restricted to the most basic
topics. The approach is to do quickly the fundamentals of groups, rings, and matrices,
and to push forward to the chapter on linear algebra. This chapter is, by far and
above, the most difficult chapter in the book, because all the concepts are new.

Definition Suppose G is a non-void set and φ : G × G → G is a function. φ is
called a binary operation, and we will write φ(a, b) = a ·b or φ(a, b) = a+b. Consider
the following properties.

1) If a, b, c ∈ G then a · (b · c) = (a · b) · c. If a, b, c ∈ G then a + (b + c) = (a + b) + c.

2) ∃ e = eG ∈ G such that if a ∈ G ∃ 0
¯
=0

¯
G ∈ G such that if a ∈ G

e · a = a · e = a. 0
¯
+a = a+0

¯
= a.

3) If a ∈ G, ∃b ∈ G with a · b = b · a = e If a ∈ G,∃b ∈ G with a + b = b + a = 0
¯

(b is written as b = a−1). (b is written as b = −a).

4) If a, b ∈ G, then a · b = b · a. If a, b ∈ G, then a + b = b + a.

Definition If properties 1), 2), and 3) hold, (G, φ) is said to be a group. If we
write φ(a, b) = a · b, we say it is a multiplicative group. If we write φ(a, b) = a + b,

19



20 Groups Chapter 2

we say it is an additive group. If in addition, property 4) holds, we say the group is
abelian or commutative.

Theorem Let (G, φ) be a multiplicative group.

(i) Suppose a, c, c̄ ∈ G. Then a · c = a · c̄ ⇒ c = c̄.
Also c · a = c̄ · a ⇒ c = c̄.

In other words, if f : G → G is defined by f(c) = a · c, then f is injective.
Also f is bijective with f−1 given by f−1(c) = a−1 · c.

(ii) e is unique, i.e., if ē ∈ G satisfies 2), then e = ē. In fact,
if a, b ∈ G then (a · b = a) ⇒ (b = e) and (a · b = b) ⇒ (a = e).
Recall that b is an identity in G provided it is a right and left
identity for any a in G. However group structure is so rigid that if
∃ a ∈ G such that b is a right identity for a, then b = e.
Of course, this is just a special case of the cancellation law in (i).

(iii) Every right inverse is an inverse, i.e., if a · b = e then b = a−1. Also
if b · a = e then b = a−1. Thus inverses are unique.

(iv) If a ∈ G, then (a−1)−1 = a.

(v) If a, b ∈ G, (a · b)−1 = b−1 · a−1 Also (a1 · a2 · · · an)−1 =
a−1

n · a−1
n−1 · · · a−1

1 .

(vi) The multiplication a1 ·a2 ·a3 = a1 ·(a2 ·a3) = (a1 ·a2) ·a3 is well defined.
In general, a1 · a2 · · · an is well defined.

(vii) Suppose a ∈ G. Let a0 = e and if n > 0, an = a · · · a (n times)
and a−n = a−1 · · · a−1 (n times). If n1, n2, ..., nt ∈ Z then
an1 · an2 · · · ant = an1+···+nt . Also (an)m = anm.
Finally, if G is abelian and a, b ∈ G, then (a · b)n = an · bn.

Exercise. Write out the above theorem where G is an additive group. Note that
part (vii) states that G has a scalar multiplication over Z. This means that if a is in
G and n is an integer, there is defined an element an in G. This is so basic, that we
state it explicitly.

Theorem. Suppose G is an additive group. If a ∈ G, let a0 =0
¯

and if n > 0,
let an = (a + · · +a) where the sum is n times, and a(−n) = (−a) + (−a) · · + (−a),
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which we write as (−a − a · · − a). Then the following properties hold in general,
except the first requires that G be abelian.

(a + b)n = an + bn
a(n + m) = an + am
a(nm) = (an)m
a1 = a

Note that the plus sign is used ambiguously — sometimes for addition in G
and sometimes for addition in Z. In the language used in Chapter 5, this theorem
states that any additive abelian group is a Z-module. (See page 71.)

Exercise Suppose G is a non-void set with a binary operation φ(a, b) = a ·b which
satisfies 1), 2) and [ 3′) If a ∈ G, ∃b ∈ G with a · b = e]. Show (G, φ) is a group,
i.e., show b · a = e. In other words, the group axioms are stronger than necessary. If
every element has a right inverse, then every element has a two sided inverse.

Exercise Suppose G is the set of all functions from Z to Z with multiplication
defined by composition, i.e., f · g = f ◦ g. Note that G satisfies 1) and 2) but not 3),
and thus G is not a group. Show that f has a right inverse in G iff f is surjective,
and f has a left inverse in G iff f is injective. Also show that the set of all bijections
from Z to Z is a group under composition.

Examples G = R, G = Q, or G = Z with φ(a, b) = a + b is an additive
abelian group.

Examples G = R−0 or G = Q−0 with φ(a, b) = ab is a multiplicative abelian
group.
G = Z − 0 with φ(a, b) = ab is not a group.
G = R+ = {r ∈ R : r > 0} with φ(a, b) = ab is a multiplicative
abelian group.

Subgroups

Theorem Suppose G is a multiplicative group and H ⊂ G is a non-void subset
satisfying

1) if a, b ∈ H then a · b ∈ H
and 2) if a ∈ H then a−1 ∈ H.
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Then e ∈ H and H is a group under multiplication. H is called a subgroup of G.

Proof Since H is non-void, ∃a ∈ H. By 2), a−1 ∈ H and so by 1), e ∈ H. The
associative law is immediate and so H is a group.

Example G is a subgroup of G and e is a subgroup of G. These are called the
improper subgroups of G.

Example If G = Z under addition, and n ∈ Z, then H = nZ is a subgroup of
Z. By a theorem in the section on the integers in Chapter 1, every subgroup of Z is
of this form. This is a key property of the integers.

Exercises Suppose G is a multiplicative group.

1) Let H be the center of G, i.e., H = {h ∈ G : g · h = h · g for all g ∈ G}. Show
H is a subgroup of G.

2) Suppose H1 and H2 are subgroups of G. Show H1 ∩ H2 is a subgroup of G.

3) Suppose H1 and H2 are subgroups of G, with neither H1 nor H2 contained in
the other. Show H1 ∪ H2 is not a subgroup of G.

4) Suppose T is an index set and for each t ∈ T , Ht is a subgroup of G.
Show

⋂
t∈T

Ht is a subgroup of G.

5) Furthermore, if {Ht} is a monotonic collection, then
⋃
t∈T

Ht is a subgroup of G.

6) Suppose G= {all functions f : [0, 1] → R}. Define an addition on G by
(f + g)(t) = f(t) + g(t) for all t ∈ [0, 1]. This makes G into an abelian group.
Let K be the subset of G composed of all differentiable functions. Let H
be the subset of G composed of all continuous functions. What theorems
in calculus show that H and K are subgroups of G? What theorem shows that
K is a subset (and thus subgroup) of H?

Order Suppose G is a multiplicative group. If G has an infinite number of
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elements, we say that o(G), the order of G, is infinite. If G has n elements, then
o(G) = n. Suppose a ∈ G and H = {ai : i ∈ Z}. H is an abelian subgroup of G
called the subgroup generated by a. We define the order of the element a to be the
order of H, i.e., the order of the subgroup generated by a. Let f : Z → H be the
surjective function defined by f(m) = am. Note that f(k + l) = f(k) · f(l) where
the addition is in Z and the multiplication is in the group H. We come now to the
first real theorem in group theory. It says that the element a has finite order iff f
is not injective, and in this case, the order of a is the smallest positive integer n
with an = e.

Theorem Suppose a is an element of a multiplicative group G, and
H = {ai : i ∈ Z}. If ∃ distinct integers i and j with ai = aj, then a has some finite
order n. In this case H has n distinct elements, H = {a0, a1, . . . , an−1}, and am = e
iff n|m. In particular, the order of a is the smallest positive integer n with an = e,
and f−1(e) = nZ.

Proof Suppose j < i and ai = aj. Then ai−j = e and thus ∃ a smallest positive
integer n with an = e. This implies that the elements of {a0, a1, ..., an−1} are distinct,
and we must show they are all of H. If m ∈ Z, the Euclidean algorithm states that
∃ integers q and r with 0 ≤ r < n and m = nq + r. Thus am = anq · ar = ar, and
so H = {a0, a1, ..., an−1}, and am = e iff n|m. Later in this chapter we will see that
f is a homomorphism from an additive group to a multiplicative group and that,
in additive notation, H is isomorphic to Z or Zn.

Exercise Write out this theorem for G an additive group. To begin, suppose a is
an element of an additive group G, and H = {ai : i ∈ Z}.

Exercise Show that if G is a finite group of even order, then G has an odd number
of elements of order 2. Note that e is the only element of order 1.

Definition A group G is cyclic if ∃ an element of G which generates G.

Theorem If G is cyclic and H is a subgroup of G, then H is cyclic.

Proof Suppose G is a cyclic group of order n. Then ∃ a ∈ G with G =
{ao, a1, . . . , an−1}. Suppose H is a subgroup of G with more than one element. Let
m be the smallest integer with o < m < n and am ∈ H. Then m|n and am generates
H. The case where G is an infinite cyclic group is left as an exercise. Note that Z
is an additive cyclic group and it was shown in the previous chapter that subgroups
of Z are cyclic.
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Cosets Suppose H is a subgroup of a group G. It will be shown below that H
partitions G into right cosets. It also partitions G into left cosets, and in general
these partitions are distinct.

Theorem If H is a subgroup of a multiplicative group G, then a ∼ b defined by
a ∼ b iff a · b−1 ∈ H is an equivalence relation. If a ∈ G, cl(a) = {b ∈ G : a ∼ b} =
{h · a : h ∈ H} = Ha. Note that a · b−1 ∈ H iff b · a−1 ∈ H.

If H is a subgroup of an additive group G, then a ∼ b defined by a ∼ b iff
(a − b) ∈ H is an equivalence relation. If a ∈ G, cl(a) = {b ∈ G : a ∼ b} = {h + a :
h ∈ H} = H + a. Note that (a − b) ∈ H iff (b − a) ∈ H.

Definition These equivalence classes are called right cosets. If the relation is
defined by a ∼ b iff b−1 · a ∈ H, then the equivalence classes are cl(a) = aH and
they are called left cosets. H is a left and right coset. If G is abelian, there is no
distinction between right and left cosets. Note that b−1 · a ∈ H iff a−1 · b ∈ H.

In the theorem above, we used H to define an equivalence relation on G, and thus
a partition of G. We now do the same thing a different way. We define the right
cosets directly and show they form a partition of G. This is really much easier.

Theorem Suppose H is a subgroup of a multiplicative group G. If a ∈ G, define
the right coset containing a to be Ha = {h · a : h ∈ H}. Then the following hold.

1) Ha = H iff a ∈ H.
2) If b ∈ Ha, then Hb = Ha, i.e., if h ∈ H, then H(h · a) = (Hh)a = Ha.
3) If Hc ∩ Ha 6= ∅, then Hc = Ha.
4) The right cosets form a partition of G, i.e., each a in G belongs to one and

only one right coset.
5) Elements a and b belong to the same right coset iff a · b−1 ∈ H iff b · a−1 ∈ H.

Proof There is no better way to develop facility with cosets than to prove this
theorem. Also write this theorem for G an additive group.

Theorem Suppose H is a subgroup of a multiplicative group G.
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1) Any two right cosets have the same number of elements. That is, if a, b ∈ G,
f : Ha → Hb defined by f(h · a) = h · b is a bijection. Also any two left cosets
have the same number of elements. Since H is a right and left coset, any
two cosets have the same number of elements.

2) G has the same number of right cosets as left cosets. The bijection is given by
F (Ha) = a−1H. The number of right (or left) cosets is called the index of
H in G.

3) If G is finite, o(H) (index of H) = o(G) and so o(H) | o(G). In other words,
o(G)/o(H) = the number of right cosets = the number of left cosets.

4) If G is finite, and a ∈ G, then o(a) | o(G). (Proof: The order of a is the order
of the subgroup generated by a, and by 3) this divides the order of G.)

5) If G has prime order, then G is cyclic, and any element (except e) is a generator.
(Proof: Suppose o(G) = p and a ∈ G, a 6= e. Then o(a) | p and thus o(a) = p.)

6) If o(G) = n and a ∈ G, then an = e. (Proof: ao(a) = e and n = o(a) (o(G)/o(a)) .)

Exercises

i) Suppose G is a cyclic group of order 4, G = {e, a, a2, a3} with a4 = e. Find the
order of each element of G. Find all the subgroups of G.

ii) Suppose G is the additive group Z and H = 3Z. Find the cosets of H.

iii) Think of a circle as the interval [0, 1] with end points identified. Suppose G = R
under addition and H = Z. Show that the collection of all the cosets of H
can be thought of as a circle.

iv) Let G = R2 under addition, and H be the subgroup defined by
H = {(a, 2a) : a ∈ R}. Find the cosets of H. (See the last exercise on p. 5.)

Normal Subgroups

We would like to make a group out of the collection of cosets of a subgroup H. In
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general, there is no natural way to do that. However, it is easy to do in case H is a
normal subgroup, which is described below.

Theorem If H is a subgroup of G, then the following are equivalent.

1) If a ∈ G, then aHa−1 = H

2) If a ∈ G, then aHa−1 ⊂ H

3) If a ∈ G, then aH = Ha

4) Every right coset is a left coset, i.e., if a ∈ G, ∃ b ∈ G with Ha = bH.

Proof 1) ⇒ 2) is obvious. Suppose 2) is true and show 3). We have (aHa−1)a ⊂
Ha so aH ⊂ Ha. Also a(a−1Ha) ⊂ aH so Ha ⊂ aH. Thus aH = Ha.

3) ⇒ 4) is obvious. Suppose 4) is true and show 3). Ha = bH contains a, so
bH = aH because a coset is an equivalence class.

Finally, suppose 3) is true and show 1). Multiply aH = Ha on the right by a−1.

Definition If H satisfies any of the four conditions above, then H is said to be a
normal subgroup of G.

Note For any group G, G and e are normal subgroups. If G is an abelian group,
then every subgroup of G is normal.

Exercise Show that if H is a subgroup of G with index 2, then H is normal.

Exercise Show the intersection of a collection of normal subgroups of G is a
normal subgroup of G. Show the union of a monotonic collection of normal subgroups
of G is a normal subgroup of G.

Exercise Let A ⊂ R2 be the square with vertices (−1, 1), (1, 1), (1,−1), and
(−1,−1), and G be the collection of all “isometries” of A onto itself. These are
bijections of A onto itself which preserve distance and angles, i.e., which preserve dot
product. Show that with multiplication defined as composition, G is a multiplicative
group. Show that G has four rotations, two reflections about the axes, and two
reflections about the diagonals, for a total of eight elements. Show the collection of
rotations is a cyclic subgroup of order four which is a normal subgroup of G. Show
that the reflection about the x-axis together with the identity form a cyclic subgroup
of order two which is not a normal subgroup of G. Find the four right cosets of this
subgroup. Finally, find the four left cosets of this subgroup.
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Quotient Groups Suppose N is a normal subgroup of G, and C and D are
cosets. We wish to define a coset E which is the product of C and D. If c ∈ C and
d ∈ D, define E to be the coset containing c · d, i.e., E = N(c · d). The coset E does
not depend upon the choice of c and d. This is made precise in the next theorem,
which is quite easy.

Theorem Suppose G is a multiplicative group, N is a normal subgroup, and
G/N is the collection of all cosets. Then (Na) · (Nb) = N(a · b) is a well defined
multiplication (binary operation) on G/N , and with this multiplication, G/N is a
group. Its identity is N and (Na)−1 = (Na−1). Furthermore, if G is finite, o(G/N) =
o(G)/o(N).

Proof Multiplication of elements in G/N is multiplication of subsets in G.
(Na) · (Nb) = N(aN)b = N(Na)b = N(a · b). Once multiplication is well defined,
the group axioms are immediate.

Exercise Write out the above theorem for G an additive abelian group.

Example Suppose G = Z under +, n > 1, and N = nZ. Zn, the group of
integers mod n is defined by Zn = Z/nZ. If a is an integer, the coset a + nZ is
denoted by [a]. Note that [a] + [b] = [a + b], −[a] = [−a], and [a] = [a + nl] for any
integer l. Any additive abelian group has a scalar multiplication over Z, and in this
case it is just [a]m = [am]. Note that [a] = [r] where r is the remainder of a divided
by n, and thus the distinct elements of Zn are [0], [1], ..., [n − 1]. Also Zn is cyclic
because each of [1] and [−1] = [n − 1] is a generator. We already know that if p is a
prime, any non-zero element of Zp is a generator, because Zp has p elements.

Theorem If n > 1 and a is any integer, then [a] is a generator of Zn iff (a, n) = 1.

Proof The element [a] is a generator iff the subgroup generated by [a] contains
[1] iff ∃ an integer k such that [a]k = [1] iff ∃ integers k and l such that ak + nl = 1.

Exercise Show that a positive integer is divisible by 3 iff the sum of its digits is
divisible by 3. Note that [10] = [1] in Z3. (See the fifth exercise on page 18.)

Homomorphisms

Homomorphisms are functions between groups that commute with the group op-
erations. It follows that they honor identities and inverses. In this section we list
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the basic properties. Properties 11), 12), and 13) show the connections between coset
groups and homomorphisms, and should be considered as the cornerstones of abstract
algebra.

Definition If G and Ḡ are multiplicative groups, a function f : G → Ḡ is a
homomorphism if, for all a, b ∈ G, f(a · b) = f(a) · f(b). On the left side, the group
operation is in G, while on the right side it is in Ḡ. The kernel of f is defined by
ker(f) = f−1(ē) = {a ∈ G : f(a) = ē}. In other words, the kernel is the set of
solutions to the equation f(x) = ē. (If Ḡ is an additive group, ker(f) = f−1(0

¯
).)

Examples The constant map f : G → Ḡ defined by f(a) = ē is a homomorphism.
If H is a subgroup of G, the inclusion i : H → G is a homomorphism. The function
f : Z → Z defined by f(t) = 2t is a homomorphism of additive groups, while the
function defined by f(t) = t+2 is not a homomorphism. The function h : Z → R−0
defined by h(t) = 2t is a homomorphism from an additive group to a multiplicative
group.

We now catalog the basic properties of homomorphisms. These will be helpful
later on when we study ring homomorphisms and module homomorphisms.

Theorem Suppose G and Ḡ are groups and f : G → Ḡ is a homomorphism.

1) f(e) = ē.

2) f(a−1) = f(a)−1.

3) f is injective ⇔ ker(f) = e.

4) If H is a subgroup of G, f(H) is a subgroup of Ḡ. In particular, image(f) is
a subgroup of Ḡ.

5) If H̄ is a subgroup of Ḡ, f−1(H̄) is a subgroup of G. Furthermore, if H̄ is
normal in Ḡ, then f−1(H̄) is normal in G.

6) The kernel of f is a normal subgroup of G.

7) If ḡ ∈ Ḡ, f−1(ḡ) is void or is a coset of ker(f), i.e., if f(g) = ḡ then
f−1(ḡ) = Ng where N= ker(f). In other words, if the equation f(x) = ḡ has a
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solution, then the set of all solutions is a coset of N= ker(f). This is a key fact
which is used routinely in topics such as systems of equations and linear
differential equations.

8) The composition of homomorphisms is a homomorphism, i.e., if h : Ḡ →=

G is a

homomorphism, then h ◦ f : G →=

G is a homomorphism.

9) If f : G → Ḡ is a bijection, then the function f−1 : Ḡ → G is a homomorphism.
In this case, f is called an isomorphism, and we write G ≈ Ḡ. In the case
G = Ḡ, f is also called an automorphism.

10) Isomorphisms preserve all algebraic properties. For example, if f is an
isomorphism and H ⊂ G is a subset, then H is a subgroup of G
iff f(H) is a subgroup of Ḡ, H is normal in G iff f(H) is normal in Ḡ, G is
cyclic iff Ḡ is cyclic, etc. Of course, this is somewhat of a cop-out, because an
algebraic property is one that, by definition, is preserved under isomorphisms.

11) Suppose H is a normal subgroup of G. Then π : G → G/H defined by
π(a) = Ha is a surjective homomorphism with kernel H. Furthermore, if
f : G → Ḡ is a surjective homomorphism with kernel H, then G/H ≈ Ḡ
(see below).

12) Suppose H is a normal subgroup of G. If H ⊂ ker(f), then f̄ : G/H → Ḡ
defined by f̄(Ha) = f(a) is a well-defined homomorphism making
the following diagram commute.

G Ḡ

G/H

f

?

-

½
½

½
½

½½>

π
f̄

Thus defining a homomorphism on a quotient group is the same as defining a
homomorphism on the numerator which sends the denominator to ē. The
image of f̄ is the image of f and the kernel of f̄ is ker(f)/H. Thus if H = ker(f),
f̄ is injective, and thus G/H ≈ image(f).

13) Given any group homomorphism f , domain(f)/ker(f) ≈ image(f). This is
the fundamental connection between quotient groups and homomorphisms.
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14) Suppose K is a group. Then K is an infinite cycle group iff K is isomorphic to

the integers under addition, i.e., K ≈ Z. K is a cyclic group of order n iff

K ≈ Zn.

Proof of 14) Suppose Ḡ = K is generated by some element a. Then f : Z → K
defined by f(m) = am is a homomorphism from an additive group to a multiplicative
group. If o(a) is infinite, f is an isomorphism. If o(a) = n, ker(f) = nZ and
f̄ : Zn → K is an isomorphism.

Exercise If a is an element of a group G, there is always a homomorphism from Z
to G which sends 1 to a. When is there a homomorphism from Zn to G which sends [1]
to a? What are the homomorphisms from Z2 to Z6? What are the homomorphisms
from Z4 to Z8?

Exercise Suppose G is a group and g is an element of G, g 6= e.

1) Under what conditions on g is there a homomorphism f : Z7 → G with

f([1]) = g ?

2) Under what conditions on g is there a homomorphism f : Z15 → G with

f([1]) = g ?

3) Under what conditions on G is there an injective homomorphism f : Z15 → G ?

4) Under what conditions on G is there a surjective homomorphism f : Z15 → G ?

Exercise We know every finite group of prime order is cyclic and thus abelian.
Show that every group of order four is abelian.

Exercise Let G = {h : [0, 1] → R : h has an infinite number of derivatives}.
Then G is a group under addition. Define f : G → G by f(h) = dh

dt
= h′. Show f

is a homomorphism and find its kernel and image. Let g : [0, 1] → R be defined by
g(t) = t3 − 3t + 4. Find f−1(g) and show it is a coset of ker(f).

Exercise Let G be as above and g ∈ G. Define f : G → G by f(h) = h′′ + 5h′ +
6t2h. Then f is a group homomorphism and the differential equation h′′+5h′+6t2h =
g has a solution iff g lies in the image of f . Now suppose this equation has a solution
and S ⊂ G is the set of all solutions. For which subgroup H of G is S an H-coset?
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Exercise Suppose G is a multiplicative group and a ∈ G. Define f : G → G to
be conjugation by a, i.e., f(g) = a−1 · g · a. Show that f is a homomorphism. Also
show f is an automorphism and find its inverse.

Permutations

Suppose X is a (non-void) set. A bijection f : X → X is called a permutation
on X, and the collection of all these permutations is denoted by S = S(X). In this
setting, variables are written on the left, i.e., f = (x)f . Therefore the composition
f ◦g means “f followed by g”. S(X) forms a multiplicative group under composition.

Exercise Show that if there is a bijection between X and Y , there is an iso-
morphism between S(X) and S(Y ). Thus if each of X and Y has n elements,
S(X) ≈ S(Y ), and these groups are called the symmetric groups on n elements.
They are all denoted by the one symbol Sn.

Exercise Show that o(Sn) = n!. Let X = {1, 2, ..., n}, Sn = S(X), and H =
{f ∈ Sn : (n)f = n}. Show H is a subgroup of Sn which is isomorphic to Sn−1. Let
g be any permutation on X with (n)g = 1. Find g−1Hg.

The next theorem shows that the symmetric groups are incredibly rich and com-
plex.

Theorem (Cayley’s Theorem) Suppose G is a multiplicative group with n
elements and Sn is the group of all permutations on the set G. Then G is isomorphic
to a subgroup of Sn.

Proof Let h : G → Sn be the function which sends a to the bijection ha : G → G
defined by (g)ha = g · a. The proof follows from the following observations.

1) For each given a, ha is a bijection from G to G.

2) h is a homomorphism, i.e., ha·b = ha ◦ hb.

3) h is injective and thus G is isomorphic to image (h) ⊂ Sn.

The Symmetric Groups Now let n ≥ 2 and let Sn be the group of all permu-
tations on {1, 2, ..., n}. The following definition shows that each element of Sn may
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be represented by a matrix.

Definition Suppose 1 < k ≤ n, {a1, a2, ..., ak} is a collection of distinct integers
with 1 ≤ ai ≤ n, and {b1, b2, ..., bk} is the same collection in some different order. Then

the matrix

(
a1 a2 ... ak

b1 b2 ... bk

)
represents f ∈ Sn defined by (ai)f = bi for 1 ≤ i ≤ k,

and (a)f = a for all other a. The composition of two permutations is computed by
applying the matrix on the left first and the matrix on the right second.

There is a special type of permutation called a cycle. For these we have a special
notation.

Definition

(
a1 a2...ak−1ak

a2 a3...ak a1

)
is called a k-cycle, and is denoted by (a1, a2, ..., ak).

A 2-cycle is called a transposition. The cycles (a1, ..., ak) and (c1, ..., c`) are disjoint
provided ai 6= cj for all 1 ≤ i ≤ k and 1 ≤ j ≤ `.

Listed here are seven basic properties of permutations. They are all easy except
4), which is rather delicate. Properties 8), 9), and 10) are listed solely for reference.

Theorem

1) Disjoint cycles commute. (This is obvious.)

2) Every permutation can be written uniquely (except for order) as the product of

disjoint cycles. (This is easy.)

3) Every permutation can be written (non-uniquely) as the product of transpostions.

(Proof: (a1, ..., an) = (a1, a2)(a1, a3) · · · (a1, an). )

4) The parity of the number of these transpositions is unique. This means that if

f is the product of p transpositions and also of q transpositions, then p is

even iff q is even. In this case, f is said to be an even permutation. In the other

case, f is an odd permutation.

5) A k-cycle is even (odd) iff k is odd (even). For example (1, 2, 3) = (1, 2)(1, 3) is

an even permutation.

6) Suppose f, g ∈ Sn. If one of f and g is even and the other is odd, then g ◦ f is
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odd. If f and g are both even or both odd, then g ◦ f is even. (Obvious.)

7) The map h : Sn → Z2 defined by h(even)= [0] and h(odd)= [1] is a

homomorphism from a multiplicative group to an additive group. Its kernel (the

subgroup of even permutations) is denoted by An and is called the alternating

group. Thus An is a normal subgroup of index 2, and Sn/An ≈ Z2.

The following parts are not included in this course. They are presented here merely
for reference.

8) For any n 6= 4, An is simple, i.e., has no proper normal subgroups.

9) For any n ≥ 3, An is generated by its 3-cycles.

10) Sn can be generated by two elements. In fact, {(1, 2), (1, 2, ..., n)} generates Sn.

(Of course there are subgroups of Sn which cannot be generated by two

elements).

Proof of 4) The proof presented here uses polynomials in n variables with real
coefficients. Since polynomials will not be introduced until Chapter 3, the student
may skip the proof until after that chapter. Suppose S = {1, ..., n}. If σ is a
permutation on S and p = p(x1, ..., xn) is a polynomial in n variables, define σ(p)
to be the polynomial p(x(1)σ, ..., x(n)σ). Thus if p = x1x

2
2 + x1x3, and σ is the trans-

position (1, 2), then σ(p) = x2x
2
1 + x2x3. Note that if σ1 and σ2 are permutations,

σ2(σ1(p)) = (σ1 ·σ2)(p). Now let p be the product of all (xi−xj) where 1 ≤ i < j ≤ n.
(For example, if n = 3, p = (x1 − x2)(x1 − x3)(x2 − x3).) If σ is a permutation on S,
then for each 1 ≤ i, j ≤ n with i 6= j, σ(p) has (xi−xj) or (xj −xi) as a factor. Thus
σ(p) = ±p. A careful examination shows that if σi is a transposition, σi(p) = −p.
Any permutation σ is the product of transpositions, σ = σ1 ·σ2 ···σt. Thus if σ(p) = p,
t must be even, and if σ(p) = −p, t must be odd.

Exercise

1) Write

(
1 2 3 4 5 6 7
6 5 4 3 1 7 2

)
as the product of disjoint cycles.

Write (1,5,6,7)(2,3,4)(3,7,1) as the product of disjoint cycles.

Write (3,7,1)(1,5,6,7)(2,3,4) as the product of disjoint cycles.

Which of these permutations are odd and which are even?
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2) Suppose (a1, . . . , ak) and (c1, . . . , c`) are disjoint cycles. What is the order of
their product?

3) Suppose σ ∈ Sn. Show that σ−1(1, 2, 3)σ = ((1)σ, (2)σ, (3)σ). This shows
that conjugation by σ is just a type of relabeling. Also let τ = (4, 5, 6) and
find τ−1(1, 2, 3, 4, 5)τ .

4) Show that H = {σ ∈ S6 : (6)σ = 6} is a subgroup of S6 and find its right
cosets and its left cosets.

5) Let A ⊂ R2 be the square with vertices (−1, 1), (1, 1), (1,−1), and (−1,−1),
and G be the collection of all isometries of A onto itself. We know from a
previous exercise that G is a group with eight elements. It follows from Cayley’s
theorem that G is isomorphic to a subgroup of S8. Show that G is isomorphic
to a subgroup of S4.

6) If G is a multiplicative group, define a new multiplication on the set G by
a ◦ b = b · a. In other words, the new multiplication is the old multiplication
in the opposite order. This defines a new group denoted by Gop, the opposite
group. Show that it has the same identity and the same inverses as G, and
that f : G → Gop defined by f(a) = a−1 is a group isomorphism. Now consider
the special case G = Sn. The convention used in this section is that an element
of Sn is a permutation on {1, 2, . . . , n} with the variable written on the left.
Show that an element of Sop

n is a permutation on {1, 2, . . . , n} with the variable
written on the right. (Of course, either Sn or Sop

n may be called the symmetric
group, depending on personal preference or context.)

Product of Groups

The product of groups is usually presented for multiplicative groups. It is pre-
sented here for additive groups because this is the form that occurs in later chapters.
As an exercise, this section should be rewritten using multiplicative notation. The
two theorems below are transparent and easy, but quite useful. For simplicity we
first consider the product of two groups, although the case of infinite products is only
slightly more difficult. For background, read the two theorems on page 11.

Theorem Suppose G1 and G2 are additive groups. Define an addition on G1×G2

by (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2). This operation makes G1 ×G2 into a group.
Its “zero” is (0

¯1, 0¯2) and −(a1, a2) = (−a1,−a2). The projections π1 : G1 × G2 → G1
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and π2 : G1 × G2 → G2 are group homomorphisms. Suppose G is an additive group.
We know there is a bijection from {functions f : G → G1 × G2} to {ordered pairs of
functions (f1, f2) where f1 : G → G1 and f2 : G → G2}. Under this bijection, f is a
group homomorphism iff each of f1 and f2 is a group homomorphism.

Proof It is transparent that the product of groups is a group, so let’s prove
the last part. Suppose G,G1, and G2 are groups and f = (f1, f2) is a function
from G to G1 × G2. Now f(a + b) = (f1(a + b), f2(a + b)) and f(a) + f(b) =
(f1(a), f2(a)) + (f1(b), f2(b)) = (f1(a) + f1(b), f2(a) + f2(b)). An examination of these
two equations shows that f is a group homomorphism iff each of f1 and f2 is a group
homomorphism.

Exercise Suppose G1 and G2 are groups. Show G1 ×G2 and G2 ×G1 are isomor-
phic.

Exercise If o(a1) = n and o(a2) = m, find the order of (a1, a2) in G1 × G2.

Exercise Show that if G is any group of order 4, G is isomorphic to Z4 or Z2×Z2.
Show Z4 is not isomorphic to Z2 × Z2. Show that Zmn is isomorphic to Zn × Zm iff
(n,m) = 1.

Exercise Suppose G1 and G2 are groups and i1 : G1 → G1 × G2 is defined by
i1(g1) = (g1, 0

¯2). Show i1 is an injective group homomorphism and its image is a
normal subgroup of G1 × G2. Usually G1 is identified with its image under i1, so G1

may be considered to be a normal subgroup of G1 × G2. Let π2 : G1 × G2 → G2

be the projection map defined in the Background chapter. Show π2 is a surjective
homomorphism with kernel G1. Therefore (G1 × G2)/G1 ≈ G2.

Exercise Let R be the reals under addition. Show that the addition in the
product R × R is just the usual addition in analytic geometry.

Exercise Suppose n > 2. Is Sn isomorphic to An ×G where G is a multiplicative
group of order 2?

One nice thing about the product of groups is that it works fine for any finite
number, or even any infinite number. The next theorem is stated in full generality.
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Theorem Suppose T is an index set, and for any t ∈ T , Gt is an additive
group. Define an addition on

∏
t∈T

Gt =
∏

Gt by {at} + {bt} = {at + bt}. This op-

eration makes the product into a group. Its “zero” is {0
¯t} and −{at} = {−at}.

Each projection πs :
∏

Gt → Gs is a group homomorphism. Suppose G is an ad-
ditive group. Under the natural bijection from {functions f : G → ∏

Gt} to
{sequences of functions {ft}t∈T where ft : G → Gt}, f is a group homomorphism
iff each ft is a group homomorphism. Finally, the scalar multiplication on

∏
Gt

by integers is given coordinatewise, i.e., {at}n = {atn}.

Proof The addition on
∏

Gt is coordinatewise.

Exercise Suppose s is an element of T and πs :
∏

Gt → Gs is the projection map
defined in the Background chapter. Show πs is a surjective homomorphism and find
its kernel.

Exercise Suppose s is an element of T and is : Gs → ∏
Gt is defined by is(a) =

{at} where at = 0
¯

if t 6= s and as = a. Show is is an injective homomorphism
and its image is a normal subgroup of

∏
Gt. Thus each Gs may be considered to be

a normal subgroup of
∏

Gt.

Exercise Let f : Z → Z30 × Z100 be the homomorphism defined by f(m) =
([4m], [3m]). Find the kernel of f. Find the order of ([4], [3]) in Z30 × Z100.

Exercise Let f : Z → Z90 × Z70 × Z42 be the group homomorphism defined by
f(m) = ([m], [m], [m]). Find the kernel of f and show that f is not surjective. Let
g : Z → Z45 × Z35 × Z21 be defined by g(m) = ([m], [m], [m]). Find the kernel of
g and determine if g is surjective. Note that the gcd of {45, 35, 21} is 1. Now let
h : Z → Z8 × Z9 × Z35 be defined by h(m) = ([m], [m], [m]). Find the kernel of h
and show that h is surjective. Finally suppose each of b, c, and d is greater than 1
and f : Z → Zb × Zc × Zd is defined by f(m) = ([m], [m], [m]). Find necessary and
sufficient conditions for f to be surjective.

Exercise Suppose T is a non-void set, G is an additive group, and GT is the
collection of all functions f : T → G with addition defined by (f +g)(t) = f(t)+g(t).
Show GT is a group. For each t ∈ T , let Gt = G. Note that GT is just another way
of writing

∏
t∈T

Gt. Also note that if T = [0, 1] and G = R, the addition defined on

GT is just the usual addition of functions used in calculus. (See exercises on pages 44
and 69.)
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Rings

Rings are additive abelian groups with a second operation called multiplication. The
connection between the two operations is provided by the distributive law. Assuming
the results of Chapter 2, this chapter flows smoothly. This is because ideals are also
normal subgroups and ring homomorphisms are also group homomorphisms. We do
not show that the polynomial ring F [x] is a unique factorization domain, although
with the material at hand, it would be easy to do. Also there is no mention of prime
or maximal ideals, because these concepts are unnecessary for our development of
linear algebra. These concepts are developed in the Appendix. A section on Boolean
rings is included because of their importance in logic and computer science.

Suppose R is an additive abelian group, R 6= 0
¯
, and R has a second binary

operation (i.e., map from R × R to R) which is denoted by multiplication. Consider
the following properties.

1) If a, b, c ∈ R, (a · b) · c = a · (b · c). (The associative property
of multiplication.)

2) If a, b, c ∈ R, a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a).
(The distributive law, which connects addition and
multiplication.)

3) R has a multiplicative identity, i.e., an element
1
¯

= 1
¯R ∈ R such that if a ∈ R, a · 1

¯
= 1

¯
· a = a.

4) If a, b ∈ R, a · b = b · a. (The commutative property for
multiplication.)

Definition If 1), 2), and 3) are satisfied, R is said to be a ring. If in addition 4)
is satisfied, R is said to be a commutative ring.

Examples The basic commutative rings in mathematics are the integers Z, the

37
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rational numbers Q, the real numbers R, and the complex numbers C. It will be shown
later that Zn, the integers mod n, has a natural multiplication under which it is a
commutative ring. Also if R is any commutative ring, we will define R[x1, x2, . . . , xn],
a polynomical ring in n variables. Now suppose R is any ring, n ≥ 1, and Rn is the
collection of all n×n matrices over R. In the next chapter, operations of addition and
multiplication of matrices will be defined. Under these operations, Rn is a ring. This
is a basic example of a non-commutative ring. If n > 1, Rn is never commutative,
even if R is commutative.

The next two theorems show that ring multiplication behaves as you would wish
it to. They should be worked as exercises.

Theorem Suppose R is a ring and a, b ∈ R.

1) a · 0
¯

= 0
¯
· a = 0

¯
. Therefore 1

¯
6= 0

¯
.

2) (−a) · b = a · (−b) = −(a · b).

Recall that, since R is an additive abelian group, it has a scalar multiplication
over Z. This scalar multiplication can be written on the right or left, i.e., na = an,
and the next theorem shows it relates nicely to the ring multiplication.

Theorem Suppose a, b ∈ R and n,m ∈ Z.

1) (na) · (mb) = (nm)(a · b). (This follows from the distributive
law and the previous theorem.)

2) Let n
¯

= n1
¯
. For example, 2

¯
= 1

¯
+ 1

¯
. Then na = n

¯
· a, that is, scalar

multiplication by n is the same as ring multiplication by n
¯
.

Of course, n
¯

may be 0
¯

even though n 6= 0.

Units

Definition An element a of a ring R is a unit provided ∃ an element a−1 ∈ R
with a · a−1 = a−1 · a = 1

¯
.

Theorem 0
¯

can never be a unit. 1
¯

is always a unit. If a is a unit, a−1 is also a
unit with (a−1)−1 = a. The product of units is a unit with (a · b)−1 = b−1 · a−1. More
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generally, if a1, a2, ..., an are units, then their product is a unit with (a1 ·a2 · · ·an)−1 =
a−1

n · a−1
n−1 · · · a−1

1 . The set of all units of R forms a multiplicative group denoted by
R∗. Finally if a is a unit, (−a) is a unit and (−a)−1 = −(a−1).

In order for a to be a unit, it must have a two-sided inverse. It suffices to require
a left inverse and a right inverse, as shown in the next theorem.

Theorem Suppose a ∈ R and ∃ elements b and c with b · a = a · c = 1
¯
. Then

b = c and so a is a unit with a−1 = b = c.

Proof b = b · 1
¯

= b · (a · c) = (b · a) · c = 1
¯
· c = c.

Corollary Inverses are unique.

Domains and Fields In order to define these two types of rings, we first consider
the concept of zero divisor.

Definition Suppose R is a commutative ring. A non-zero element a ∈ R is called
a zero divisor provided ∃ a non-zero element b with a · b = 0

¯
. Note that if a is a unit,

it cannot be a zero divisor.

Theorem Suppose R is a commutative ring and a ∈ (R− 0
¯
) is not a zero divisor.

Then (a · b = a · c) ⇒ b = c. In other words, multiplication by a is an injective map
from R to R. It is surjective iff a is a unit.

Definition A domain (or integral domain) is a commutative ring such that, if
a 6= 0, a is not a zero divisor. A field is a commutative ring such that, if a 6= 0, a is a
unit. In other words, R is a field if it is commutative and its non-zero elements form
a group under multiplication.

Theorem A field is a domain. A finite domain is a field.

Proof A field is a domain because a unit cannot be a zero divisor. Suppose R is
a finite domain and a 6= 0. Then f : R → R defined by f(b) = a · b is injective and,
by the pigeonhole principle, f is surjective. Thus a is a unit and so R is a field.
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Exercise Let C be the additive abelian group R2. Define multiplication by
(a, b) · (c, d) = (ac − bd, ad + bc). Show C is a commutative ring which is a field.
Note that 1

¯
= (1, 0) and if i = (0, 1), then i2 = −1

¯
.

Examples Z is a domain. Q, R, and C are fields.

The Integers Mod n

The concept of integers mod n is fundamental in mathematics. It leads to a neat
little theory, as seen by the theorems below. However, the basic theory cannot be
completed until the product of rings is defined. (See the Chinese Remainder Theorem
on page 50.) We know from Chapter 2 that Zn is an additive abelian group.

Theorem Suppose n > 1. Define a multiplication on Zn by [a] · [b] = [ab]. This
is a well defined binary operation which makes Zn into a commutative ring.

Proof Since [a + kn] · [b + ln] = [ab + n(al + bk + kln)] = [ab], the multiplication
is well defined. The ring axioms are easily verified.

Theorem Suppose n > 1 and a ∈ Z. Then the following are equivalent.

1) [a] is a generator of the additive group Zn.

2) (a, n) = 1.

3) [a] is a unit of the ring Zn.

Proof We already know 1) and 2) are equivalent. Recall that if b is an integer,
[a]b = [a] · [b] = [ab]. Thus 1) and 3) are equivalent, because each says ∃ an integer
b with [a]b = [1].

Corollary If n > 1, the following are equivalent.

1) Zn is a domain.

2) Zn is a field.

3) n is a prime.

Proof We already know 1) and 2) are equivalent, because Zn is finite. Suppose
3) is true. Then by the previous theorem, each of [1], [2],...,[n − 1] is a unit, and
thus 2) is true. Now suppose 3) is false. Then n = ab where 1 < a < n, 1 < b < n,
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[a][b] = [0], and thus [a] is a zero divisor and 1) is false.

Exercise List the units and their inverses for Z7 and Z12. Show that (Z7)
∗ is

a cyclic group but (Z12)
∗ is not. Show that in Z12 the equation x2 = 1

¯
has four

solutions. Finally show that if R is a domain, x2 = 1
¯

can have at most two solutions
in R.

Subrings Suppose S is a subset of a ring R. The statement that S is a subring
of R means that S is a subgroup of the group R, 1

¯
∈ S , and (a, b ∈ S ⇒ a · b ∈ S).

Then clearly S is a ring and has the same multiplicative identity as R. Note that Z
is a subring of Q, Q is a subring of R, and R is a subring of C. Subrings do not play
a role analogous to subgroups. That role is played by ideals, and an ideal is never a
subring (unless it is the entire ring). Note that if S is a subring of R and s ∈ S, then
s may be a unit in R but not in S. Note also that Z and Zn have no proper subrings,
and thus occupy a special place in ring theory, as well as in group theory.

Ideals and Quotient Rings

Ideals in ring theory play a role analagous to normal subgroups in group theory.

Definition A subset I of a ring R is a




left
right
2−sided


 ideal provided it is a subgroup

of the additive group R and if a ∈ R and b ∈ I, then




a · b ∈ I
b · a ∈ I
a · b and b · a ∈ I


. The

word “ideal ” means “2-sided ideal”. Of course, if R is commutative, every right or
left ideal is an ideal.

Theorem Suppose R is a ring.

1) R and 0
¯

are ideals of R. These are called the improper ideals.

2) If {It}t∈T is a collection or right (left, 2-sided) ideals of R, then
⋂
t∈T

It is a

right (left, 2-sided) ideal of R.
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3) Furthermore, if the collection is monotonic, then
⋃
t∈T

It is a right (left, 2-sided)

ideal of R.

4) If a ∈ R, I = aR is a right ideal. Thus if R is commutative, aR is an ideal,
called a principal ideal. Thus every subgroup of Z is a principal ideal,
because it is of the form nZ.

5) If R is a commutative ring and I ⊂ R is an ideal, then the following are
equivalent.

i) I = R.
ii) I contains some unit u.
iii) I contains 1

¯
.

Exercise Suppose R is a commutative ring. Show that R is a field iff R contains
no proper ideals.

The following theorem is just an observation, but it is in some sense the beginning
of ring theory.

Theorem Suppose R is a ring and I ⊂ R is an ideal, I 6= R. Since I is a normal
subgroup of the additive group R, R/I is an additive abelian group. Multiplication
of cosets defined by (a + I) · (b + I) = (ab + I) is well defined and makes R/I a ring.

Proof (a + I) · (b + I) = a · b + aI + Ib + II ⊂ a · b + I. Thus multiplication
is well defined, and the ring axioms are easily verified. The multiplicative identity is
(1
¯

+ I).

Observation If R = Z and I = nZ, the ring structure on Zn = Z/nZ is the
same as the one previously defined.

Homomorphisms

Definition Suppose R and R̄ are rings. A function f : R → R̄ is a ring homo-
morphism provided

1) f is a group homomorphism
2) f(1

¯R) = 1
¯R̄ and

3) if a, b ∈ R then f(a · b) = f(a) · f(b). (On the left, multiplication
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is in R, while on the right multiplication is in R̄.)

The kernel of f is the kernel of f considered as a group homomorphism, namely
f−1(0

¯
).

Here is a list of the basic properties of ring homomorphisms. Much of this
work has already been done in the theorem in group theory on page 28.

Theorem Suppose each of R and R̄ is a ring.

1) The identity map IR : R → R is a ring homomorphism.

2) The zero map from R to R̄ is not a ring homomorphism

(because it does not send 1
¯

to 1
¯
).

3) The composition of ring homomorphisms is a ring homomorphism.

4) If f : R → R̄ is a bijection which is a ring homomorphism,

then f−1 : R̄ → R is a ring homomorphism. Such an f is called

a ring isomorphism. In the case R = R̄, f is also called a

ring automorphism.

5) The image of a ring homomorphism is a subring of the range.

6) The kernel of a ring homomorphism is an ideal of the domain.

In fact, if f : R → R̄ is a homomorphism and I ⊂ R̄ is an ideal,

then f−1(I) is an ideal of R.

7) Suppose I is an ideal of R, I 6= R, and π : R → R/I is the

natural projection, π(a) = (a + I). Then π is a surjective ring

homomorphism with kernel I. Furthermore, if f : R → R̄ is a surjective

ring homomorphism with kernel I, then R/I ≈ R̄ (see below).

8) From now on the word “homomorphism” means “ring homomorphism”.

Suppose f : R → R̄ is a homomorphism and I is an ideal of R, I 6= R.

If I ⊂ ker(f), then f̄ : R/I → R̄ defined by f̄(a + I) = f(a)
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is a well defined homomorphism making the following diagram commute.

R R̄

R/I

f

?

-

½
½

½
½

½
½

½½>

π
f̄

Thus defining a homomorphism on a quotient ring is the same as
defining a homomorphism on the numerator which sends the
denominator to zero. The image of f̄ is the image of f , and
the kernel of f̄ is ker(f)/I. Thus if I = ker(f), f̄ is
injective, and so R/I ≈ image (f).

Proof We know all this on the group level, and it is only necessary
to check that f̄ is a ring homomorphism, which is obvious.

9) Given any ring homomorphism f , domain(f)/ker(f) ≈ image(f).

Exercise Find a ring R with an ideal I and an element b such that b is not a unit
in R but (b + I) is a unit in R/I.

Exercise Show that if u is a unit in a ring R, then conjugation by u is an
automorphism on R. That is, show that f : R → R defined by f(a) = u−1 · a · u is
a ring homomorphism which is an isomorphism.

Exercise Suppose R is a ring, T is a non-void set, and RT is the collection of
all functions f : T → R. Define addition and multiplication on RT point-wise. This
means if f and g are functions from T to R, then (f + g)(t) = f(t) + g(t) and
(f · g)(t) = f(t)g(t). Show that under these operations RT is a ring. Suppose S is a
non-void set and α : S → T is a function. If f : T → R is a function, define a function
α∗(f) : S → R by α∗(f) = f ◦ α. Show α∗ : RT → RS is a ring homomorphism.

Exercise Now consider the case T = [0, 1] and R = R. Let A ⊂ R[0,1] be the
collection of all C∞ functions, i.e., A ={f : [0, 1] → R : f has an infinite number of
derivatives}. Show A is a ring. Notice that much of the work has been done in the
previous exercise. It is only necessary to show that A is a subring of the ring R[0,1].
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Polynomial Rings

In calculus, we consider real functions f which are polynomials, f(x ) = a0 +a1x +
· ·+anx

n. The sum and product of polynomials are again polynomials, and it is easy
to see that the collection of polynomial functions forms a commutative ring. We can
do the same thing formally in a purely algebraic setting.

Definition Suppose R is a commutative ring and x is a “variable” or “symbol”.
The polynomial ring R[x ] is the collection of all polynomials f = a0 + a1x + · ·+anx

n

where ai ∈ R. Under the obvious addition and multiplication, R[x ] is a commutative
ring. The degree of a non-zero polynomial f is the largest integer n such that an 6= 0,
and is denoted by n = deg(f). If an = 1

¯
, then f is said to be monic.

To be more formal, think of a polynomial a0 + a1x + · · · as an infinite sequence
(a0, a1, ...) such that each ai ∈ R and only a finite number are non-zero. Then

(a0, a1, ...) + (b0, b1, ...) = (a0 + b0, a1 + b1, ...) and

(a0, a1, ...) · (b0, b1, ...) = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, ...).

Note that on the right, the ring multiplication a · b is written simply as ab, as is
often done for convenience.

Theorem If R is a domain, R[x ] is also a domain.

Proof Suppose f and g are non-zero polynomials. Then deg(f)+deg(g) = deg(fg)
and thus fg is not 0

¯
. Another way to prove this theorem is to look at the bottom

terms instead of the top terms. Let aix
i and bjx

j be the first non-zero terms of f and
g. Then aibjx

i+j is the first non-zero term of fg.

Theorem (The Division Algorithm) Suppose R is a commutative ring, f ∈
R[x ] has degree ≥ 1 and its top coefficient is a unit in R. (If R is a field, the top
coefficient of f will always be a unit.) Then for any g ∈ R[x ], ∃! h, r ∈ R[x ] such that
g = fh + r with r = 0

¯
or deg(r) < deg(f).

Proof This theorem states the existence and uniqueness of polynomials h and
r. We outline the proof of existence and leave uniqueness as an exercise. Suppose
f = a0 + a1x + · · +amxm where m ≥ 1 and am is a unit in R. For any g with
deg(g) < m, set h = 0

¯
and r = g. For the general case, the idea is to divide f into g

until the remainder has degree less than m. The proof is by induction on the degree
of g. Suppose n ≥ m and the result holds for any polynomial of degree less than
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n. Suppose g is a polynomial of degree n. Now ∃ a monomial bxt with t = n − m
and deg(g − fbxt) < n. By induction, ∃ h1 and r with fh1 + r = (g − fbxt) and
deg(r) < m. The result follows from the equation f(h1 + bxt) + r = g.

Note If r = 0 we say that f divides g. Note that f = x − c divides g iff c is a
root of g, i.e., g(c) = 0. More generally, x − c divides g with remainder g(c).

Theorem Suppose R is a domain, n > 0, and g(x) = a0 + a1x + · · · + anx
n is a

polynomial of degree n with at least one root in R. Then g has at most n roots. Let
c1, c2, .., ck be the distinct roots of g in the ring R. Then ∃ a unique sequence of
positive integers n1, n2, .., nk and a unique polynomial h with no root in R so that
g(x) = (x − c1)

n1 · · · (x − ck)
nkh(x). (If h has degree 0, i.e., if h = an, then we say

“all the roots of g belong to R”. If g = anx
n, we say “all the roots of g are 0

¯
”.)

Proof Uniqueness is easy so let’s prove existence. The theorem is clearly true
for n = 1. Suppose n > 1 and the theorem is true for any polynomial of degree less
than n. Now suppose g is a polynomial of degree n and c1 is a root of g. Then ∃
a polynomial h1 with g(x) = (x − c1)h1. Since h1 has degree less than n, the result
follows by induction.

Note If g is any non-constant polynomial in C[x], all the roots of g belong to C,
i.e., C is an algebraically closed field. This is called The Fundamental Theorem of
Algebra, and it is assumed without proof for this textbook.

Exercise Suppose g is a non-constant polynomial in R[x]. Show that if g has
odd degree then it has a real root. Also show that if g(x) = x2 + bx + c, then it has
a real root iff b2 ≥ 4c, and in that case both roots belong to R.

Definition A domain T is a principal ideal domain (PID) if, given any ideal I,
∃ t ∈ T such that I = tT . Note that Z is a PID and any field is PID.

Theorem Suppose F is a field, I is a proper ideal of F [x ], and n is the smallest
positive integer such that I contains a polynomial of degree n. Then I contains a
unique polynomial of the form f = a0 + a1x + · · +an−1x

n−1 + xn and it has the
property that I = fF [x ]. Thus F [x ] is a PID. Furthermore, each coset of I can be
written uniquely in the form (c0 + c1x + · · +cn−1x

n−1 + I).

Proof. This is a good exercise in the use of the division algorithm. Note this is
similar to showing that a subgroup of Z is generated by one element (see page 15).
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Theorem. Suppose R is a subring of a commutative ring C and c ∈ C. Then ∃!
homomorphism h : R[x ] → C with h(x ) = c and h(r) = r for all r ∈ R. It is defined
by h(a0 +a1x + · ·+anx

n) = a0 +a1c+ · ·+anc
n, i.e., h sends f(x) to f(c). The image

of h is the smallest subring of C containing R and c.

This map h is called an evaluation map. The theorem says that adding two
polynomials in R[x ] and evaluating is the same as evaluating and then adding in C.
Also multiplying two polynomials in R[x ] and evaluating is the same as evaluating
and then multiplying in C. In street language the theorem says you are free to send
x wherever you wish and extend to a ring homomorphism on R[x].

Exercise Let C = {a + bi : a, b ∈ R}. Since R is a subring of C, there exists a
homomorphism h : R[x] → C which sends x to i, and this h is surjective. Show
ker(h) = (x2 + 1)R[x ] and thus R[x ]/(x 2 + 1) ≈ C. This is a good way to look
at the complex numbers, i.e., to obtain C, adjoin x to R and set x2 = −1.

Exercise Z2[x ]/(x 2 + x + 1) has 4 elements. Write out the multiplication table
for this ring and show that it is a field.

Exercise Show that, if R is a domain, the units of R[x ] are just the units of R.
Thus if F is a field, the units of F [x ] are the non-zero constants. Show that [1]+ [2]x
is a unit in Z4[x ].

In this chapter we do not prove F [x] is a unique factorization domain, nor do
we even define unique factorization domain. The next definition and theorem are
included merely for reference, and should not be studied at this stage.

Definition Suppose F is a field and f ∈ F [x] has degree ≥ 1. The statement
that g is an associate of f means ∃ a unit u ∈ F [x] such that g = uf . The statement
that f is irreducible means that if h is a non-constant polynomial which divides f ,
then h is an associate of f .

We do not develop the theory of F [x ] here. However, the development is easy
because it corresponds to the development of Z in Chapter 1. The Division Algo-
rithm corresponds to the Euclidean Algorithm. Irreducible polynomials correspond
to prime integers. The degree function corresponds to the absolute value function.
One difference is that the units of F [x ] are non-zero constants, while the units of Z



48 Rings Chapter 3

are just ±1. Thus the associates of f are all cf with c 6= 0
¯

while the associates of an
integer n are just ±n. Here is the basic theorem. (This theory is developed in full in
the Appendix under the topic of Euclidean domains.)

Theorem Suppose F is a field and f ∈ F [x ] has degree ≥ 1. Then f factors as the
product of irreducibles, and this factorization is unique up to order and associates.
Also the following are equivalent.

1) F [x ]/(f) is a domain.

2) F [x ]/(f) is a field.

3) f is irreducible.

Definition Now suppose x and y are “variables”. If a ∈ R and n,m ≥ 0, then
axnym = aymxn is called a monomial. Define an element of R[x , y ] to be any finite
sum of monomials.

Theorem R[x , y ] is a commutative ring and (R[x ])[y ] ≈ R[x , y ] ≈ (R[y ])[x ]. In
other words, any polynomial in x and y with coefficients in R may be written as a
polynomial in y with coefficients in R[x ], or as a polynomial in x with coefficients in
R[y ].

Side Comment It is true that if F is a field, each f ∈ F [x , y ] factors as the
product of irreducibles. However F [x , y ] is not a PID. For example, the ideal
I = xF [x, y] + yF [x, y] = {f ∈ F [x, y] : f(0

¯
, 0
¯
) = 0

¯
} is not principal.

If R is a commutative ring and n ≥ 2, the concept of a polynomial ring in
n variables works fine without a hitch. If a ∈ R and v1, v2, ..., vn are non-negative
integers, then ax v1

1 x v2
2 ...x vn

n is called a monomial. Order does not matter here.
Define an element of R[x1, x2, ..., xn] to be any finite sum of monomials. This
gives a commutative ring and there is canonical isomorphism R[x1, x2, ..., xn] ≈
(R[x1, x2, ..., xn−1])[xn]. Using this and induction on n, it is easy to prove the fol-
lowing theorem.

Theorem If R is a domain, R[x1, x2, ..., xn] is a domain and its units are just the
units of R.
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Exercise Suppose R is a commutative ring and f : R[x, y] → R[x] is the eval-
uation map which sends y to 0

¯
. This means f(p(x, y)) = p(x, 0

¯
). Show f is a ring

homomorphism whose kernel is the ideal (y) = yR[x, y]. Use the fact that “the do-
main mod the kernel is isomorphic to the image” to show R[x, y]/(y) is isomorphic
to R[x].

Product of Rings

The product of rings works fine, just as does the product of groups.

Theorem Suppose T is an index set and for each t ∈ T , Rt is a ring. On the
additive abelian group

∏
t∈T

Rt =
∏

Rt, define multiplication by {rt} · {st} = {rt · st}.
Then

∏
Rt is a ring and each projection πs :

∏
Rt → Rs is a ring homomorphism.

Suppose R is a ring. Under the natural bijection from {functions f : R → ∏
Rt}

to {sequences of functions {ft}t∈T where ft : R → Rt}, f is a ring homomorphism
iff each ft is a ring homomorphism.

Proof We already know f is a group homomorphism iff each ft is a group homo-
morphism (see page 36). Note that {1

¯t} is the multiplicative identity of
∏

Rt, and
f(1

¯R) = {1
¯t} iff ft(1

¯R) = 1
¯t for each t ∈ T. Finally, since multiplication is defined

coordinatewise, f is a ring homomorphism iff each ft is a ring homomorphism.

Exercise Suppose R and S are rings. Note that R × 0 is not a subring of R × S
because it does not contain (1

¯R, 1
¯S). Show R× 0

¯
is an ideal and (R× S/R× 0

¯
) ≈ S.

Suppose I ⊂ R and J ⊂ S are ideals. Show I ×J is an ideal of R×S and every ideal
of R × S is of this form.

Exercise Suppose R and S are commutative rings. Show T = R × S is not a
domain. Let e = (1, 0) ∈ R× S and show e2 = e, (1− e)2 = (1− e), R× 0 = eT , and
0 × S = (1 − e)T .

Exercise If T is any ring, an element e of T is called an idempotent provided
e2 = e. The elements 0 and 1 are idempotents called the trivial idempotents. Suppose
T is a commutative ring and e ∈ T is an idempotent with 0 6= e 6= 1. Let R = eT
and S = (1 − e)T . Show each of the ideals R and S is a ring with identity, and
f : T → R×S defined by f(t) = (et, (1− e)t) is a ring isomorphism. This shows that
a commutative ring T splits as the product of two rings iff it contains a non-trivial
idempotent.
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The Chinese Remainder Theorem

Suppose n and m are relatively prime integers with n,m > 1. There is an exercise
in Chapter 2 to show that Znm and Zn ×Zm are isomorphic as groups. It will now be
shown that they are also isomorphic as rings. (For a useful and elegant generalization
of this theorem, see the Appendix.)

Theorem Suppose n1, ..., nt are integers, each ni > 1, and (ni, nj) = 1 for all
i 6= j. Let fi : Z → Zni

be defined by fi(a) = [a]. (Note that the bracket symbol is
used ambiguously.) Then the ring homomorphism f = (f1, .., ft) : Z → Zn1 × · ·×Znt

is surjective. Furthermore, the kernel of f is nZ, where n = n1n2 · ·nt. Thus Zn and
Zn1 × · · ×Znt are isomorphic rings.

Proof We wish to show that the order of f(1) is n, and thus f(1) is a group
generator, and thus f is surjective. The element f(1)m = ([1], .., [1])m = ([m], .., [m])
is zero iff m is a multiple of each of n1, .., nt. Since their least common multiple is n,
the order of f(1) is n. (See the fourth exercise on page 36.)

Exercise Show that if a is an integer and p is a prime, then [a] = [ap] in Zp

(Fermat’s Little Theorem). Use this and the Chinese Remainder Theorem to show
that if b is a positive integer, it has the same last digit as b5.

Characteristic

The following theorem is just an observation, but it shows that in ring theory, the
ring of integers is a “cornerstone”.

Theorem If R is a ring, there is one and only one ring homomorphism f : Z → R.
It is given by f(m) = m1

¯
= m

¯
. Thus the subgroup of R generated by 1

¯
is a subring

of R isomorphic to Z or isomorphic to Zn for some positive integer n.

Definition Suppose R is a ring and f : Z → R is the natural ring homomorphism
f(m) = m1

¯
= m

¯
. The non-negative integer n with ker(f) = nZ is called the charac-

teristic of R. Thus f is injective iff R has characteristic 0 iff 1
¯

has infinite order.
If f is not injective, the characteristic of R is the order of 1

¯
.

It is an interesting fact that, if R is a domain, all the non-zero elements of R
have the same order.
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Theorem Suppose R is a domain. If R has characteristic 0, then each non-zero
a ∈ R has infinite order. If R has finite characteristic n, then n is a prime and each
non-zero a ∈ R has order n.

Proof Suppose R has characteristic 0, a is a non-zero element of R, and m is a
positive integer. Then ma = m

¯
· a cannot be 0

¯
because m

¯
, a 6= 0

¯
and R is a domain.

Thus o(a) = ∞. Now suppose R has characteristic n. Then R contains Zn as a
subring, and thus Zn is a domain and n is a prime. If a is a non-zero element of R,
na = n

¯
· a = 0

¯
· a = 0

¯
and thus o(a) = n.

Exercise Show that if F is a field of characteristic 0, F contains Q as a subring.
That is, show that the injective homomorphism f : Z → F extends to an injective
homomorphism f̄ : Q → F .

Boolean Rings

This section is not used elsewhere in this book. However it fits easily here, and is
included for reference.

Definition A ring R is a Boolean ring if for each a ∈ R, a2 = a, i.e., each element
of R is an idempotent.

Theorem Suppose R is a Boolean ring.

1) R has characteristic 2. If a ∈ R, 2a = a + a = 0
¯
, and so a = −a.

Proof (a + a) = (a + a)2 = a2 + 2a2 + a2 = 4a. Thus 2a = 0
¯

2) R is commutative.

Proof (a + b) = (a + b)2 = a2 + (a · b) + (b · a) + b2

= a + (a · b) − (b · a) + b. Thus a · b = b · a.

3) If R is a domain, R ≈ Z2.

Proof Suppose a 6= 0
¯
. Then a · (1

¯
− a) = 0

¯
and so a = 1

¯
.

4) The image of a Boolean ring is a Boolean ring. That is, if I is an ideal
of R with I 6= R, then every element of R/I is idempotent and thus R/I

is a Boolean ring. It follows from 3) that R/I is a domain iff R/I is a
field iff R/I ≈ Z2. (In the language of Chapter 6, I is a prime ideal
iff I is a maximal ideal iff R/I ≈ Z2).
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Suppose X is a non-void set. If a is a subset of X, let a′ = (X−a) be a complement
of a in X. Now suppose R is a non-void collection of subsets of X. Consider the
following properties for R.

1) a ∈ R ⇒ a′ ∈ R.
2) a, b ∈ R ⇒ (a ∩ b) ∈ R.
3) a, b ∈ R ⇒ (a ∪ b) ∈ R.
4) ∅ ∈ R and X ∈ R.

Theorem If 1) and 2) are satisfied, then 3) and 4) are satisfied. In this case, R
is called a Boolean algebra of sets.

Proof Suppose 1) and 2) are true, and a, b ∈ R. Then a∪ b = (a′∩ b′)′ belongs to
R and so 3) is true. Since R is non-void, it contains some element a. Then ∅ = a∩ a′

and X = a ∪ a′ belong to R, and so 4) is true.

Theorem Suppose R is a Boolean algebra of sets. Define an addition on R by
a + b = (a ∪ b) − (a ∩ b). Under this addition, R is an abelian group with 0

¯
= ∅ and

a = −a. Define a multiplication on R by a · b = a ∩ b. Under this multiplication R
becomes a Boolean ring with 1

¯
= X.

Note Suppose R is a Boolean ring. It is a classical theorem that ∃ a Boolean
algebra of sets whose Boolean ring is isomorphic to R. So let’s just suppose R is
a Boolean algebra of sets which is a Boolean ring with addition and multiplication
defined as above. Now define a ∨ b = a ∪ b and a ∧ b = a ∩ b. These operations cup
and cap are associative, commutative, have identity elements, and each distributes
over the other. With these two operations (along with complement), R is called a
Boolean algebra. R is not a group under cup or cap. Anyway, it is a classical fact
that, if you have a Boolean ring (algebra), you have a Boolean algebra (ring). The
advantage of the algebra is that it is symmetric in cup and cap. The advantage of
the ring viewpoint is that you can draw from the rich theory of commutative rings.

Exercise Let X = {1, 2, ..., n} and let R be the Boolean ring of all subsets of
X. Note that o(R) = 2n. Define fi : R → Z2 by fi(a) = [1] iff i ∈ a. Show each
fi is a homomorphism and thus f = (f1, ..., fn) : R → Z2 × Z2 × · · ×Z2 is a ring
homomorphism. Show f is an isomorphism.

Exercise Suppose R is a finite Boolean ring. Show that R ≈ Z2 ×Z2 × · · ×Z2.



Chapter 4

Matrices and Matrix Rings

We first consider matrices in full generality, i.e., over an arbitrary ring R. However,
after the first few pages, it will be assumed that R is commutative. The topics,
such as invertible matrices, transpose, elementary matrices, systems of equations,
and determinant, are all classical. The highlight of the chapter is the theorem that a
square matrix is a unit in the matrix ring iff its determinant is a unit in the ring.
This chapter concludes with the theorem that similar matrices have the same deter-
minant, trace, and characteristic polynomial. This will be used in the next chapter
to show that an endomorphism on a finitely generated vector space has a well defined
determinant, trace, and characteristic polynomial.

Definition Suppose m and n are positive integers. Let Rm,n be the collection of
all m × n matrices

A = (ai,j) =




a1,1 . . . a1,n
...

...
am,1 . . . am,n


 where each entry ai,j ∈ R.

A matrix may be viewed as m n-dimensional row vectors or as n m-dimensional
column vectors. A matrix is said to be square if it has the same number of rows
as columns. Square matrices are so important that they have a special notation,
Rn = Rn,n. Rn is defined to be the additive abelian group R × R × · · · × R.
To emphasize that Rn does not have a ring structure, we use the “sum” notation,
Rn = R⊕R⊕ · · · ⊕R. Our convention is to write elements of Rn as column vectors,
i.e., to identify Rn with Rn,1. If the elements of Rn are written as row vectors, Rn is
identified with R1,n.

53
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Addition of matrices To “add” two matrices, they must have the same number
of rows and the same number of columns, i.e., addition is a binary operation Rm,n ×
Rm,n → Rm,n. The addition is defined by (ai,j)+ (bi,j) = (ai,j + bi,j), i.e., the i, j term
of the sum is the sum of the i, j terms. The following theorem is just an observation.

Theorem Rm,n is an additive abelian group. Its “zero” is the matrix 0 = 0m,n

all of whose terms are zero. Also −(ai,j) = (−ai,j). Furthermore, as additive groups,
Rm,n ≈ Rmn.

Scalar multiplication An element of R is called a scalar. A matrix may be
“multiplied” on the right or left by a scalar. Right scalar multiplication is defined
by (ai,j)c = (ai,j · c). It is a function Rm,n × R → Rm,n. Note in particular that
scalar multiplication is defined on Rn. Of course, if R is commutative, there is no
distinction between right and left scalar multiplication.

Theorem Suppose A,B ∈ Rm,n and c, d ∈ R. Then

(A + B)c = Ac + Bc
A(c + d) = Ac + Ad

A(cd) = (Ac)d

and A1 = A

This theorem is entirely transparent. In the language of the next chapter, it merely
states that Rm,n is a right module over the ring R.

Multiplication of Matrices The matrix product AB is defined iff the number
of columns of A is equal to the number of rows of B. The matrix AB will have the
same number of rows as A and the same number of columns as B, i.e., multiplication
is a function Rm,n ×Rn,p → Rm,p. The product (ai,j)(bi,j) is defined to be the matrix
whose (s, t) term is as,1 · b1,t + · · · + as,n · bn,t, i.e., the dot product of row s of A
with column t of B.

Exercise Consider real matrices A =

(
a b
c d

)
, U =

(
2 0
0 1

)
, V =

(
0 1
1 0

)
,

and W =

(
1 2
0 1

)
. Find the matrices AU,UA,AV, V A,AW , and WA.
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Definition The identity matrix In ∈ Rn is the square matrix whose diagonal terms
are 1 and whose off-diagonal terms are 0.

Theorem Suppose A ∈ Rm,n.

1) 0p,mA = 0p,n A0n,p = 0m,p

2) ImA = A = AIn

Theorem (The distributive laws) (A + B)C = AC + BC and

C(A + B) = CA + CB whenever the
operations are defined.

Theorem (The associative law for matrix multiplication) Suppose A ∈ Rm,n,
B ∈ Rn,p, and C ∈ Rp,q. Then (AB)C = A(BC). Note that ABC ∈ Rm,q.

Proof We must show that the (s, t) terms are equal. The proof involves writing
it out and changing the order of summation. Let (xi,j) = AB and (yi,j) = BC.

Then the (s, t) term of (AB)C is
∑

i

xs,ici,t =
∑

i

(∑
j

as,jbj,i

)
ci,t =

∑
i,j

as,jbj,ici,t =

∑
j

as,j

(∑
i

bj,ici,t

)
=

∑
j

as,jyj,t which is the (s, t) term of A(BC).

Theorem For each ring R and integer n ≥ 1, Rn is a ring.

Proof This elegant little theorem is immediate from the theorems above. The
units of Rn are called invertible or non-singular matrices. They form a group under
multiplication called the general linear group and denoted by Gln(R) = (Rn)∗.

Exercise Recall that if A is a ring and a ∈ A, then aA is right ideal of A. Let
A = R2 and a = (ai,j) where a1,1 = 1 and the other entries are 0. Find aR2 and R2a.
Show that the only ideal of R2 containing a is R2 itself.

Multiplication by blocks Suppose A,E ∈ Rn, B, F ∈ Rn,m, C,G ∈ Rm,n, and
D,H ∈ Rm. Then multiplication in Rn+m is given by(

A B
C D

) (
E F
G H

)
=

(
AE + BG AF + BH
CE + DG CF + DH

)
.
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Transpose

Notation For the remainder of this chapter on matrices, suppose R is a commu-
tative ring. Of course, for n > 1, Rn is non-commutative.

Transpose is a function from Rm,n to Rn,m. If A ∈ Rm,n, At ∈ Rn,m is the matrix
whose (i, j) term is the (j, i) term of A. So row i (column i) of A becomes column
i (row i) of At. If A is an n-dimensional row vector, then At is an n-dimensional
column vector. If A is a square matrix, At is also square.

Theorem 1) (At)t = A

2) (A + B)t = At + Bt

3) If c ∈ R, (Ac)t = Atc

4) (AB)t = BtAt

5) If A ∈ Rn, then A is invertible iff At is invertible.

In this case (A−1)t = (At)−1.

Proof of 5) Suppose A is invertible. I = I t = (AA−1)t = (A−1)tAt.

Exercise Characterize those invertible matrices A ∈ R2 which have A−1 = At.
Show that they form a subgroup of Gl2(R).

Triangular Matrices

If A ∈ Rn, then A is upper (lower) triangular provided ai,j = 0 for all i > j (all
j > i). A is strictly upper (lower) triangular provided ai,j = 0 for all i ≥ j (all j ≥ i).
A is diagonal if it is upper and lower triangular, i.e., ai,j = 0 for all i 6= j. Note
that if A is upper (lower) triangular, then At is lower (upper) triangular.

Theorem If A ∈ Rn is strictly upper (or lower) triangular, then An = 0.

Proof The way to understand this is just multiply it out for n = 2 and n = 3.
The geometry of this theorem will become transparent later in Chapter 5 when the
matrix A defines an R-module endomorphism on Rn.

Definition If T is any ring, an element t ∈ T is said to be nilpotent provided ∃n
such that tn = 0. In this case, (1 − t) is a unit with inverse 1 + t + t2 + · · · + tn−1.
Thus if T = Rn and B is a nilpotent matrix, I − B is invertible.
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Exercise Let R = Z. Find the inverse of


 1 2 −3

0 1 4
0 0 1


.

Exercise Suppose A =




a1

a2 0
·

0 ·
an




is a diagonal matrix, B ∈ Rm,n,

and C ∈ Rn,p. Show that BA is obtained from B by multiplying column i of B by
ai. Show AC is obtained from C by multiplying row i of C by ai. Show A is a unit
in Rn iff each ai is a unit in R.

Scalar matrices A scalar matrix is a diagonal matrix for which all the diagonal
terms are equal, i.e., a matrix of the form cIn. The map R → Rn which sends c to
cIn is an injective ring homomorphism, and thus we may consider R to be a subring
of Rn. Multiplying by a scalar is the same as multiplying by a scalar matrix, and
thus scalar matrices commute with everything, i.e., if B ∈ Rn, (cIn)B = cB = Bc =
B(cIn). Recall we are assuming R is a commutative ring.

Exercise Suppose A ∈ Rn and for each B ∈ Rn, AB = BA. Show A is a scalar
matrix. For n > 1, this shows how non-commutative Rn is.

Elementary Operations and Elementary Matrices

There are 3 types of elementary row and column operations on a matrix A. A
need not be square.

Type 1 Multiply row i by some Multiply column i by some
unit a ∈ R. unit a ∈ R.

Type 2 Interchange row i and row j. Interchange column i and column j.

Type 3 Add a times row j Add a times column i
to row i where i 6= j and a to column j where i 6= j and a
is any element of R. is any element of R.
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Elementary Matrices Elementary matrices are square and invertible. There
are three types. They are obtained by performing row or column operations on the
identity matrix.

Type 1 B =




1
1 0

a
1

0 1
1




where a is a unit in R.

Type 2 B =




1
0 1

1
1

1 0
1




Type 3 B =




1
1 ai,j

1
1

0 1
1




where i 6= j and ai,j is
any element of R.

In type 1, all the off-diagonal elements are zero. In type 2, there are two non-zero
off-diagonal elements. In type 3, there is at most one non-zero off-diagonal element,
and it may be above or below the diagonal.

Exercise Show that if B is an elementary matrix of type 1,2, or 3, then B is
invertible and B−1 is an elementary matrix of the same type.

The following theorem is handy when working with matrices.

Theorem Suppose A is a matrix. It need not be square. To perform an elemen-
tary row (column) operation on A, perform the operation on an identity matrix to
obtain an elementary matrix B, and multiply on the left (right). That is, BA = row
operation on A and AB = column operation on A. (See the exercise on page 54.)
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Exercise Suppose F is a field and A ∈ Fm,n.

1) Show ∃ invertible matrices B ∈ Fm and C ∈ Fn such that BAC = (di,j)

where d1,1 = · · · = dt,t = 1 and all other entries are 0. The integer t is

called the rank of A. (See page 89 of Chapter 5.)

2) Suppose A ∈ Fn is invertible. Show A is the product of elementary

matrices.

3) A matrix T is said to be in row echelon form if, for each 1 ≤ i < m, the

first non-zero term of row (i + 1) is to the right of the first non-zero

term of row i. Show ∃ an invertible matrix B ∈ Fm such that BA is in

row echelon form.

4) Let A =

(
3 11
0 4

)
and D =

(
3 11
1 4

)
. Write A and D as products

of elementary matrices over Q. Is it possible to write them as products

of elementary matrices over Z?

For 1), perform row and column operations on A to reach the desired form. This
shows the matrices B and C may be selected as products of elementary matrices.
Part 2) also follows from this procedure. For part 3), use only row operations. Notice
that if T is in row-echelon form, the number of non-zero rows is the rank of T .

Systems of Equations

Suppose A = (ai,j) ∈ Rm,n and C =




c1

·
·

cm


 ∈ Rm = Rm,1. The system

a1,1x1 + · · ·+ a1,nxn = c1
...

...
...

am,1x1 + · · ·+ am,nxn = cm

of m equations in n unknowns, can be written as one

matrix equation in one unknown, namely as (ai,j)




x1

·
·

xn


 =




c1

·
·

cm


 or AX = C.
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Define f : Rn → Rm by f(D) = AD. Then f is a group homomorphism and also
f(Dc) = f(D)c for any c ∈ R. In the language of the next chapter, this says that f
is an R-module homomorphism. The following theorem summarizes what we already
know about solutions of linear equations in this setting.

Theorem

1) AX = 0 is called the homogeneous equation. Its solution set is ker(f).

2) AX = C has a solution iff C ∈ image(f). If D ∈ Rn is one

solution, the solution set is the coset D + ker(f) in Rn.

(See part 7 of the section on Homomorphisms in Chapter 2.)

3) Suppose B ∈ Rm is invertible. Then AX = C and (BA)X = BC have

the same set of solutions. Thus we may perform any row operation

on both sides of the equation and not change the solution set.

4) If A ∈ Rm is invertible, then AX = C has the unique solution

X = A−1C.

The geometry of systems of equations over a field will not become really trans-
parent until the development of linear algebra in Chapter 5.

Determinants

The concept of determinant is one of the most amazing in all of mathematics.
The proper development of this concept requires a study of multilinear forms, which
is given in Chapter 6. In this section we simply present the basic properties.

For each n ≥ 1 and each commutative ring R, determinant is a function from Rn

to R. For n = 1, | (a) | = a. For n = 2,

(
a b
c d

)
= ad − bc.

Definition Let A = (ai,j) ∈ Rn. If σ is a permutation on (1, 2, ..., n), let sign(σ) =
1 if σ is an even permutation, and sign(σ) = −1 if σ is an odd permutation. The
determinant is defined by | A |= ∑

all σ

sign(σ) a1,σ(1) · a2,σ(2) · · · an,σ(n). Check that for

n = 2, this agrees with the definition above. (Note that here we are writing the
permutation functions as σ(i) and not as (i)σ.)
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For each σ, a1,σ(1) ·a2,σ(2) · · · an,σ(n) contains exactly one factor from each row and
one factor from each column. Since R is commutative, we may rearrange the factors
so that the first comes from the first column, the second from the second column, etc.
This means that there is a permutation τ on (1, 2, . . . , n) such that a1,σ(1) · · · an,σ(n) =
aτ(1),1 · · · aτ(n),n. We wish to show that τ = σ−1 and thus sign(σ) = sign(τ). To
reduce the abstraction, suppose σ(2) = 5. Then the first expression will contain
the factor a2,5. In the second expression, it will appear as aτ(5),5, and so τ(5) = 2.
Anyway, τ is the inverse of σ and thus there are two ways to define determinant. It
follows that the determinant of a matrix is equal to the determinant of its transpose.

Theorem |A| =
∑
all σ

sign(σ)a1,σ(1) · a2,σ(2) · · · an,σ(n) =
∑
all τ

sign(τ)aτ(1),1 · aτ(2),2 · · · aτ(n),n.

Corollary |A| = |At|.

You may view an n × n matrix A as a sequence of n column vectors or as a
sequence of n row vectors. Here we will use column vectors. This means we write the
matrix A as A = (A1, A2, . . . , An) where each Ai ∈ Rn,1 = Rn.

Theorem If two columns of A are equal, then |A| = 0
¯
.

Proof For simplicity, assume the first two columns are equal, i.e., A1 = A2.
Now |A| =

∑
all τ

sign(τ)aτ(1),1 · aτ(2),2 · · · aτ(n),n and this summation has n! terms and

n! is an even number. Let γ be the transposition which interchanges one and two.
Then for any τ , aτ(1),1 · aτ(2),2 · · · aτ(n),n = aτγ(1),1 · aτγ(2),2 · · · aτγ(n),n. This pairs up
the n! terms of the summation, and since sign(τ)=−sign(τγ), these pairs cancel in
the summation. Therefore |A| = 0

¯
.

Theorem Suppose 1 ≤ r ≤ n, Cr ∈ Rn,1, and a, c ∈ R. Then |(A1, . . . , Ar−1,
aAr + cCr, Ar+1, . . . , An)| = a|(A1, . . . , An)| + c|(A1, . . . , Ar−1, Cr, Ar+1, . . . , An)|
Proof This is immediate from the definition of determinant and the distributive
law of multiplication in the ring R.

Summary Determinant is a function d : Rn → R. In the language used in the
Appendix, the two previous theorems say that d is an alternating multilinear form.
The next two theorems say that d is skew-symmetric.
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Theorem Interchanging two columns of A multiplies the determinant by minus
one.

Proof For simplicity, show that |(A2, A1, A3, . . . , An)| = −|A|. We know 0
¯

=
|(A1 + A2, A1 + A2, A3, . . . , An)| = |(A1, A1, A3, . . . , An)| + |(A1, A2, A3, . . . , An)| +
|(A2, A1, A3, . . . , An)| + |(A2, A2, A3, . . . , An)|. Since the first and last of these four
terms are zero, the result follows.

Theorem If τ is a permutation of (1, 2, . . . , n), then
|A| = sign(τ)|(Aτ(1), Aτ(2), . . . , Aτ(n))|.

Proof The permutation τ is the finite product of transpositions.

Exercise Rewrite the four preceding theorems using rows instead of columns.

The following theorem is just a summary of some of the work done so far.

Theorem Multiplying any row or column of matrix by a scalar c ∈ R, multiplies
the determinant by c. Interchanging two rows or two columns multiplies the determi-
nant by −1. Adding c times one row to another row, or adding c times one column
to another column, does not change the determinant. If a matrix has two rows equal
or two columns equal, its determinant is zero. More generally, if one row is c times
another row, or one column is c times another column, then the determinant is zero.

There are 2n ways to compute |A |; expansion by any row or expansion by any
column. Let Mi,j be the determinant of the (n − 1) × (n − 1) matrix obtained by
removing row i and column j from A. Let Ci,j = (−1)i+jMi,j. Mi,j and Ci,j are called
the (i, j) minor and cofactor of A. The following theorem is useful but the proof is a
little tedious and should not be done as an exercise.

Theorem For any 1 ≤ i ≤ n, |A |= ai,1Ci,1 + ai,2Ci,2 + · · · + ai,nCi,n. For any
1 ≤ j ≤ n, |A |= a1,jC1,j + a2,jC2,j + · · ·+ an,jCn,j. Thus if any row or any column is
zero, the determinant is zero.

Exercise Let A =


 a1 a2 a3

b1 b2 b3

c1 c2 c3


. The determinant of A is the sum of six terms.
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Write out the determinant of A expanding by the first column and also expanding by
the second row.

Theorem If A is an upper or lower triangular matrix, |A | is the product of the
diagonal elements. If A is an elementary matrix of type 2, | A |= −1. If A is an
elementary matrix of type 3, |A |= 1.

Proof We will prove the first statement for upper triangular matrices. If A ∈ R2

is an upper triangular matrix, then its determinant is the product of the diagonal
elements. Suppose n > 2 and the theorem is true for matrices in Rn−1. Suppose
A ∈ Rn is upper triangular. The result follows by expanding by the first column.

An elementary matrix of type 3 is a special type of upper or lower triangular
matrix, so its determinant is 1. An elementary matrix of type 2 is obtained from the
identity matrix by interchanging two rows or columns, and thus has determinant −1.

Theorem (Determinant by blocks) Suppose A ∈ Rn, B ∈ Rn,m, and D ∈ Rm.

Then the determinant of

(
A B
O D

)
is |A ||D |.

Proof Expand by the first column and use induction on n.

The following remarkable theorem takes some work to prove. We assume it here
without proof. (For the proof, see page 130 of the Appendix.)

Theorem The determinant of the product is the product of the determinants,
i.e., if A,B ∈ Rn, |AB | = |A ||B |. Thus |AB | = |BA | and if C is invertible,
| C−1AC | = |ACC−1| = |A |.

Corollary If A is a unit in Rn then |A | is a unit in R and |A−1 | = |A |−1.

Proof 1 = |I | = |AA−1 | = |A ||A−1 | .

One of the major goals of this chapter is to prove the converse of the preceding
corollary.

Classical adjoint Suppose R is a commutative ring and A ∈ Rn. The classical
adjoint of A is (Ci,j)

t, i.e., the matrix whose (j, i) term is the (i, j) cofactor. Before
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we consider the general case, let’s examine 2 × 2 matrices.

If A =

(
a b
c d

)
then (Ci,j) =

(
d −c

−b a

)
and so (Ci,j)

t =

(
d −b

−c a

)
. Then

A(Ci,j)
t = (Ci,j)

tA =

( |A | 0
0 |A |

)
= | A | I. Thus if | A | is a unit in R, A is

invertible and A−1 = |A |−1 (Ci,j)
t. In particular, if |A | = 1, A−1 =

(
d −b

−c a

)
.

Here is the general case.

Theorem If R is commutative and A ∈ Rn, then A(Ci,j)
t = (Ci,j)

tA = |A | I.

Proof We must show that the diagonal elements of the product A(Ci,j)
t are all

|A | and the other elements are 0. The (s, s) term is the dot product of row s of A
with row s of (Ci,j) and is thus |A | (computed by expansion by row s). For s 6= t,
the (s, t) term is the dot product of row s of A with row t of (Ci,j). Since this is the
determinant of a matrix with row s = row t, the (s, t) term is 0. The proof that
(Ci,j)

tA = |A|I is left as an exercise.

We are now ready for one of the most beautiful and useful theorems in all of
mathematics.

Theorem Suppose R is a commutative ring and A ∈ Rn. Then A is a unit in
Rn iff |A | is a unit in R. (Thus if R is a field, A is invertible iff |A | 6= 0.) If A is
invertible, then A−1 = |A |−1 (Ci,j)

t. Thus if |A | = 1, A−1 = (Ci,j)
t, the classical

adjoint of A.

Proof This follows immediately from the preceding theorem.

Exercise Show that any right inverse of A is also a left inverse. That is, suppose
A,B ∈ Rn and AB = I. Show A is invertible with A−1 = B, and thus BA = I.

Similarity

Suppose A,B ∈ Rn. B is said to be similar to A if ∃ an invertible C ∈ Rn such
that B = C−1AC, i.e., B is similar to A iff B is a conjugate of A.

Theorem B is similar to B.
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B is similar to A iff A is similar to B.

If D is similar to B and B is similar to A, then D is similar to A.

“Similarity” is an equivalence relation on Rn.

Proof This is a good exercise using the definition.

Theorem Suppose A and B are similar. Then |A | = |B | and thus A is invertible
iff B is invertible.

Proof Suppose B = C−1AC. Then |B | = | C−1AC | = |ACC−1| = |A |.

Trace Suppose A = (ai,j) ∈ Rn. Then the trace is defined by trace(A) = a1,1 +
a2,2 + · · · + an,n. That is, the trace of A is the sum of its diagonal terms.

One of the most useful properties of trace is trace(AB) = trace(BA) whenever AB
and BA are defined. For example, suppose A = (a1, a2, ..., an) and B = (b1, b2, ..., bn)t.
Then AB is the scalar a1b1 + · · · + anbn while BA is the n × n matrix (biaj). Note
that trace(AB) = trace(BA). Here is the theorem in full generality.

Theorem Suppose A ∈ Rm,n and B ∈ Rn,m. Then AB and BA are square
matrices with trace(AB) = trace(BA).

Proof This proof involves a change in the order of summation. By definition,
trace(AB) =

∑
1≤i≤m

ai,1b1,i + · · ·+ai,nbn,i =
∑

1≤i≤m

1≤j≤n

ai,jbj,i =
∑

1≤j≤n

bj,1a1,j + · · ·+bj,mam,j =

trace(BA).

Theorem If A,B ∈ Rn, trace(A + B) = trace(A) + trace(B) and

trace(AB) = trace(BA).

Proof The first part of the theorem is immediate, and the second part is a special
case of the previous theorem.

Theorem If A and B are similar, then trace(A) = trace(B).

Proof trace(B) = trace(C−1AC) = trace(ACC−1) = trace(A).
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Summary Determinant and trace are functions from Rn to R. Determinant is a
multiplicative homomorphism and trace is an additive homomorphism. Furthermore
|AB | = |BA | and trace(AB) = trace(BA). If A and B are similar, |A | = |B | and
trace(A) = trace(B).

Exercise Suppose A ∈ Rn and a ∈ R. Find |aA| and trace(aA).

Characteristic polynomials If A ∈ Rn, the characteristic polynomial CPA(x) ∈
R[x] is defined by CPA(x) = | (xI − A) |. Any λ ∈ R which is a root of CPA(x) is
called a characteristic root of A.

Theorem CPA(x) = a0 + a1x + · · · + an−1x
n−1 + xn where trace(A) = −an−1

and |A | = (−1)na0.

Proof This follows from a direct computation of the determinant.

Theorem If A and B are similar, then they have the same characteristic polyno-
mials.

Proof Suppose B = C−1AC. CPB(x) = | (xI − C−1AC) | = |C−1(xI − A)C | =
|(xI − A) | = CPA(x).

Exercise Suppose R is a commutative ring, A =

(
a b
c d

)
is a matrix in R2, and

CPA(x) = a0 + a1x + x2. Find a0 and a1 and show that a0I + a1A + A2 = 0, i.e.,
show A satisfies its characteristic polynomial. In other words, CPA(A) = 0.

Exercise Suppose F is a field and A ∈ F2. Show the following are equivalent.

1) A2 = 0.

2) | A |= trace(A) = 0.

3) CPA(x) = x2.

4) ∃ an elementary matrix C such that C−1AC is strictly upper triangular.

Note This exercise is a special case of a more general theorem. A square matrix
over a field is nilpotent iff all its characteristic roots are 0

¯
iff it is similar to a strictly

upper triangular matrix. This remarkable result cannot be proved by matrix theory
alone, but depends on linear algebra (see pages 93 and 98).
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Linear Algebra

The exalted position held by linear algebra is based upon the subject’s ubiquitous
utility and ease of application. The basic theory is developed here in full generality,
i.e., modules are defined over an arbitrary ring R and not just over a field. The
elementary facts about cosets, quotients, and homomorphisms follow the same pat-
tern as in the chapters on groups and rings. We give a simple proof that if R is a
commutative ring and f : Rn → Rn is a surjective R-module homomorphism, then
f is an isomorphism. This shows that finitely generated free R-modules have a well
defined dimension, and simplifies much of the development of linear algebra. It is in
this chapter that the concepts about functions, solutions of equations, matrices, and
generating sets come together in one unified theory.

After the general theory, we restrict our attention to vector spaces, i.e., modules
over a field. The key theorem is that any vector space V has a free basis, and thus
if V is finitely generated, it has a well defined dimension, and incredible as it may
seem, this single integer determines V up to isomorphism. Also any endomorphism
f : V → V may be represented by a matrix, and any change of basis corresponds to
conjugation of that matrix. One of the goals in linear algebra is to select a basis so
that the matrix representing f has a simple form. For example, if f is not injective,
then f may be represented by a matrix whose first column is zero. As another
example, if f is nilpotent, then f may be represented by a strictly upper triangular
matrix. The theorem on Jordan canonical form is not proved in this chapter, and
should not be considered part of this chapter. It is stated here in full generality only
for reference and completeness. The proof is given in the Appendix. This chapter
concludes with the study of real inner product spaces, and with the beautiful theory
relating orthogonal matrices and symmetric matrices.

67
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Definition Suppose R is a ring and M is an additive abelian group. The state-
ment that M is a right R-module means there is a scalar multiplication

M × R → M satisfying (a1 + a2)r = a1r + a2r
(m, r) → mr a(r1 + r2) = ar1 + ar2

a(r1 · r2) = (ar1)r2

a1
¯

= a

for all a, a1, a2 ∈ M and r, r1, r2 ∈ R.

The statement that M is a left R-module means there is a scalar multiplication

R × M → M satisfying r(a1 + a2) = ra1 + ra2

(r,m) → rm (r1 + r2)a = r1a + r2a
(r1 · r2)a = r1(r2a)

1
¯
a = a

Note that the plus sign is used ambiguously, as addition in M and as addition in R.

Notation The fact that M is a right (left) R-module will be denoted by M = MR

(M = RM). If R is commutative and M = MR then left scalar multiplication defined
by ra = ar makes M into a left R-module. Thus for commutative rings, we may write
the scalars on either side.

Convention Unless otherwise stated, the word “R-module” (or sometimes just
“module”) will mean “right R-module”.

Theorem Suppose M is an R-module.

1) If r ∈ R, then f : M → M defined by f(a) = ar is a homomorphism of
additive groups. In particular (0

¯M)r = 0
¯M .

2) If a ∈ M , a0
¯R = 0

¯M .

3) If a ∈ M and r ∈ R, then (−a)r = −(ar) = a(−r).

Proof This is a good exercise in using the axioms for an R-module.
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Submodules If M is an R-module, the statement that a subset N ⊂ M is a
submodule means it is a subgroup which is closed under scalar multiplication, i.e., if
a ∈ N and r ∈ R, then ar ∈ N . In this case N will be a module because the axioms
will be satisfied. Note that 0

¯
and M are submodules, called the improper submodules

of M .

Theorem Suppose M is an R-module, T is an index set, and for each t ∈ T ,
Nt is a submodule of M .

1)
⋂
t∈T

Nt is a submodule.

2) If {Nt} is a monotonic collection,
⋃
t∈T

Nt is a submodule.

3) +t∈T Nt = {all finite sums a1 + · · +am: each ai belongs
to some Nt} is a submodule. If T = {1, 2, .., n},
then this submodule may be written as
N1 + N2 + · · +Nn = {a1 + a2 + · · +an : each ai ∈ Ni}.

Proof We know from page 22 that versions of 1) and 2) hold for subgroups, and
in particular for subgroups of additive abelian groups. To finish the proofs it is only
necessary to check scalar multiplication, which is immediate. Also the proof of 3) is
immediate. Note that if N1 and N2 are submodules of M , N1 + N2 is the smallest
submodule of M containing N1 ∪ N2.

Exercise Suppose T is a non-void set, N is an R-module, and NT is the collection
of all functions f : T → N with addition defined by (f +g)(t) = f(t)+g(t), and scalar
multiplication defined by (fr)(t) = f(t)r. Show NT is an R-module. (We know from
the last exercise in Chapter 2 that NT is a group, and so it is only necessary to check
scalar multiplication.) This simple fact is quite useful in linear algebra. For example,
in 5) of the theorem below, it is stated that HomR(M,N) forms an abelian group. So
it is only necessary to show that HomR(M,N) is a subgroup of NM . Also in 8) it is
only necessary to show that HomR(M,N) is a submodule of NM .

Homomorphisms

Suppose M and N are R-modules. A function f : M → N is a homomorphism
(i.e., an R-module homomorphism) provided it is a group homomorphism and if
a ∈ M and r ∈ R, f(ar) = f(a)r. On the left, scalar multiplication is in M and on
the right it is in N . The basic facts about homomorphisms are listed below. Much
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of this work has already been done in the chapter on groups (see page 28).

Theorem

1) The zero map M → N is a homomorphism.

2) The identity map I : M → M is a homomorphism.

3) The composition of homomorphisms is a homomorphism.

4) The sum of homomorphisms is a homomorphism. If f, g : M → N are
homomorphisms, define (f + g) : M → N by (f + g)(a) = f(a) + g(a).
Then f + g is a homomorphism. Also (−f) defined by (−f)(a) = −f(a)
is a homomorphism. If h : N → P is a homomorphism,
h ◦ (f + g) = (h ◦ f) + (h ◦ g). If k : P → M is a homomorphism,
(f + g ) ◦ k = (f ◦ k) + (g ◦ k).

5) HomR(M,N) = Hom(MR, NR), the set of all homomorphisms from M
to N , forms an abelian group under addition. HomR(M,M), with
multiplication defined to be composition, is a ring.

6) If a bijection f : M → N is a homomorphism, then f−1 : N → M is also
a homomorphism. In this case f and f−1 are called isomorphisms. A
homomorphism f : M → M is called an endomorphism. An isomorphism
f : M → M is called an automorphism. The units of the endomorphism
ring HomR(M,M) are the automorphisms. Thus the automorphisms on
M form a group under composition. We will see later that if M = Rn,
HomR(Rn, Rn) is just the matrix ring Rn and the automorphisms
are merely the invertible matrices.

7) If R is commutative and r ∈ R, then g : M → M defined by g(a) = ar
is a homomorphism. Furthermore, if f : M → N is a homomorphism,
fr defined by (fr)(a) = f(ar) = f(a)r is a homomorphism.

8) If R is commutative, HomR(M,N) is an R-module.

9) Suppose f : M → N is a homomorphism, G ⊂ M is a submodule,
and H ⊂ N is a submodule. Then f(G) is a submodule of N
and f−1(H) is a submodule of M . In particular, image(f) is a
submodule of N and ker(f) = f−1(0

¯
) is a submodule of M .

Proof This is just a series of observations.
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Abelian groups are Z-modules On page 21, it is shown that any additive
group M admits a scalar multiplication by integers, and if M is abelian, the properties
are satisfied to make M a Z-module. Note that this is the only way M can be a Z-
module, because a1 = a, a2 = a + a, etc. Furthermore, if f : M → N is a group
homomorphism of abelian groups, then f is also a Z-module homomorphism.

Summary Additive abelian groups are “the same things” as Z-modules. While
group theory in general is quite separate from linear algebra, the study of additive
abelian groups is a special case of the study of R-modules.

Exercise If R is a subring of a ring T , then T , with scalar multiplication defined
by ring multiplication, is an R-module. In particular, R is a Q-module. If f : Q → R
is a Z-module homomorphism, must f be a Q-module homomorphism?

Homomorphisms on Rn

Rn as an R-module In Chapter 4 it was shown that the additive abelian
group Rm,n admits a scalar multiplication by elements in R. The properties listed
there were exactly those needed to make Rm,n an R-module. Of particular importance
is the case Rn = R ⊕ · · ⊕R = Rn,1. We begin with the case n = 1.

R as a right R-module Let M = R and define scalar multiplication on the right
by ar = a · r. That is, scalar multiplication is just ring multiplication. This makes
R a right R-module denoted by RR (or just R). This is the same as the definition
before for Rn when n = 1.

Theorem Suppose N is a subset of R. Then N is a submodule of RR (RR) iff
N is a right (left) ideal of R.

Proof The definitions are the same except expressed in different language.

Theorem Suppose M = MR and f, g : R → M are homomorphisms with f(1
¯
) =

g(1
¯
). Then f = g. If m ∈ M , ∃! homomorphism h : R → M with h(1

¯
) = m. In

other words, HomR(R,M) ≈ M .

Proof Suppose f(1
¯
) = g(1

¯
). Then f(r) = f(1

¯
· r) = f(1

¯
)r = g(1

¯
)r = g(1

¯
· r) =

g(r). Given m ∈ M , h : R → M defined by h(r) = mr is a homomorphism. Thus
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evaluation at 1
¯

gives a bijection from HomR(R,M) to M , and this bijection is clearly
a group isomorphism. If R is commutative, it is an isomorphism of R-modules.

In the case M = R, the above theorem states that multiplication on left by some
m ∈ R defines a right R-module homomorphism from R to R, and every module
homomorphism is of this form. The element m should be thought of as a 1 × 1
matrix. We now consider the case where the domain is Rn.

Homomorphisms on Rn Define ei ∈ Rn by ei =




0
¯·
1
¯i

·
0
¯




. Note that any




r1

·

·
rn




can be written uniquely as e1r1 + · · +enrn. The sequence {e1, .., en} is called the
canonical free basis or standard basis for Rn.

Theorem Suppose M = MR and f, g : Rn → M are homomorphisms with
f(ei) = g(ei) for 1 ≤ i ≤ n. Then f = g. If m1,m2, ...,mn ∈ M , ∃! homomorphism
h : Rn → M with h(ei) = mi for 1 ≤ i ≤ m. The homomorphism h is defined
by h(e1r1 + · · +enrn) = m1r1 + · · +mnrn.

Proof The proof is straightforward. Note this theorem gives a bijection from
HomR(Rn,M) to Mn = M×M×··×M and this bijection is a group isomorphism. We
will see later that the product Mn is an R-module with scalar multiplication defined
by (m1,m2, ..,mn)r = (m1r,m2r, ..,mnr). If R is commutative so that HomR(Rn,M)
is an R-module, this theorem gives an R-module isomorphism from HomR(Rn,M) to
Mn.

This theorem reveals some of the great simplicity of linear algebra. It does not
matter how complicated the ring R is, or which R-module M is selected. Any R-
module homomorphism from Rn to M is determined by its values on the basis, and
any function from that basis to M extends uniquely to a homomorphism from Rn to
M .

Exercise Suppose R is a field and f : RR → M is a non-zero homomorphism.
Show f is injective.



Chapter 5 Linear Algebra 73

Now let’s examine the special case M = Rm and show HomR(Rn, Rm) ≈ Rm,n.

Theorem Suppose A = (ai,j) ∈ Rm,n. Then f : Rn → Rm defined by f(B) = AB
is a homomorphism with f(ei) = column i of A. Conversely, if m1, . . . ,mn ∈ Rm,
define A ∈ Rm,n to be the matrix with column i = mi. Then f defined by f(B) = AB
is the unique homomorphism from Rn to Rm with f(ei) = mi.

Even though this follows easily from the previous theorem and properties of ma-
trices, it is one of the great classical facts of linear algebra. Matrices over R give
R-module homomorphisms! Furthermore, addition of matrices corresponds to addi-
tion of homomorphisms, and multiplication of matrices corresponds to composition
of homomorphisms. These properties are made explicit in the next two theorems.

Theorem If f, g : Rn → Rm are given by matrices A,C ∈ Rm,n, then f + g is
given by the matrix A+C. Thus HomR(Rn, Rm) and Rm,n are isomorphic as additive
groups. If R is commutative, they are isomorphic as R-modules.

Theorem If f : Rn → Rm is the homomorphism given by A ∈ Rm,n and g :
Rm → Rp is the homomorphism given by C ∈ Rp,m, then g ◦ f : Rn → Rp is given by
CA ∈ Rp,n. That is, composition of homomorphisms corresponds to multiplication
of matrices.

Proof This is just the associative law of matrix multiplication, C(AB) = (CA)B.

The previous theorem reveals where matrix multiplication comes from. It is the
matrix which represents the composition of the functions. In the case where the
domain and range are the same, we have the following elegant corollary.

Corollary HomR(Rn, Rn) and Rn are isomorphic as rings. The automorphisms
correspond to the invertible matrices.

This corollary shows one way non-commutative rings arise, namely as endomor-
phism rings. Even if R is commutative, Rn is never commutative unless n = 1.

We now return to the general theory of modules (over some given ring R).
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Cosets and Quotient Modules

After seeing quotient groups and quotient rings, quotient modules go through
without a hitch. As before, R is a ring and module means R-module.

Theorem Suppose M is a module and N ⊂ M is a submodule. Since N is a
normal subgroup of M , the additive abelian quotient group M/N is defined. Scalar
multiplication defined by (a + N)r = (ar + N) is well defined and gives M/N the
structure of an R-module. The natural projection π : M → M/N is a surjective
homomorphism with kernel N . Furthermore, if f : M → M̄ is a surjective homomor-
phism with ker(f) = N , then M/N ≈ M̄ (see below).

Proof On the group level, this is all known from Chapter 2. It is only necessary
to check the scalar multiplication, which is obvious.

The relationship between quotients and homomorphisms for modules is the same
as for groups and rings, as shown by the next theorem.

Theorem Suppose f : M → M̄ is a homomorphism and N is a submodule of M .
If N ⊂ ker(f), then f̄ : (M/N) → M̄ defined by f̄(a + N) = f(a) is a well defined
homomorphism making the following diagram commute.

M M̄

M/N

f

?

-

½
½

½
½

½
½

½½>

π
f̄

Thus defining a homomorphism on a quotient module is the same as defining a homo-
morphism on the numerator that sends the denominator to 0

¯
. The image of f̄ is the

image of f , and the kernel of f̄ is ker(f)/N . Thus if N = ker(f), f̄ is injective, and
thus (M/N) ≈ image(f). Therefore for any homomorphism f , (domain(f)/ker(f)) ≈
image(f).

Proof On the group level this is all known from Chapter 2 (see page 29). It is
only necessary to check that f̄ is a module homomorphism, and this is immediate.
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Theorem Suppose M is an R-module and K and L are submodules of M .

i) The natural homomorphism K → (K + L)/L is surjective with kernel

K ∩ L. Thus (K/K ∩ L)
≈→ (K + L)/L is an isomorphism.

ii) Suppose K ⊂ L. The natural homomorphism M/K → M/L is surjective

with kernel L/K. Thus (M/K)/(L/K)
≈→ M/L is an isomorphism.

Examples These two examples are for the case R = Z.

1) M = Z K = 3Z L = 5Z K ∩ L = 15Z K + L = Z

K/K ∩ L = 3Z/15Z ≈ Z/5Z = (K + L)/L

2) M = Z K = 6Z L = 3Z (K ⊂ L)

(M/K)/(L/K) = (Z/6Z)/(3Z/6Z) ≈ Z/3Z = M/L

Products and Coproducts

Infinite products work fine for modules, just as they do for groups and rings.
This is stated below in full generality, although the student should think of the finite
case. In the finite case something important holds for modules that does not hold
for non-abelian groups or rings – namely, the finite product is also a coproduct. This
makes the structure of module homomorphisms much more simple. For the finite
case we may use either the product or sum notation, i.e., M1 × M2 × · · ×Mn =
M1 ⊕ M2 ⊕ · · ⊕Mn.

Theorem Suppose T is an index set and for each t ∈ T , Mt is an R-module. On
the additive abelian group

∏
t∈T

Mt =
∏

Mt define scalar multiplication by {mt}r =

{mtr}. Then
∏

Mt is an R-module and, for each s ∈ T , the natural projection
πs :

∏
Mt → Ms is a homomorphism. Suppose M is a module. Under the natural 1-1

correspondence from {functions f : M → ∏
Mt} to {sequence of functions {ft}t∈T

where ft : M → Mt}, f is a homomorphism iff each ft is a homomorphism.

Proof We already know from Chapter 2 that f is a group homomorphism iff each
ft is a group homomorphism. Since scalar multiplication is defined coordinatewise,
f is a module homomorphism iff each ft is a module homomorphism.
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Definition If T is finite, the coproduct and product are the same module. If T
is infinite, the coproduct or sum

∐
t∈T

Mt =
⊕
t∈T

Mt = ⊕Mt is the submodule of
∏

Mt

consisting of all sequences {mt} with only a finite number of non-zero terms. For
each s ∈ T , the inclusion homomorphisms is : Ms → ⊕Mt is defined by is(a) = {at}
where at = 0

¯
if t 6= s and as = a. Thus each Ms may be considered to be a submodule

of ⊕Mt.

Theorem Suppose M is an R-module. There is a 1-1 correspondence from
{homomorphisms g : ⊕Mt → M} and {sequences of homomorphisms {gt}t∈T where
gt : Mt → M} . Given g, gt is defined by gt = g ◦ it. Given {gt}, g is defined by
g({mt}) =

∑
t

gt(mt). Since there are only a finite number of non-zero terms, this

sum is well defined.

For T = {1, 2} the product and sum properties are displayed in the following
commutative diagrams.

M1 ⊕ M2M1 M2 M1 M2M1 ⊕ M2

M M
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f gf1 f2 g1 g2
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Theorem For finite T , the 1-1 correspondences in the above theorems actually
produce group isomorphisms. If R is commutative, they give isomorphisms of R-
modules.

HomR(M,M1 ⊕ · · ⊕Mn) ≈ HomR(M,M1) ⊕ · · ⊕HomR(M,Mn) and

HomR(M1 ⊕ · · ⊕Mn,M) ≈ HomR(M1,M) ⊕ · · ⊕HomR(Mn,M)

Proof Let’s look at this theorem for products with n = 2. All it says is that if f =
(f1, f2) and h = (h1, h2), then f +h = (f1 +h1, f2 +h2). If R is commutative, so that
the objects are R-modules and not merely additive groups, then the isomorphisms
are module isomorphisms. This says merely that fr = (f1, f2)r = (f1r, f2r).
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Exercise Suppose M and N are R-modules. Show that M ⊕ N is isomorphic to
N ⊕ M .

Exercise Suppose M and N are R-modules, and A ⊂ M , B ⊂ N are submodules.
Show (M ⊕ N)/(A ⊕ B) is isomorphic to (M/A) ⊕ (N/B).

Exercise Suppose R is a commutative ring, M is an R-module, and n ≥ 1. Define
a function ∝: HomR(Rn,M) → Mn which is a R-module isomorphism.

Summands

One basic question in algebra is “When does a module split as the sum of two
modules?”. Before defining summand, here are two theorems for background.

Theorem Consider M1 = M1⊕0
¯

as a submodule of M1⊕M2. Then the projection
map π2 : M1 ⊕ M2 → M2 is a surjective homomorphism with kernel M1. Thus
(M1 ⊕ M2)/M1 is isomorphic to M2.

This is exactly what you would expect, and the next theorem is almost as intuitive.

Theorem Suppose K and L are submodules of M and f : K ⊕ L → M is the
natural homomorphism, f(k, l) = k + l. Then the image of f is K + L and the
kernel of f is {(a,−a) : a ∈ K ∩ L}. Thus f is an isomorphism iff K + L = M and
K ∩ L = 0

¯
. In this case we write K ⊕ L = M . This abuse of notation allows us to

avoid talking about “internal” and “external” direct sums.

Definition Suppose K is a submodule of M . The statement that K is a summand
of M means ∃ a submodule L of M with K ⊕ L = M . According to the previous
theorem, this is the same as there exists a submodule L with K + L = M and
K ∩ L = 0

¯
. If such an L exists, it need not be unique, but it will be unique up to

isomorphism, because L ≈ M/K. Of course, M and 0
¯

are always summands of M .

Exercise Suppose M is a module and K = {(m,m) : m ∈ M} ⊂ M ⊕ M . Show
K is a submodule of M ⊕ M which is a summand.

Exercise R is a module over Q, and Q ⊂ R is a submodule. Is Q a summand of
R? With the material at hand, this is not an easy question. Later on, it will be easy.
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Exercise Answer the following questions about abelian groups.

1) Is 2Z a summand of Z?

2) Is 4Z8 a summand of Z8?

3) Is 3Z12 a summand of Z12?

4) Suppose n,m > 1. When is nZmn a summand of Zmn?

Exercise If T is a ring, define the center of T to be the subring {t : ts =
st for all s ∈ T}. Let R be a commutative ring and T = Rn. There is a exercise
on page 57 to show that the center of T is the subring of scalar matrices. Show Rn

is a left T -module and find HomT (Rn, Rn).

Independence, Generating Sets, and Free Basis

This section is a generalization and abstraction of the brief section Homomor-
phisms on Rn. These concepts work fine for an infinite index set T because linear
combination means finite linear combination. However, to avoid dizziness, the student
should consider the case where T is finite.

Definition Suppose M is an R-module, T is an index set, and for each t ∈ T ,
st ∈ M . Let S be the sequence {st}t∈T = {st}. The statement that S is dependent
means ∃ a finite number of distinct elements t1, ..., tn in T , and elements r1, .., rn in
R, not all zero, such that the linear combination st1r1 + · · +stnrn = 0

¯
. Otherwise,

S is independent. Note that if some st = 0
¯
, then S is dependent. Also if ∃ distinct

elements t1 and t2 in T with st1 = st2 , then S is dependent.

Let SR be the set of all linear combinations st1r1 + · ·+stnrn. SR is a submodule
of M called the submodule generated by S. If S is independent and generates M ,
then S is said to be a basis or free basis for M . In this case any v ∈ M can be written
uniquely as a linear combination of elements in S. If ∃ a basis for M , M is said to
be a free R-module. The next two theorems are obvious, except for the confusing
notation. You might try first the case T = {1, 2, ..., n} and ⊕Rt = Rn.

Theorem For each t ∈ T , let Rt = RR and for each c ∈ T , let ec ∈ ⊕Rt =
⊕
t∈T

Rt

be ec = {rt} where rc = l
¯

and rt = 0
¯

if t 6= c. Then {ec}c∈T is a basis for ⊕Rt called
the canonical basis or standard basis.
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Theorem Suppose N is an R-module and M is a free R-module with a basis
{st}. Then ∃ a 1-1 correspondence from the set of all functions g :{st} → N and the
set of all homomorphisms f : M → N . Given g, define f by f(st1r1 + · · +stnrn) =
g(st1)r1 + · · +g(stn)rn. Given f , define g by g(st) = f(st). In other words, f is
completely determined by what it does on the basis S, and you are “free” to send the
basis any place you wish and extend to a homomorphism.

Recall that we have already had the preceding theorem in the case S is the canon-
ical basis for M = Rn. The next theorem is so basic in linear algebra that it is used
without comment. Although the proof is easy, it should be worked carefully.

Theorem Suppose M and N are modules, f : M → N is a homomorphism, and
S = {st} is a basis for M . Let f(S) be the sequence {f(st)} in N .

1) f(S) generates N iff f is surjective.

2) f(S) is independent in N iff f is injective.

3) f(S) is a basis for N iff f is an isomorphism.

4) If h : M → N is a homomorphism then f = h iff f | S = h | S.

Exercise Let (A1, .., An) be a sequence of n vectors with each Ai ∈ Zn.
Show this sequence is linearly independent over Z iff it is linearly independent over Q.
Is it true the sequence is linearly independent over Z iff it is linearly independent
over R? This question is difficult until we learn more linear algebra.

Characterization of Free Modules

It will now be shown that any free R-module is isomorphic to one of the
canonical free R-modules.

Theorem An R-module N is free iff ∃ an index set T such that N ≈ ⊕
t∈T

Rt. In

particular, N has a finite free basis of n elements iff N ≈ Rn.

Proof If N is isomorphic to a free module, N is certainly free. Now suppose N
has a free basis {st}. Then the homomorphism f : ⊕Rt → N with f(et) = st sends
the canonical basis for ⊕Rt to the basis for N . By 3) in the preceding theorem, f is
an isomorphism.
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Exercise Suppose R is a commutative ring, A ∈ Rn, and the homomorphism
f : Rn → Rn defined by f(B) = AB is surjective. Show f is an isomorphism, i.e.,
show A is invertible. This is a key theorem in linear algebra, although it is usually
stated only for the case where R is a field. Use the fact that {e1, .., en} is a free basis
for Rn.

The next exercise is routine, but still informative.

Exercise Let R = Z, A =

(
2 1 0
3 2 −5

)
and f: Z3 → Z2 be the group homo-

morphism defined by A. Find a non-trivial linear combination of the columns of A
which is 0. Also find a non-zero element of kernel(f).

The next exercise is to relate properties of R as an R-module to properties of R
as a ring.

Exercise Suppose R is a commutative ring and v ∈ R, v 6= 0
¯
.

1) v is independent iff v is .
2) v is a basis for R iff v generates R iff v is .

Note that 2) here is essentially the first exercise for the case n = 1. That is, if
f : R → R is a surjective R-module homomorphism, then f is an isomorphism.

Relating these concepts to matrices

The theorem stated below gives a summary of results we have already had. It
shows that certain concepts about matrices, linear independence, injective homo-
morphisms, and solutions of equations, are all the same — they are merely stated in
different language. Suppose A ∈ Rm,n and f : Rn → Rm is the homomorphism associ-
ated with A, i.e., f(B) = AB. Let v1, .., vn ∈ Rm be the columns of A, i.e., f(ei) = vi

= column i of A. Let λ =


 λ1

.
λn


 represent an element of Rn and C =


 c1

.
cm



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represent an element of Rm.

Theorem

1) f(λ) is the linear combination of the columns of A, f(λ) = f(e1λ1 + · ·+
enλn) = v1λ1 + · · +vnλn.

2) {v1, .., vn} generates Rm iff f is surjective iff (for any C ∈ Rm, AX = C

has a solution).

3) {v1, .., vn} is independent iff f is injective iff AX = 0
¯

has a unique

solution iff (∃ C ∈ Rm such that AX = C has a unique solution).

4) {v1, .., vn} is a basis for Rm iff f is an isomorphism iff (for any C ∈ Rm,

AX = C has a unique solution).

Relating these concepts to square matrices

We now look at the preceding theorem in the special case where n = m and R
is a commutative ring. So far in this chapter we have just been cataloging. Now we
prove something more substantial, namely that if f : Rn → Rn is surjective, then f
is injective. Later on we will prove that if R is a field, injective implies surjective.

Theorem Suppose R is a commutative ring, A ∈ Rn, and f : Rn → Rn is defined
by f(B) = AB. Let v1, .., vn ∈ Rn be the columns of A, and w1, .., wn ∈ Rn = R1,n

be the rows of A. Then the following are equivalent.

1) f is an automorphism.

2) A is invertible, i.e., | A | is a unit in R.

3) {v1, .., vn} is a basis for Rn.

4) {v1, .., vn} generates Rn.

5) f is surjective.

2t) At is invertible, i.e., | At | is a unit in R.

3t) {w1, .., wn} is a basis for Rn.
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4t) {w1, .., wn} generates Rn.

Proof Suppose 5) is true and show 2). Since f is onto, ∃ u1, ..., un ∈ Rn with
f(ui) = ei. Let g : Rn → Rn be the homomorphism satisfying g(ei) = ui. Then f ◦ g
is the identity. Now g comes from some matrix D and thus AD = I. This shows that
A has a right inverse and is thus invertible. Recall that the proof of this fact uses
determinant, which requires that R be commutative.

We already know the first three properties are equivalent, 4) and 5) are equivalent,
and 3) implies 4). Thus the first five are equivalent. Furthermore, applying this
result to At shows that the last three properties are equivalent to each other. Since
| A |=| At |, 2) and 2t) are equivalent.

Uniqueness of Dimension

There exists a ring R with R2 ≈ R3 as R-modules, but this is of little interest. If
R is commutative, this is impossible, as shown below. First we make a convention.

Convention For the remainder of this chapter, R will be a commutative ring.

Theorem If f : Rm → Rn is a surjective R-module homomorphism, then m ≥ n.

Proof Suppose k = n − m is positive. Define h : (Rm ⊕ Rk = Rn) → Rn by
h(u, v) = f(u). Then h is a surjective homomorphism, and by the previous section,
also injective. This is a contradiction.

Corollary If f : Rm → Rn is an isomorphism, then m = n.

Proof Each of f and f−1 is surjective, so m = n by the previous theorem.

Corollary If {v1, .., vm} generates Rn, then m ≥ n.

Proof The hypothesis implies there is a surjective homomorphism Rm → Rn. So
this follows from the first theorem.

Lemma Suppose M is a f.g. module (i.e., a finite generated R-module). Then
if M has a basis, that basis is finite.
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Proof Suppose U ⊂ M is a finite generating set and S is a basis. Then any
element of U is a finite linear combination of elements of S, and thus S is finite.

Theorem Suppose M is a f.g. module. If M has a basis, that basis is finite
and any other basis has the same number of elements. This number is denoted by
dim(M), the dimension of M .

Proof By the previous lemma, any basis for M must be finite. M has a basis of
n elements iff M ≈ Rn. The result follows because Rn ≈ Rm iff n = m.

Change of Basis

Before changing basis, we recall what a basis is. Previously we defined generat-
ing, independence, and basis for sequences, not for collections. For the concept of
generating it matters not whether you use sequences or collections, but for indepen-
dence and basis, you must use sequences. Consider the columns of the real matrix

A =

(
2 3 2
1 4 1

)
. If we consider the column vectors of A as a collection, there are

only two of them, yet we certainly don’t wish to say the columns of A form a basis
for R2. In a set or collection, there is no concept of repetition. In order to make
sense, we must consider the columns of A as an ordered triple of vectors. When we
originally defined basis, we could have called it “indexed free basis” or even “ordered
free basis”.

Two sequences cannot begin to be equal unless they have the same index set.
We will follow the classical convention that an index set with n elements must be
{1, 2, .., n}, and thus a basis for M with n elements is a sequence S = {u1, .., un}
or if you wish, S = (u1, .., un) ∈ Mn. Suppose M is an R-module with a basis of
n elements. Recall there is a bijection α : HomR(Rn,M) → Mn defined by α(h) =
(h(e1), .., h(en)). Now h : Rn → M is an isomorphism iff α(h) is a basis for M .

The point of all this is that selecting a basis of n elements for M is the same as
selecting an isomorphism from Rn to M , and from this viewpoint, change of basis
can be displayed by the diagram below.

Endomorphisms on Rn are represented by square matrices, and thus have a de-
terminant and trace. Now suppose M is a f.g. free module and f : M → M is a
homomorphism. In order to represent f by a matrix, we must select a basis for M
(i.e., an isomorphism with Rn). We will show that this matrix is well defined up to
similarity, and thus the determinant, trace, and characteristic polynomial of f are
well defined.
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Definition Suppose M is a free module, S = {u1, .., un} is a basis for M , and
f : M → M is a homomorphism. The matrix A = (ai,j) ∈ Rn of f w.r.t. the basis
S is defined by f(ui) = u1a1,i + · · +unan,i. (Note that if M = Rn and ui = ei, A is
the usual matrix associated with f).

Theorem Suppose T = {v1, .., vn} is another basis for M and B ∈ Rn is the
matrix of f w.r.t. T . Define C = (ci,j) ∈ Rn by vi = u1c1,i + · · +uncn,i. Then C is
invertible and B = C−1AC, i.e., A and B are similar. Therefore |A| = |B|,
trace(A)=trace(B), and A and B have the same characteristic polynomial (see chap-
ter 4).

Conversely, suppose C = (ci,j) ∈ Rn is invertible. Define T = {v1, .., vn} by
vi = u1c1,i + · · +uncn,i. Then T is a basis for M and that matrix of f w.r.t. T is
B = C−1AC. In other words, conjugation of matrices corresponds to change of basis.

Proof The proof follows by seeing that the following diagram is commutative.

Rn Rn

Rn Rn

M MC C

A

B

≈ ≈
≈ ≈

≈ ≈
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The diagram also explains what it means for A to be the matrix of f w.r.t. the
basis S. Let h : Rn → M be the isomorphism with h(ei) = ui for 1 ≤ i ≤ n. Then
the matrix A ∈ Rn is the one determined by the endomorphism h−1◦f ◦h : Rn → Rn.
In other words, column i of A is h−1(f(h(ei))).

An important special case is where M = Rn and f : Rn → Rn is given by some
matrix W . Then h is given by the matrix U whose ith column is ui and A =
U−1WU. In other words, W represents f w.r.t. the standard basis, and U−1WU
represents f w.r.t. the basis {u1, .., un}.

Definition Suppose M is a f.g. free module and f : M → M is a homomorphism.
Define |f | to be |A|, trace(f) to be trace(A), and CPf (x) to be CPA(x), where A
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is the matrix of f w.r.t. some basis. By the previous theorem, all three are well
defined, i.e., do not depend upon the choice of basis.

Exercise Let R = Z and f : Z2 → Z2 be defined by f(D) =

(
3 3
0 −1

)
D. Find

the matrix of f w.r.t. the basis

{(
2
1

)
,

(
3
1

)}
.

Exercise Let L ⊂ R2 be the line L = {(r, 2r) : r ∈ R}. Show there is one
and only one homomorphism f : R2 → R2 which is the identity on L and has
f(−1, 1) = (1,−1). Find the matrix A ∈ R2 which represents f with respect to the
basis {(1, 2), (−1, 1)}. Find the determinant, trace, and characteristic polynomial of
f . Also find the matrix B ∈ R2 which represents f with respect to the standard
basis. Finally, find an invertible matrix C ∈ R2 with B = C−1AC.

Vector Spaces

So far in this chapter we have been developing the theory of linear algebra in
general. The previous theorem, for example, holds for any commutative ring R, but
it must be assumed that the module M is free. Endomorphisms in general will not
have a determinant or trace. We now focus on the case where R is a field, and
show that in this case, every R-module is free. Thus any finitely generated R-module
will have a well defined dimension, and endomorphisms on it will have well defined
determinant, trace, and characteristic polynomial.

In this section, F is a field. F -modules may also be called vector spaces and
F -module homomorphisms may also be called linear transformations.

Theorem Suppose M is an F -module and v ∈ M . Then v 6= 0
¯

iff v is independent.
That is, if v ∈ V and r ∈ F , vr = 0

¯
implies v = 0

¯
or r = 0

¯
.

Proof Suppose vr = 0
¯

and r 6= 0
¯
. Then 0

¯
= (vr)r−1 = v1

¯
= v.

Theorem Suppose M 6= 0
¯

is an F -module and v ∈ M . Then v generates M iff v
is a basis for M . Furthermore, if these conditions hold, then M ≈ FF , any non-zero
element of M is a basis, and any two elements of M are dependent.
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Proof Suppose v generates M . Then v 6= 0
¯

and is thus independent by the
previous theorem. In this case M ≈ F , and any non-zero element of F is a basis, and
any two elements of F are dependent.

Theorem Suppose M 6= 0
¯

is a finitely generated F -module. If S = {v1, .., vm}
generates M , then any maximal independent subsequence of S is a basis for M . Thus
any finite independent sequence can be extended to a basis. In particular, M has a
finite free basis, and thus is a free F -module.

Proof Suppose, for notational convenience, that {v1, .., vn} is a maximal inde-
pendent subsequence of S, and n < i ≤ m. It must be shown that vi is a linear
combination of {v1, .., vn}. Since {v1, .., vn, vi} is dependent, ∃ r1, ..., rn, ri not all
zero, such that v1r1 + · ·+vnrn +viri = 0

¯
. Then ri 6= 0

¯
and vi = −(v1r1 + · ·+vnrn)r−1

i .
Thus {v1, .., vn} generates S and thus all of M . Now suppose T is a finite indepen-
dent sequence. T may be extended to a finite generating sequence, and inside that
sequence it may be extended to a maximal independent sequence. Thus T extends
to a basis.

After so many routine theorems, it is nice to have one with real power. It not
only says any finite independent sequence can be extended to a basis, but it can be
extended to a basis inside any finite generating set containing it. This is one of the
theorems that makes linear algebra tick. The key hypothesis here is that the ring
is a field. If R = Z, then Z is a free module over itself, and the element 2 of Z is
independent. However it certainly cannot be extended to a basis. Also the finiteness
hypothesis in this theorem is only for convenience, as will be seen momentarily.

Since F is a commutative ring, any two bases of M must have the same number
of elements, and thus the dimension of M is well defined.

Theorem Suppose M is an F -module of dimension n, and {v1, ..., vm} is an
independent sequence in M . Then m ≤ n and if m = n, {v1, .., vm} is a basis.

Proof {v1, .., vm} extends to a basis with n elements.

The next theorem is just a collection of observations.

Theorem Suppose M and N are finitely generated F -modules.
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1) M ≈ F n iff dim(M) = n.

2) M ≈ N iff dim(M) = dim(N).

3) Fm ≈ F n iff n = m.

4) dim(M ⊕ N) = dim(M) + dim(N).

Here is the basic theorem in full generality.

Theorem Suppose M 6= 0
¯

is an F -module and S = {vt}t∈T generates M .

1) Any maximal independent subsequence of S is a basis for M .

2) Any independent subsequence of S may be extended to a maximal

independent subsequence of S, and thus to a basis for M .

3) Any independent subsequence of M can be extended to a basis for M .

In particular, M has a free basis, and thus is a free F -module.

Proof The proof of 1) is the same as in the case where S is finite. Part 2) will
follow from the Hausdorff Maximality Principle. An independent subsequence of S is
contained in a maximal monotonic tower of independent subsequences. The union of
these independent subsequences is still independent, and so the result follows. Part
3) follows from 2) because an independent sequence can always be extended to a
generating sequence.

Theorem Suppose M is an F -module and K ⊂ M is a submodule.

1) K is a summand of M , i.e., ∃ a submodule L of M with K ⊕ L = M .

2) If M is f.g., then dim(K) ≤ dim(M) and K = M iff dim(K) = dim(M).

Proof Let T be a basis for K. Extend T to a basis S for M . Then S−T generates
a submodule L with K ⊕ L = M. Part 2) follows from 1).

Corollary Q is a summand of R. In other words, ∃ a Q-submodule V ⊂ R
with Q ⊕ V = R as Q-modules. (See exercise on page 77.)

Proof Q is a field, R is a Q-module, and Q is a submodule of R.

Corollary Suppose M is a f.g. F -module, W is an F -module, and f : M → W
is a homomorphism. Then dim(M) = dim(ker(f)) + dim(image(f)).
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Proof Let K = ker(f) and L ⊂ M be a submodule with K ⊕ L = M . Then
f | L : L → image(f) is an isomorphism.

Exercise Suppose R is a domain with the property that, for R-modules, every
submodule is a summand. Show R is a field.

Exercise Find a free Z-module which has a generating set containing no basis.

Exercise The real vector space R2 is generated by the sequence S =
{(π, 0), (2, 1), (3, 2)}. Show there are three maximal independent subsequences of
S, and each is a basis for R2.

The real vector space R3 is generated by S = {(1, 1, 2), (1, 2, 1), (3, 4, 5), (1, 2, 0)}.
Show there are three maximal independent subsequences of S and each is a basis
for R3. You may use determinant.

Square matrices over fields

This theorem is just a summary of what we have for square matrices over fields.

Theorem Suppose A ∈ Fn and f : F n → F n is defined by f(B) = AB. Let
v1, .., vn ∈ F n be the columns of A, and w1, .., wn ∈ F n = F1,n be the rows of A. Then
the following are equivalent

1) {v1, .., vn} is independent, i.e., f is injective.

2) {v1, .., vn} is a basis for F n, i.e., f is an automorphism, i.e., A is

invertible, i.e., | A |6= 0
¯
.

3) {v1, .., vn} generates F n, i.e., f is surjective.

1t) {w1, .., wn} is independent.

2t) {w1, .., wn} is a basis for F n, i.e., At is invertible, i.e., | At |6= 0
¯
.

3t) {w1, .., wn} generates F n.
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Proof Except for 1) and 1t), this theorem holds for any commutative ring R.
(See the section Relating these concepts to square matrices.) Parts 1) and 1t)
follow from the preceding section.

Exercise Add to this theorem more equivalent statements in terms of solutions
of n equations in n unknowns.

Overview Suppose each of X and Y is a set with n elements and f : X → Y is a
function. By the pigeonhole principle, f is injective iff f is bijective iff f is surjective.
Now suppose each of U and V is a vector space of dimension n and f : U → V is a
linear transformation. It follows from the work done so far that f is injective iff f
is bijective iff f is surjective. This shows some of the simple and definitive nature of
linear algebra.

Exercise Let A = (A1, .., An) be an n×n matrix over Z with column i = Ai ∈
Zn. Let f : Zn → Zn be defined by f(B) = AB and f̄ : Rn → Rn be defined by
f(C) = AC. Show the following are equivalent. (See the exercise on page 79.)

1) f : Zn → Zn is injective.

2) The sequence (A1, .., An) is linearly independent over Z.

3) |A| 6= 0.

4) f̄ : Rn → Rn is injective.

5) The sequence (A1, .., An) is linearly independent over R.

Rank of a matrix Suppose A ∈ Fm,n. The row (column) rank of A is defined
to be the dimension of the submodule of F n (Fm) generated by the rows (columns)
of A.

Theorem If C ∈ Fm and D ∈ Fn are invertible, then the row (column) rank of
A is the same as the row (column) rank of CAD.

Proof Suppose f : F n → Fm is defined by f(B) = AB. Each column of A is a
vector in the range Fm, and if B ∈ F n, f(B) is a linear combination of those vectors.
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Thus the image of f is the submodule of Fm generated by the columns of A, and
its dimension is the rank of f . This dimension is the same as the dimension of the
image of g ◦ f ◦ h : F n → Fm, where h is any automorphism on F n and g is any
automorphism on Fm. This proves the theorem for column rank. The theorem for
row rank follows using transpose.

Theorem If A ∈ Fm,n, the row rank and the column rank of A are equal. This
number is called the rank of A and is ≤ min{m,n}.
Proof By the theorem above, elementary row and column operations change
neither the row rank nor the column rank. By row and column operations, A may be
changed to a matrix H where h1,1 = ·· = ht,t = 1

¯
and all other entries are 0

¯
(see the

first exercise on page 59). Thus row rank = t = column rank.

Exercise Suppose A has rank t. Show that it is possible to select t rows and t
columns of A such that the determined t× t matrix is invertible. Show that the rank
of A is the largest integer t such that this is possible.

Exercise Suppose A ∈ Fm,n has rank t. What is the dimension of the solution
set of AX = 0

¯
?

Definition Suppose M is a finite dimensional vector space over a field F , and
f : M → M is an endomorphism. The rank of f is defined to be the dimension of
the image of f . It follows from the work above that this is the same as the rank of
any matrix representing f .

Geometric Interpretation of Determinant

Suppose V ⊂ Rn is some nice subset. For example, if n = 2, V might be the
interior of a square or circle. There is a concept of the n-dimensional volume of V .
For n = 1, it is length. For n = 2, it is area, and for n = 3 it is “ordinary volume”.
Suppose A ∈ Rn and f : Rn → Rn is the homomorphism given by A. The volume of
V does not change under translation, i.e., V and V + p have the same volume. Thus
f(V ) and f(V +p) = f(V )+f(p) have the same volume. In street language, the next
theorem says that “f multiplies volume by the absolute value of its determinant”.

Theorem The n-dimensional volume of f(V ) is ±|A|(the n-dimensional volume
of V ). Thus if |A| = ±1, f preserves volume.
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Proof If |A| = 0, image(f) has dimension < n and thus f(V ) has n-dimensional
volume 0. If |A| 6= 0 then A is the product of elementary matrices (see page 59)
and for elementary matrices, the theorem is obvious. The result follows because the
determinant of the composition is the product of the determinants.

Corollary If P is the n-dimensional parallelepiped determined by the columns
v1, .. , vn of A, then the n-dimensional volume of P is ±|A|.

Proof Let V = [0, 1] × · · ×[0, 1] = {e1t1 + · · +entn : 0 ≤ ti ≤ 1}. Then
P = f(V ) = {v1t1 + · · +vntn : 0 ≤ ti ≤ 1}.

Linear functions approximate differentiable functions locally

We continue with the special case F = R. Linear functions arise naturally in
business, science, and mathematics. However this is not the only reason that linear
algebra is so useful. It is a central fact that smooth phenomena may be approx-
imated locally by linear phenomena. Without this great simplification, the world
of technology as we know it today would not exist. Of course, linear transforma-
tions send the origin to the origin, so they must be adjusted by a translation. As
a simple example, suppose h : R → R is differentiable and p is a real number. Let
f : R → R be the linear transformation f(x) = h′(p)x. Then h is approximated near
p by g(x) = h(p) + f(x − p) = h(p) + h′(p)(x − p).

Now suppose V ⊂ R2 is some nice subset and h = (h1, h2) : V → R2 is injective

and differentiable. Define the Jacobian by J(h)(x, y) =

(
∂h1

∂x
∂h1

∂y
∂h2

∂x
∂h2

∂y

)
and for each

(x, y) ∈ V , let f(x, y) : R2 → R2 be the homomorphism defined by J(h)(x, y).
Then for any (p1, p2) ∈ V , h is approximated near (p1, p2) (after translation) by

f(p1, p2). The area of V is
∫ ∫

V
1dxdy. From the previous section we know that

any homomorphism f multiplies area by | f |. The student may now understand
the following theorem from calculus. (Note that if h is the restriction of a linear
transformation from R2 to R2, this theorem is immediate from the previous section.)

Theorem Suppose the determinant of J(h)(x, y) is non-negative for each

(x, y) ∈ V . Then the area of h(V ) is
∫ ∫

V
| J(h) | dxdy.
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The Transpose Principle

We now return to the case where F is a field (of arbitrary characteristic). F -
modules may also be called vector spaces and submodules may be called subspaces.
The study of R-modules in general is important and complex. However the study of
F -modules is short and simple – every vector space is free and every subspace is a
summand. The core of classical linear algebra is not the study of vector spaces, but
the study of homomorphisms, and in particular, of endomorphisms. One goal is to
show that if f : V → V is a homomorphism with some given property, there exists
a basis of V so that the matrix representing f displays that property in a prominent
manner. The next theorem is an illustration of this.

Theorem Let F be a field and n be a positive integer.

1) Suppose V is an n-dimensional vector space and f : V → V is a
homomorphism with |f | = 0

¯
. Then ∃ a basis of V such that the matrix

representing f has its first row zero.
2) Suppose A ∈ Fn has |A| = 0

¯
. Then ∃ an invertible matrix C such that

C−1AC has its first row zero.
3) Suppose V is an n-dimensional vector space and f : V → V is a

homomorphism with |f | = 0. Then ∃ a basis of V such that the matrix
representing f has its first column zero.

4) Suppose A ∈ Fn has |A| = 0
¯
. Then ∃ an invertible matrix D such that

D−1AD has its first column zero.

We first wish to show that these 4 statements are equivalent. We know that
1) and 2) are equivalent and also that 3) and 4) are equivalent because change of
basis corresponds to conjugation of the matrix. Now suppose 2) is true and show
4) is true. Suppose |A| = 0

¯
. Then |At| = 0

¯
and by 2) ∃ C such that C−1AtC has

first row zero. Thus (C−1AtC)t = CtA(Ct)−1 has first row column zero. The result
follows by defining D = (Ct)−1. Also 4) implies 2).

This is an example of the transpose principle. Loosely stated, it is that theorems
about change of basis correspond to theorems about conjugation of matrices and
theorems about the rows of a matrix correspond to theorems about the columns of a
matrix, using transpose. In the remainder of this chapter, this will be used without
further comment.
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Proof of the theorem We are free to select any of the 4 parts, and we select
part 3). Since | f |= 0, f is not injective and ∃ a non-zero v1 ∈ V with f(v1) = 0

¯
.

Extend v1 to a basis {v1, .., vn}. Then the matrix of f w.r.t this basis has first column
zero.

Exercise Let A =

(
3π 6
2π 4

)
. Find an invertible matrix C ∈ R2 so that C−1AC

has first row zero. Also let A =


 0 0 0

1 3 4
2 1 4


 and find an invertible matrix D ∈ R3

so that D−1AD has first column zero.

Exercise Suppose M is an n-dimensional vector space over a field F , k is an
integer with 0 < k < n, and f : M → M is an endomorphism of rank k. Show
there is a basis for M so that the matrix representing f has its first n− k rows zero.
Also show there is a basis for M so that the matrix representing f has its first n− k
columns zero. Do not use the transpose principle.

Nilpotent Homomorphisms

In this section it is shown that an endomorphism f is nilpotent iff all of its char-
acteristic roots are 0

¯
iff it may be represented by a strictly upper triangular matrix.

Definition An endomorphism f : V → V is nilpotent if ∃ m with fm = 0
¯
. Any

f represented by a strictly upper triangular matrix is nilpotent (see page 56).

Theorem Suppose V is an n-dimensional vector space and f : V → V is a
nilpotent homomorphism. Then fn = 0

¯
and ∃ a basis of V such that the matrix

representing f w.r.t. this basis is strictly upper triangular. Thus the characteristic
polynomial of f is CPf (x) = xn.

Proof Suppose f 6= 0
¯

is nilpotent. Let t be the largest positive integer with
f t 6= 0

¯
. Then f t(V ) ⊂ f t−1(V ) ⊂ ·· ⊂ f(V ) ⊂ V . Since f is nilpotent, all of these

inclusions are proper. Therefore t < n and fn = 0
¯
. Construct a basis for V by

starting with a basis for f t(V ), extending it to a basis for f t−1(V ), etc. Then the
matrix of f w.r.t. this basis is strictly upper triangular.

Note To obtain a matrix which is strictly lower triangular, reverse the order of
the basis.
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Exercise Use the transpose principle to write 3 other versions of this theorem.

Theorem Suppose V is an n-dimensional vector space and f : V → V is a
homomorphism. Then f is nilpotent iff CPf (x) = xn. (See the exercise at the end of
Chapter 4.)

Proof Suppose CPf (x) = xn. For n = 1 this implies f = 0
¯
, so suppose n > 1.

Since the constant term of CPf (x) is 0
¯
, the determinant of f is 0

¯
. Thus ∃ a basis

of V such that the matrix A representing f has its first column zero. Let B ∈ Fn−1

be the matrix obtained from A by removing its first row and first column. Now
CPA(x) = xn = xCPB(x). Thus CPB(x) = xn−1 and by induction on n, B is
nilpotent and so ∃ C such that C−1BC is strictly upper triangular. Then




1 0 · · 0
0
· C−1

·
0







0 ∗ · · ∗
·

B
·
0







1 0 · · 0
0
· C
·
0




=




0 ∗ · · ∗
0
· C−1BC
·
0




is strictly upper triangular.

Exercise Suppose F is a field, A ∈ F3 is a lower triangular matrix of rank 2,

and B =


 0 0 0

1 0 0
0 1 0


. Using conjugation by elementary matrices, show there is an

invertible matrix C so that C−1AC = B. Now suppose V is a 3-dimensional vector
space and f : V → V is a nilpotent endomorphism of rank 2. We know f can be
represented by a lower triangular matrix. Show there is a basis {v1, v2, v3} for V so
that B is the matrix representing f . Also show that f(v1) = v2, f(v2) = v3, and
f(v3) = 0

¯
. In other words, there is a basis for V of the form {v, f(v), f 2(v)} with

f 3(v) = 0
¯
.

Exercise Suppose V is a 3-dimensional vector space and f : V → V is a nilpotent
endomorphism of rank 1. Show there is a basis for V so that the matrix representing

f is


 0 0 0

1 0 0
0 0 0


.
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Eigenvalues

Our standing hypothesis is that V is an n-dimensional vector space over a field F
and f : V → V is a homomorphism.

Definition An element λ ∈ F is an eigenvalue of f if ∃ a non-zero v ∈ V with
f(v) = λv. Any such v is called an eigenvector. Eλ ⊂ V is defined to be the set of
all eigenvectors for λ (plus 0

¯
). Note that Eλ = ker(λI − f) is a subspace of V . The

next theorem shows the eigenvalues of f are just the characteristic roots of f .

Theorem If λ ∈ F then the following are equivalent.

1) λ is an eigenvalue of f , i.e., (λI − f) : V → V is not injective.
2) | (λI − f) |= 0

¯
.

3) λ is a characteristic root of f , i.e., a root of the characteristic
polynomial CPf (x) = | (xI −A) |, where A is any matrix representing f .

Proof It is immediate that 1) and 2) are equivalent, so let’s show 2) and 3)
are equivalent. The evaluation map F [x] → F which sends h(x) to h(λ) is a ring
homomorphism (see theorem on page 47). So evaluating (xI − A) at x = λ and
taking determinant gives the same result as taking the determinant of (xI − A) and
evaluating at x = λ. Thus 2) and 3) are equivalent.

The nicest thing you can say about a matrix is that it is similar to a diagonal
matrix. Here is one case where that happens.

Theorem Suppose λ1, .., λk are distinct eigenvalues of f , and vi is an eigenvector
of λi for 1 ≤ i ≤ k. Then the following hold.

1) {v1, .., vk} is independent.

2) If k = n, i.e., if CPf (x) = (x − λ1) · · · (x − λn), then {v1, .., vn} is a
basis for V . The matrix of f w.r.t. this basis is the diagonal matrix whose
(i, i) term is λi.

Proof Suppose {v1, .., vk} is dependent. Suppose t is the smallest positive integer
such that {v1, .., vt} is dependent, and v1r1 + · · +vtrt = 0

¯
is a non-trivial linear

combination. Note that at least two of the coefficients must be non-zero. Now
(f − λt)(v1r1 + · ·+vtrt) = v1(λ1 − λt)r1 + · ·+vt−1(λt−1 − λt)rt−1 + 0

¯
= 0

¯
is a shorter
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non-trivial linear combination. This is a contradiction and proves 1). Part 2) follows
from 1) because dim(V ) = n.

Exercise Let A =

(
0 1

−1 0

)
∈ R2. Find an invertible C ∈ C2 such that C−1AC

is diagonal. Show that C cannot be selected in R2. Find the characteristic polyno-
mial of A.

Exercise Suppose V is a 3-dimensional vector space and f : V → V is an endo-
morphism with CPf (x) = (x−λ)3. Show that (f −λI) has characteristic polynomial
x3 and is thus a nilpotent endomorphism. Show there is a basis for V so that the

matrix representing f is


 λ 0 0

1 λ 0
0 1 λ


,


 λ 0 0

1 λ 0
0 0 λ


 or


 λ 0 0

0 λ 0
0 0 λ


.

We could continue and finally give an ad hoc proof of the Jordan canonical form,
but in this chapter we prefer to press on to inner product spaces. The Jordan form
will be developed in Chapter 6 as part of the general theory of finitely generated
modules over Euclidean domains. The next section is included only as a convenient
reference.

Jordan Canonical Form

This section should be just skimmed or omitted entirely. It is unnecessary for the
rest of this chapter, and is not properly part of the flow of the chapter. The basic
facts of Jordan form are summarized here simply for reference.

The statement that a square matrix B over a field F is a Jordan block means that
∃ λ ∈ F such that B is a lower triangular matrix of the form

B =




λ 0
1 λ

·
·

0 1 λ




. B gives a homomorphism g : Fm → Fm with g(em) = λem

and g(ei) = ei+1 + λei for 1 ≤ i < m. Note that CPB(x) = (x− λ)m and so λ is the
only eigenvalue of B, and B satisfies its characteristic polynomial, i.e., CPB(B) = 0

¯
.



Chapter 5 Linear Algebra 97

Definition A matrix D ∈ Fn is in Jordan form if ∃ Jordan blocks B1, .. , Bt such

that D =




B1

B2 0
·

·
0

Bt




. Suppose D is of this form and Bi ∈ Fni
has

eigenvalue λi. Then n1 + · ·+nt = n and CPD(x) = (x−λ1)
n1 · ·(x−λt)

nt . Note that
a diagonal matrix is a special case of Jordan form. D is a diagonal matrix iff each
ni = 1, i.e., iff each Jordan block is a 1 × 1 matrix.

Theorem If A ∈ Fn, the following are equivalent.

1) ∃ an invertible C ∈ Fn such that C−1AC is in Jordan form.

2) ∃ λ1, .., λn ∈ F (not necessarily distinct) such that CPA(x) = (x − λ1) · ·
(x− λn). (In this case we say that all the eigenvalues of A belong to F .)

Theorem Jordan form (when it exists) is unique. This means that if A and D are
similar matrices in Jordan form, they have the same Jordan blocks, except possibly
in different order.

The reader should use the transpose principle to write three other versions of the
first theorem. Also note that we know one special case of this theorem, namely that
if A has n distinct eigenvalues in F , then A is similar to a diagonal matrix. Later on
it will be shown that if A is a symmetric real matrix, then A is similar to a diagonal
matrix.

Let’s look at the classical case A ∈ Rn. The complex numbers are algebraically
closed. This means that CPA(x) will factor completely in C[x], and thus ∃ C ∈ Cn

with C−1AC in Jordan form. C may be selected to be in Rn iff all the eigenvalues of
A are real.

Exercise Find all real matrices in Jordan form that have the following charac-
teristic polynomials: x(x − 2), (x − 2)2, (x − 2)(x − 3)(x − 4), (x − 2)(x − 3)2,
(x − 2)2(x − 3)2, (x − 2)(x − 3)3.

Exercise Suppose D ∈ Fn is in Jordan form and has characteristic polynomial
a0 + a1x + · · +xn. Show a0I + a1D + · · +Dn = 0

¯
, i.e., show CPD(D) = 0

¯
.
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Exercise (Cayley-Hamilton Theorem) Suppose E is a field and A ∈ En.
Assume the theorem that there is a field F containing E such that CPA(x) factors
completely in F [x]. Thus ∃ an invertible C ∈ Fn such that D = C−1AC is in Jordan
form. Use this to show CPA(A) = 0

¯
.

Exercise Suppose A ∈ Fn is in Jordan form. Show A is nilpotent iff An = 0
¯

iff CPA(x) = xn. (Note how easy this is in Jordan form.)

Inner Product Spaces

The two most important fields for mathematics and science in general are the
real numbers and the complex numbers. Finitely generated vector spaces over R or
C support inner products and are thus geometric as well as algebraic objects. The
theories for the real and complex cases are quite similar, and both could have been
treated here. However, for simplicity, attention is restricted to the case F = R.
In the remainder of this chapter, the power and elegance of linear algebra become
transparent for all to see.

Definition Suppose V is a real vector space. An inner product (or dot product)
on V is a function V × V → R which sends (u, v) to u · v and satisfies

1) (u1r1 + u2r2) · v = (u1 · v)r1 + (u2 · v)r2 for all u1, u2, v ∈ V
v · (u1r1 + u2r2) = (v · u1)r1 + (v · u2)r2 and r1, r2 ∈ R.

2) u · v = v · u for all u, v ∈ V .

3) u · u ≥ 0 and u · u = 0 iff u = 0
¯

for all u ∈ V .

Theorem Suppose V has an inner product.

1) If v ∈ V , f : V → R defined by f(u) = u · v is a homomorphism.
Thus 0

¯
· v = 0.

2) Schwarz’ inequality. If u, v ∈ V , (u · v)2 ≤ (u · u)(v · v).

Proof of 2) Let a =
√

v · v and b =
√

u · u. If a or b is 0, the result is obvious.
Suppose neither a nor b is 0. Now 0 ≤ (ua ± vb) · (ua ± vb) = (u · u)a2 ± 2ab(u · v)+
(v ·v)b2 = b2a2±2ab(u ·v)+a2b2. Dividing by 2ab yields 0 ≤ ab±(u ·v) or | u ·v |≤ ab.
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Theorem Suppose V has an inner product. Define the norm or length of a vector
v by ‖v‖ =

√
v · v. The following properties hold.

1) ‖v‖ = 0 iff v = 0
¯
.

2) ‖vr‖ = ‖v‖ | r |.

3) | u · v | ≤ ‖u‖‖v‖. (Schwarz’ inequality)

4) ‖u + v‖ ≤ ‖u‖ + ‖v‖. (The triangle inequality)

Proof of 4) ‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2(u · v) + ‖v‖2 ≤ ‖u‖2 +
2‖u‖‖v‖ + ‖v‖2 = (‖u‖ + ‖v‖)2.

Definition An Inner Product Space (IPS) is a real vector space with an
inner product. Suppose V is an IPS. A sequence {v1, .., vn} is orthogonal provided
vi · vj = 0 when i 6= j. The sequence is orthonormal if it is orthogonal and each
vector has length 1, i.e., vi · vj = δi,j for 1 ≤ i, j ≤ n.

Theorem If S = {v1, .., vn} is an orthogonal sequence of non-zero vectors, then

S is independent. Furthermore

{
v1

‖v1‖ , · · · , vn

‖vn‖
}

is orthonormal.

Proof Suppose v1r1 + · · +vnrn = 0
¯
. Then 0 = (v1r1 + · · +vnrn) · vi = ri(vi · vi)

and thus ri = 0. Thus S is independent. The second statement is transparent.

It is easy to define an inner product, as is shown by the following theorem.

Theorem Suppose V is a real vector space with a basis S = {v1, .., vn}. Then
there is a unique inner product on V which makes S an orthornormal basis. It is
given by the formula (v1r1 + · · +vnrn) · (v1s1 + · · +vnsn) = r1s1 + · · +rnsn.

Convention Rn will be assumed to have the standard inner product defined by
(r1, .., rn) · (s1, .., sn) = r1s1 + · ·+rnsn. S = {e1, .., en} will be called the canonical or
standard orthonormal basis. The next theorem shows that this inner product has an
amazing geometry.

Theorem If u, u ∈ Rn, u · v = ‖u‖‖v‖ cos Θ where Θ is the angle between u
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and v.

Proof Let u = (r1, .., rn) and v = (s1, .., sn). By the law of cosines ‖u − v‖2 =
‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos Θ. So (r1 − s1)

2 + · · +(rn − sn)2 = r2
1 + · · +r2

n + s2
1 + · ·

+s2
n − 2‖u‖‖v‖ cos Θ. Thus r1s1 + · · +rnsn = ‖u‖‖v‖ cos Θ.

Exercise This is a simple exercise to observe that hyperplanes in Rn are cosets.
Suppose f : Rn → R is a non-zero homomorphism given by a matrix A = (a1, .., an) ∈
R1,n. Then L = ker(f) is the set of all solutions to a1x1 + · · +anxn = 0, i.e., the

set of all vectors perpendicular to A. Now suppose b ∈ R and C =




c1

·
·
cn


 ∈ Rn

has f(C) = b. Then f−1(b) is the set of all solutions to a1x1 + · · +anxn = b which
is the coset L+C, and this the set of all solutions to a1(x1−c1)+ · ·+an(xn−cn) = 0.

Gram-Schmidt orthonormalization

Theorem (Fourier series) Suppose W is an IPS with an orthonormal basis
{w1, .., wn}. Then if v ∈ W , v = w1(v · w1) + · · +wn(v · wn).

Proof v = w1r1 + · · +wnrn and v · wi = (w1r1 + · · +wnrn) · wi = ri

Theorem Suppose W is an IPS, Y ⊂ W is a subspace with an orthonormal basis
{w1, .., wk}, and v ∈ W −Y . Define the projection of v onto Y by p(v) = w1(v ·w1)+ · ·
+wk(v ·wk), and let w = v−p(v). Then (w ·wi) = (v−w1(v ·w1)··−wk(v ·wk))·wi = 0.

Thus if wk+1 =
w

‖w‖ , then {w1, .., wk+1} is an orthonormal basis for the subspace

generated by {w1, .., wk, v}. If {w1, .., wk, v} is already orthonormal, wk+1 = v.

Theorem (Gram-Schmidt) Suppose W is an IPS with a basis {v1, .., vn}.
Then W has an orthonormal basis {w1, .., wn}. Moreover, any orthonormal sequence
in W extends to an orthonormal basis of W .

Proof Let w1 =
v1

‖v1‖ . Suppose inductively that {w1, .., wk} is an orthonormal

basis for Y , the subspace generated by {v1, .., vk}. Let w = vk+1 − p(vk+1) and
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wk+1 =
w

‖w‖ . Then by the previous theorem, {w1, .., wk+1} is an orthonormal basis

for the subspace generated by {w1, .., wk, vk+1}. In this manner an orthonormal basis
for W is constructed.

Now suppose W has dimension n and {w1, .., wk} is an orthonormal sequence in
W . Since this sequence is independent, it extends to a basis {w1, .., wk, vk+1, .., vn}.
The process above may be used to modify this to an orthonormal basis {w1, .., wn}.

Exercise Let f : R3 → R be the homomorphism defined by the matrix (2,1,3).
Find an orthonormal basis for the kernel of f . Find the projection of (e1 + e2) onto
ker(f). Find the angle between e1 + e2 and the plane ker(f).

Exercise Let W = R3 have the standard inner product and Y ⊂ W be the
subspace generated by {w1, w2} where w1 = (1, 0, 0) and w2 = (0, 1, 0). W is
generated by the sequence {w1, w2, v} where v = (1, 2, 3). As in the first theorem
of this section, let w = v − p(v), where p(v) is the projection of v onto Y , and set

w3 =
w

‖w‖ . Find w3 and show that for any t with 0 ≤ t ≤ 1, {w1, w2, (1− t)v + tw3}
is a basis for W . This is a key observation for a future exercise showing O(n) is a
deformation retract of Gln(R).

Isometries Suppose each of U and V is an IPS. A homomorphism f : U → V
is said to be an isometry provided it is an isomorphism and for any u1, u2 in U ,
(u1 · u2)U = (f(u1) · f(u2))V .

Theorem Suppose each of U and V is an n-dimensional IPS, {u1, .., un} is an
orthonormal basis for U , and f : U → V is a homomorphism. Then f is an isometry
iff {f(u1), .., f(un)} is an orthonormal sequence in V .

Proof Isometries certainly preserve orthonormal sequences. So suppose S =
{f(u1), .., f(un)} is an orthonormal sequence in V . Then S is independent and thus
S is a basis and thus f is an isomorphism. It is easy to check that f preserves inner
products.

We now come to one of the definitive theorems in linear algebra. It is that, up to
isometry, there is only one inner product space for each dimension.
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Theorem Suppose each of U and V is an n-dimensional IPS. Then ∃ an isometry
f : U → V . In particular, U is isometric to Rn with its standard inner product.

Proof There exist orthonormal bases {u1, .., un} for U and {v1, .., vn} for V .
Now there exists a homomorphism f : U → V with f(ui) = vi, and by the
previous theorem, f is an isometry.

Exercise Let f : R3 → R be the homomorphism defined by the matrix (2,1,3).
Find a linear transformation h : R2 → R3 which gives an isometry from R2 to ker(f).

Orthogonal Matrices

As noted earlier, linear algebra is not so much the study of vector spaces as it is
the study of endomorphisms. We now wish to study isometries from Rn to Rn.

We know from a theorem on page 90 that an endomorphism preserves volume iff
its determinant is ±1. Isometries preserve inner product, and thus preserve angle and
distance, and so certainly preserve volume.

Theorem Suppose A ∈ Rn and f : Rn → Rn is the homomorphism defined by
f(B) = AB. Then the following are equivalent.

1) The columns of A form an orthonormal basis for Rn, i.e., AtA = I.
2) The rows of A form an orthonormal basis for Rn, i.e., AAt = I.
3) f is an isometry.

Proof A left inverse of a matrix is also a right inverse (see the exercise on
page 64). Thus 1) and 2) are equivalent because each of them says A is invert-
ible with A−1 = At. Now {e1, .., en} is the canonical orthonormal basis for Rn, and
f(ei) is column i of A. Thus by the previous section, 1) and 3) are equivalent.

Definition If A ∈ Rn satisfies these three conditions, A is said to be orthogonal.
The set of all such A is denoted by O(n), and is called the orthogonal group.

Theorem

1) If A is orthogonal, | A |= ±1.

2) If A is orthogonal, A−1 is orthogonal. If A and C are orthogonal, AC is
orthogonal. Thus O(n) is a multiplicative subgroup of Gln(R).
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3) Suppose A is orthogonal and f is defined by f(B) = AB. Then f preserves

distances and angles. This means that if u, v ∈ Rn, ‖u − v‖ =

‖f(u)−f(v)‖ and the angle between u and v is equal to the angle between

f(u) and f(v).

Proof Part 1) follows from |A|2 = |A| |At| = |I| = 1. Part 2) is imme-
diate, because isometries clearly form a subgroup of the multiplicative group of
all automorphisms. For part 3) assume f : Rn → Rn is an isometry. Then
‖u − v‖2 = (u − v) · (u − v) = f(u − v) · f(u − v) = ‖f(u − v)‖2 = ‖f(u) − f(v)‖2.
The proof that f preserves angles follows from u · v = ‖u‖‖v‖cosΘ.

Exercise Show that if A ∈ O(2) has |A| = 1, then A =

(
cosΘ −sinΘ
sinΘ cosΘ

)
for

some number Θ. (See the exercise on page 56.)

Exercise (topology) Let Rn ≈ Rn2
have its usual metric topology. This means

a sequence of matrices {Ai} converges to A iff it converges coordinatewise. Show
Gln(R) is an open subset and O(n) is closed and compact. Let h : Gln(R) →
O(n) be defined by Gram-Schmidt. Show H : Gln(R) × [0, 1] → Gln(R) defined by
H(A, t) = (1 − t)A + th(A) is a deformation retract of Gln(R) to O(n).

Diagonalization of Symmetric Matrices

We continue with the case F = R. Our goals are to prove that, if A is a symmetric
matrix, all of its eigenvalues are real and that ∃ an orthogonal matrix C such that
C−1AC is diagonal. As background, we first note that symmetric is the same as
self-adjoint.

Theorem Suppose A ∈ Rn and u, v ∈ Rn. Then (Atu) · v = u · (Av).

Proof Suppose y, z ∈ Rn. Then the dot product y · z is the matrix product ytz.
Thus (Atu) · v = (utA)v = ut(Av) = u · (Av).

Definition Suppose A ∈ Rn. A is said to be symmetric provided At = A. Note
that any diagonal matrix is symmetric. A is said to be self-adjoint if (Au)·v = u·(Av)
for all u, v ∈ Rn. The next theorem is just an exercise using the previous theorem.

Theorem A is symmetric iff A is self-adjoint.
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Theorem Suppose A ∈ Rn is symmetric. Then ∃ real numbers λ1, .., λn (not
necessarily distinct) such that CPA(x) = (x − λ1)(x − λ2) · · · (x − λn). That is, all
the eigenvalues of A are real.

Proof We know CPA(x) factors into linears over C. If µ = a + bi is a complex
number, its conjugate is defined by µ̄ = a − bi. If h : C → C is defined by h(µ) = µ̄,
then h is a ring isomorphism which is the identity on R. If w = (ai,j) is a complex
matrix or vector, its conjugate is defined by w̄ = (āi,j). Since A ∈ Rn is a real
symmetric matrix, A = At = Āt. Now suppose λ is a complex eigenvalue of A and
v ∈ Cn is an eigenvector with Av = λv. Then λ̄(v̄tv) = (λv)tv = (Av)tv = (v̄tA)v =
v̄t(Av) = v̄t(λv) = λ(v̄tv). Thus λ = λ̄ and λ ∈ R. Or you can define a complex
inner product on Cn by (w · v) = w̄tv. The proof then reads as λ̄(v · v) = (λv · v) =
(Av · v) = (v · Av) = (v · λv) = λ(v · v). Either way, λ is a real number.

We know that eigenvectors belonging to distinct eigenvalues are linearly indepen-
dent. For symmetric matrices, we show more, namely that they are perpendicular.

Theorem Suppose A is symmetric, λ1, λ2 ∈ R are distinct eigenvalues of A, and
Au = λ1u and Av = λ2v. Then u · v = 0.

Proof λ1(u · v) = (Au) · v = u · (Av) = λ2(u · v).

Review Suppose A ∈ Rn and f : Rn → Rn is defined by f(B) = AB. Then A
represents f w.r.t. the canonical orthonormal basis. Let S = {v1, .., vn} be another
basis and C ∈ Rn be the matrix with vi as column i. Then C−1AC is the matrix
representing f w.r.t. S. Now S is an orthonormal basis iff C is an orthogonal matrix.

Summary Representing f w.r.t. an orthonormal basis is the same as conjugating
A by an orthogonal matrix.

Theorem Suppose A ∈ Rn and C ∈ O(n). Then A is symmetric iff C−1AC is
symmetric.

Proof Suppose A is symmetric. Then (C−1AC)t = CtA(C−1)t = C−1AC.

The next theorem has geometric and physical implications, but for us, just the
incredibility of it all will suffice.
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Theorem If A ∈ Rn, the following are equivalent.

1) A is symmetric.

2) ∃ C ∈ O(n) such that C−1AC is diagonal.

Proof By the previous theorem, 2) ⇒ 1). Show 1) ⇒ 2). Suppose A is a
symmetric 2 × 2 matrix. Let λ be an eigenvalue for A and {v1, v2} be an orthonor-
mal basis for R2 with Av1 = λv1. Then w.r.t this basis, the transformation A is

represented by

(
λ b
0 d

)
. Since this matrix is symmetric, b = 0.

Now suppose by induction that the theorem is true for symmetric matrices in
Rt for t < n, and suppose A is a symmetric n × n matrix. Denote by λ1, .., λk the
distinct eigenvalues of A, k ≤ n. If k = n, the proof is immediate, because then there
is a basis of eigenvectors of length 1, and they must form an orthonormal basis. So
suppose k < n. Let v1, .., vk be eigenvectors for λ1, .., λk with each ‖ vi ‖= 1. They
may be extended to an orthonormal basis v1, .., vn. With respect to this basis,

the transformation A is represented by







λ1

·
·

λk


 (B)

(0) (D)




.

Since this is a symmetric matrix, B = 0 and D is a symmetric matrix of smaller
size. By induction, ∃ an orthogonal C such that C−1DC is diagonal. Thus conjugating

by

(
I 0
0 C

)
makes the entire matrix diagonal.

This theorem is so basic we state it again in different terminology. If V is an IPS, a
linear transformation f : V → V is said to be self-adjoint provided (u·f(v)) = (f(u)·v)
for all u, v ∈ V .

Theorem If V is an n-dimensional IPS and f : V → V is a linear transformation,
then the following are equivalent.

1) f is self-adjoint.

2) ∃ an orthonormal basis {v1, ..., vn} for V with each

vi an eigenvector of f .
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Exercise Let A =

(
2 2
2 2

)
. Find an orthogonal C such that C−1AC is diagonal.

Do the same for A =

(
2 1
1 2

)
.

Exercise Suppose A,D ∈ Rn are symmetric. Under what conditions are A and D
similar? Show that, if A and D are similar, ∃ an orthogonal C such that D = C−1AC.

Exercise Suppose V is an n-dimensional real vector space. We know that V is
isomorphic to Rn. Suppose f and g are isomorphisms from V to Rn and A is a subset
of V . Show that f(A) is an open subset of Rn iff g(A) is an open subset of Rn. This
shows that V , an algebraic object, has a god-given topology. Of course, if V has
an inner product, it automatically has a metric, and this metric will determine that
same topology. Finally, suppose V and W are finite-dimensional real vector spaces
and h : V → W is a linear transformation. Show that h is continuous.

Exercise Define E : Cn → Cn by E(A) = eA = I + A + (1/2!)A2 + ··. This series
converges and thus E is a well defined function. If AB = BA, then E(A + B) =
E(A)E(B). Since A and −A commute, I = E(0

¯
) = E(A − A) = E(A)E(−A), and

thus E(A) is invertible with E(A)−1 = E(−A). Furthermore E(At) = E(A)t, and
if C is invertible, E(C−1AC) = C−1E(A)C. Now use the results of this section to
prove the statements below. (For part 1, assume the Jordan form, i.e., assume any
A ∈ Cn is similar to a lower triangular matrix.)

1) If A ∈ Cn, then | eA |= etrace(A). Thus if A ∈ Rn, | eA |= 1
iff trace(A) = 0.

2) ∃ a non-zero matrix N ∈ R2 with eN = I.

3) If N ∈ Rn is symmetric, then eN = I iff N = 0
¯
.

4) If A ∈ Rn and At = −A, then eA ∈ O(n).
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Appendix

The five previous chapters were designed for a year undergraduate course in algebra.
In this appendix, enough material is added to form a basic first year graduate course.
Two of the main goals are to characterize finitely generated abelian groups and to
prove the Jordan canonical form. The style is the same as before, i.e., everything is
right down to the nub. The organization is mostly a linearly ordered sequence except
for the last two sections on determinants and dual spaces. These are independent
sections added on at the end.

Suppose R is a commutative ring. An R-module M is said to be cyclic if it can
be generated by one element, i.e., M ≈ R/I where I is an ideal of R. The basic
theorem of this chapter is that if R is a Euclidean domain and M is a finitely generated
R-module, then M is the sum of cyclic modules. Thus if M is torsion free, it is a
free R-module. Since Z is a Euclidean domain, finitely generated abelian groups
are the sums of cyclic groups.

Now suppose F is a field and V is a finitely generated F -module. If T : V → V is
a linear transformation, then V becomes an F [x]-module by defining vx = T (v). Now
F [x] is a Euclidean domain and so VF [x] is the sum of cyclic modules. This classical
and very powerful technique allows an easy proof of the canonical forms. There is a
basis for V so that the matrix representing T is in Rational canonical form. If the
characteristic polynomial of T factors into the product of linear polynomials, then
there is a basis for V so that the matrix representing T is in Jordan canonical form.
This always holds if F = C. A matrix in Jordan form is a lower triangular matrix
with the eigenvalues of T displayed on the diagonal, so this is a powerful concept.

In the chapter on matrices, it is stated without proof that the determinant of the
product is the product of the determinants. A proof of this, which depends upon the
classification of certain types of alternating multilinear forms, is given in this chapter.
The final section gives the fundamentals of dual spaces.

107
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The Chinese Remainder Theorem

On page 50 in the chapter on rings, the Chinese Remainder Theorem was proved
for the integers. Here it is presented in full generality. Surprisingly, the theorem holds
even for non-commutative rings.

Definition Suppose R is a ring and A1, A2, ..., Am are ideals of R. Then the sum
A1 + A2 + · · · + Am is the set of all a1 + a2 + · · · + am with ai ∈ Ai. The product
A1A2 · · · Am is the set of all finite sums of elements a1a2 · · · am with ai ∈ Ai. Note
that the sum and product of ideals are ideals and A1A2 · · ·Am ⊂ (A1∩A2∩· · ·∩Am).

Definition Ideals A and B of R are said to be comaximal if A + B = R.

Theorem If A and B are ideals of a ring R, then the following are equivalent.

1) A and B are comaximal.

2) ∃ a ∈ A and b ∈ B with a + b = 1
¯
.

3) π(A) = R/B where π : R → R/B is the projection.

Theorem If A1, A2, ..., Am and B are ideals of R with Ai and B comaximal for
each i, then A1A2 · · ·Am and B are comaximal. Thus A1 ∩A2 ∩ · · · ∩Am and B are
comaximal.

Proof Consider π : R → R/B. Then π(A1A2 · · · Am) = π(A1)π(A2) · · · π(Am) =
(R/B)(R/B) · · · (R/B) = R/B.

Chinese Remainder Theorem Suppose A1, A2, ..., An are pairwise comaximal
ideals of R, with each Ai 6= R. Then π : R → R/A1×R/A2×···×R/An is a surjective
ring homomorphism with kernel A1 ∩ A2 ∩ · · · ∩ An.

Proof There exists ai ∈ Ai and bi ∈ A1A2 · · ·Ai−1Ai+1 · · ·An with ai +bi = 1
¯
. Note

that π(bi) = (0, 0, .., 1
¯i, 0, .., 0). If (r1 + A1, r2 + A2, ..., rn + An) is an element of the

range, it is the image of r1b1+r2b2+···+rnbn = r1(1
¯
−a1)+r2(1

¯
−a2)+···+rn(1

¯
−an).

Theorem If R is commutative and A1, A2, ..., An are pairwise comaximal ideals
of R, then A1A2 · · · An = A1 ∩ A2 ∩ · · · ∩ An.

Proof for n = 2. Show A1∩A2 ⊂ A1A2. ∃ a1 ∈ A1 and a2 ∈ A2 with a1 +a2 = 1
¯
.

If c ∈ A1 ∩ A2, then c = c(a1 + a2) ∈ A1A2.
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Prime and Maximal Ideals and UFDs

In the first chapter on background material, it was shown that Z is a unique
factorization domain. Here it will be shown that this property holds for any principle
ideal domain. Later on it will be shown that every Euclidean domain is a principle
ideal domain. Thus every Euclidean domain is a unique factorization domain.

Definition Suppose R is a commutative ring and I ⊂ R is an ideal.

I is prime means I 6= R and if a, b ∈ R have ab ∈ I, then a or b ∈ I.
I is maximal means I 6= R and there are no ideals properly between I and R.

Theorem 0
¯

is a prime ideal of R iff R is
0
¯

is a maximal ideal of R iff R is

Theorem Suppose J ⊂ R is an ideal, J 6= R.
J is a prime ideal iff R/J is
J is a maximal ideal iff R/J is

Corollary Maximal ideals are prime.

Proof Every field is a domain.

Theorem If a ∈ R is not a unit, then ∃ a maximal ideal I of R with a ∈ I.

Proof This is a classical application of the Hausdorff Maximality Principle. Con-
sider {J : J is an ideal of R containing a with J 6= R}. This collection contains a
maximal monotonic collection {Vt}t∈T . The ideal V =

⋃
t∈T

Vt does not contain 1
¯

and

thus is not equal to R. Therefore V is equal to some Vt and is a maximal ideal
containing a.

Note To properly appreciate this proof, the student should work the exercise on
group theory at the end of this section.

Definition Suppose R is a domain and a, b ∈ R. Then we say a ∼ b iff there
exists a unit u with au = b. Note that ∼ is an equivalence relation. If a ∼ b, then a
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and b are said to be associates.

Examples If R is a domain, the associates of 1
¯

are the units of R, while the only
associate of 0

¯
is 0

¯
itself. If n ∈ Z is not zero, then its associates are n and −n.

If F is a field and g ∈ F [x] is a non-zero polynomial, then the associates of g are
all cg where c is a non-zero constant.

The following theorem is elementary, but it shows how associates fit into the
scheme of things. An element a divides b (a|b) if ∃! c ∈ R with ac = b.

Theorem Suppose R is a domain and a, b ∈ (R − 0
¯
). Then the following are

equivalent.

1) a ∼ b.
2) a|b and b|a.
3) aR = bR.

Parts 1) and 3) above show there is a bijection from the associate classes of R to
the principal ideals of R. Thus if R is a PID, there is a bijection from the associate
classes of R to the ideals of R. If an element generates a non-zero prime ideal, it is
called a prime element.

Definition Suppose R is a domain and a ∈ R is a non-zero non-unit.

1) a is irreducible if it does not factor, i.e., a = bc ⇒ b or c is a unit.
2) a is prime if it generates a prime ideal, i.e., a|bc ⇒ a|b or a|c.

Note If a is a prime and a|c1c2 · · · cn, then a|ci for some i. This follows from the
definition and induction on n. If each cj is irreducible, then a ∼ ci for some i.

Note If a ∼ b, then a is irreducible (prime) iff b is irreducible (prime). In other
words, if a is irreducible (prime) and u is a unit, then au is irreducible (prime).

Note a is prime ⇒ a is irreducible. This is immediate from the definitions.

Theorem Factorization into primes is unique up to order and associates, i.e., if
a = b1b2 ···bn = c1c2 ···cm with each bi, ci prime, then n = m and for some permutation
σ of the indices, bi and cσ(i) are associates for every i.
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Proof This follows from the notes above.

Definition R is a factorization domain (FD) means that R is a domain and if a is
a non-zero non-unit element of R, then a factors into a finite product of irreducibles.

R is a unique factorization domain (UFD) means R is a FD and factorization is unique
(up to order and associates).

Theorem If R is a UFD and a is a non-zero non-unit of R, then a is irreducible
⇔ a is prime. Thus in a UFD, elements factor as the product of primes.

Proof Suppose R is a UFD, a is an irreducible element of R, and a|bc. If either
b or c is a unit or is zero, then a divides one of them, so suppose each of b and c is
a non-zero non-unit element of R. There exists an element d with ad = bc. Each of
b and c factors as the product of irreducibles and the product of these products is
the factorization of bc. It follows from the uniqueness of the factorization of ad = bc,
that one of these irreducibles is an associate of a, and thus a|b or a|c. Therefore
the element a is a prime.

Theorem Suppose R is a FD. Then the following are equivalent.

1) R is a UFD.
2) Every irreducible element is prime, i.e., a irreducible ⇔ a is prime.

Proof We already know 1) ⇒ 2). Part 2) ⇒ 1) because factorization into primes
is always unique.

This is a revealing and useful theorem. If R is a FD, then R is a UFD iff each
irreducible element generates a prime ideal. Fortunately, principal ideal domains
have this property, as seen in the next theorem.

Theorem Suppose R is a PID and a ∈ R is non-zero non-unit. Then the following
are equivalent.

1) aR is a maximal ideal.
2) aR is a prime ideal, i.e., a is a prime element.
3) a is irreducible.

Proof Every maximal ideal is a prime ideal, so 1) ⇒ 2). Every prime element is
an irreducible element, so 2) ⇒ 3). Now suppose a is irreducible and show aR is a
maximal ideal. If I is an ideal containing aR, ∃ b ∈ R with I = bR. Since b divides
a, b is a unit or an associate of a. This means I = R or I = aR.
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Our goal is to prove that a PID is a UFD. Using the two theorems above, it
only remains to show that a PID is a FD. The proof will not require that ideals be
principally generated, but only that they be finitely generated. This turns out to
be equivalent to the property that any collection of ideals has a “maximal” element.
We shall see below that this is a useful concept which fits naturally into the study of
unique factorization domains.

Theorem Suppose R is a commutative ring. Then the following are equivalent.

1) If I ⊂ R is an ideal, ∃ a finite set {a1, a2, ..., an} ⊂ R such that I =
a1R + a2R + · · · + anR, i.e., each ideal of R is finitely generated.

2) If {It}t∈T is a collection of ideals, ∃ t0 ∈ T such that if t is any element in T
with It ⊃ It0 , then It = It0 . (The ideal It0 is maximal only in the sense
described. It need not contain all the ideals of the collection, nor need it be
a maximal ideal of the ring R.)

3) If I1 ⊂ I2 ⊂ I3 ⊂ ... is a monotonic sequence of ideals, ∃ t0 ≥ 1 such that It = Ito

for all t ≥ t0.

Proof Suppose 1) is true and show 3). The ideal I = I1 ∪ I2 ∪ . . . is finitely
generated and ∃ t0 ≥ 1 such that It0 contains those generators. Thus 3) is true.
Now suppose 1) is false and I ⊂ R is an ideal not finitely generated. Then ∃ a
sequence a1, a2, . . . of elements in I with a1R + a2R + · · ·+ anR properly contained
in a1R + a2R + · · · + an+1R for each n ≤ 1. Thus 3) is false and 1) ⇔ 3). The
proof that 2) ⇒ 3) is immediate. If 2) is false, ∃ a sequence of ideals I1 ⊂ I2 ⊂ . . .
with each inclusion proper. Thus 3) is false and so 2) ⇔ 3).

Definition If R satisfies these properties, R is said to be Noetherian, or it is said
to satisfy the ascending chain condition. This is a useful property satisfied by many
of the classical rings in mathematics. Having three definitions makes this property
easy to use. For example, see the next theorem.

Theorem A Noetherian domain is a FD. In particular, a PID is a FD.

Proof Suppose there is a non-zero non-unit element that does not factor as the
finite product of irreducibles. Consider all ideals dR where d does not factor. Then ∃
a maximal one cR. The element c must be reducible, i.e., c = ab where neither a nor
b is a unit. Each of aR and bR properly contains cR, and so each of a and b factors as
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a finite product of irreducibles. This gives a finite factorization of c into irreducibles
which is a contradiction.

Corollary A PID is a UFD. So Z is a UFD and if F is a field, F [x] is a UFD.

You see the basic structure of UFDs is quite easy. It takes more work to prove
the following theorems, which are stated here only for reference.

Theorem If R is a UFD then R[x1, ..., xn] is a UFD. Thus if F is a field,
F [x1, ..., xn] is a UFD. (This theorem goes all the way back to Gauss.)

If R is a PID, then the formal power series R[[x1, ..., xn]] is a UFD. Thus if F
is a field, F [[x1, ..., xn]] is a UFD. (There is a UFD R where R[[x]] is not a UFD.
See page 566 of Commutative Algebra by N. Bourbaki.)

Theorem Germs of analytic functions over C form a UFD.

Proof See Theorem 6.6.2 of An Introduction to Complex Analysis in Several Vari-
ables by L. Hörmander.

Theorem Suppose R is a commutative ring. Then R is Noetherian ⇒ R[x1, ..., xn]
and R[[x1, ..., xn]] are Noetherian. (This is the famous Hilbert Basis Theorem.)

Theorem If R is Noetherian and I ⊂ R is a proper ideal, then R/I is Noetherian.
(This follows immediately from the definition.)

Note The combination of the last two theorems shows that Noetherian is a ubiq-
uitous property which is satisfied by many of the basic rings in commutative algebra.

Next are presented two of the standard examples of Noetherian domains that are
not unique factorization domains.

Exercise Let R = Z(
√

5) = {n + m
√

5 : n,m ∈ Z}. Show that R is a subring of
R which is not a UFD. In particular 2 · 2 = (1−√

5) · (−1−√
5) are two distinct
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irreducible factorizations of 4. Show R is isomorphic to Z[x]/(x2 − 5), where (x2 − 5)
represents the ideal (x2 − 5)Z[x], and R/(2) is isomorphic to Z2[x]/(x2 − [5]) =
Z2[x]/(x2 + [1]), which is not a domain.

Exercise Let R = R[x, y, z]/(x2 − yz). Show x2 − yz is irreducible and thus
prime in R[x, y, z]. If u ∈ R[x, y, z], let ū ∈ R be the coset containing u. Show R
is not a UFD. In particular x̄ · x̄ = ȳ · z̄ are two distinct irreducible factorizations
of x̄2. Show R/(x̄) is isomorphic to R[y, z]/(yz), which is not a domain.

Exercise In Group Theory If G is an additive abelian group, a subgroup H
of G is said to be maximal if H 6= G and there are no subgroups properly between
H and G. Show that H is maximal iff G/H ≈ Zp for some prime p. For simplicity,
consider the case G = Q. Which one of the following is true?

1) If a ∈ Q, then there is a maximal subgroup H of Q which contains a.

2) Q contains no maximal subgroups.

Splitting Short Exact Sequences

Suppose B is an R-module and K is a submodule of B. As defined in the chapter
on linear algebra, K is a summand of B provided ∃ a submodule L of B with
K +L = B and K ∩L = 0

¯
. In this case we write K ⊕L = B. When is K a summand

of B? It turns out that K is a summand of B iff there is a splitting map from
B/K to B. In particular, if B/K is free, K must be a summand of B. This is used
below to show that if R is a PID, then every submodule of Rn is free.

Theorem 1 Suppose R is a ring, B and C are R-modules, and g : B → C is a
surjective homomorphism with kernel K. Then the following are equivalent.

1) K is a summand of B.

2) g has a right inverse, i.e., ∃ a homomorphism h : C → B with g ◦h = I : C → C.

(h is called a splitting map.)

Proof Suppose 1) is true, i.e., suppose ∃ a submodule L of B with K ⊕ L = B.
Then (g|L) : L → C is an isomorphism. If i : L → B is inclusion, then h defined
by h = i ◦ (g|L)−1 is a right inverse of g. Now suppose 2) is true and h : C → B
is a right inverse of g. Then h is injective, K + h(C) = B and K ∩ h(C) = 0

¯
.

Thus K ⊕ h(C) = B.
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Definition Suppose f : A → B and g : B → C are R-module homomorphisms.

The statement that 0 → A
f→ B

g→ C → 0 is a short exact sequence (s.e.s) means
f is injective, g is surjective and f(A) = ker(g). The canonical split s.e.s. is A →
A⊕C → C where f = i1 and g = π2. A short exact sequence is said to split if ∃ an
isomorphism B

≈→ A ⊕ C such that the following diagram commutes.

A B C

A ⊕ C

≈

f g

i1 π2

- -

Z
Z

Z
Z

ZZ~ ½
½

½
½

½½>

?

We now restate the previous theorem in this terminology.

Theorem 1.1 A short exact sequence 0 → A → B → C → 0 splits iff f(A) is
a summand of B, iff B → C has a splitting map. If C is a free R-module, there is a
splitting map and thus the sequence splits.

Proof We know from the previous theorem f(A) is a summand of B iff B → C
has a splitting map. Showing these properties are equivalent to the splitting of the
sequence is a good exercise in the art of diagram chasing. Now suppose C has a free
basis T ⊂ C, and g : B → C is surjective. There exists a function h : T → B such
that g ◦ h(c) = c for each c ∈ T . The function h extends to a homomorphism from
C to B which is a right inverse of g.

Theorem 2 If R is a commutative ring, then the following are equivalent.

1) R is a PID.

2) Every submodule of RR is a free R-module of dimension ≤ 1.

This theorem restates the ring property of PID as a module property. Although
this theorem is transparent, it is a precursor to the following classical result.

Theorem 3 If R is a PID and A ⊂ Rn is a submodule, then A is a free R-module
of dimension ≤ n. Thus subgroups of Zn are free Z-modules of dimension ≤ n.

Proof From the previous theorem we know this is true for n = 1. Suppose n > 1
and the theorem is true for submodules of Rn−1. Suppose A ⊂ Rn is a submodule.
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Consider the following short exact sequences, where f : Rn−1 → Rn−1⊕R is inclusion
and g = π : Rn−1 ⊕ R → R is the projection.

0 −→ Rn−1 f−→ Rn−1 ⊕ R
π−→ R −→ 0

0 −→ A ∩ Rn−1 −→ A −→ π(A) −→ 0

By induction, A∩Rn−1 is free of dimension ≤ n− 1. If π(A) = 0
¯
, then A ⊂ Rn−1. If

π(A) 6= 0
¯
, it is free of dimension 1 and the sequence splits by Theorem 1.1. In either

case, A is a free submodule of dimension ≤ n.

Exercise Let A ⊂ Z2 be the subgroup generated by {(6, 24), (16, 64)}. Show A
is a free Z-module of dimension 1.

Euclidean Domains

The ring Z possesses the Euclidean algorithm and the polynomial ring F [x] has
the division algorithm. The concept of Euclidean domain is an abstraction of these
properties. The axioms are so miniscule that it is surprising you get this much juice
out of them. However they are exactly what you need, and it is possible to just play
around with matrices and get some deep results. If R is a Euclidean domain and M
is a finitely generated R-module, then M is the sum of cyclic modules. This is one of
the great classical theorems of abstract algebra, and you don’t have to worry about
it becoming obsolete. Here N will denote the set of all non-negative integers, not
just the set of positive integers.

Definition A domain R is a Euclidean domain provided ∃ φ : (R−0
¯
) −→ N such

that if a, b ∈ (R − 0
¯
), then

1) φ(a) ≤ φ(ab).
2) ∃ q, r ∈ R such that a = bq + r with r = 0

¯
or φ(r) < φ(b).

Examples of Euclidean Domains

Z with φ(n) = |n|.
A field F with φ(a) = 1 ∀ a 6= 0

¯
or with φ(a) = 0 ∀ a 6= 0

¯
.

F [x] where F is a field with φ(f = a0 + a1x + · · · + anx
n) = deg(f).

Z[i] = {a + bi : a, b ∈ Z} = Gaussian integers with φ(a + bi) = a2 + b2.
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Theorem 1 If R is a Euclidean domain, then R is a PID and thus a UFD.

Proof If I is a non-zero ideal, then ∃ b ∈ I − 0
¯

satisfying φ(b) ≤ φ(i) ∀ i ∈ I − 0
¯
.

Then b generates I because if a ∈ I − 0
¯
, ∃ q, r with a = bq + r. Now r ∈ I and

r 6= 0
¯
⇒ φ(r) < φ(b) which is impossible. Thus r = 0

¯
and a ∈ bR so I = bR.

Theorem 2 If R is a Euclidean domain and a, b ∈ R − 0
¯
, then

φ(1
¯
) is the smallest integer in the image of φ.

a is a unit in R iff φ(a) = φ(1
¯
).

a and b are associates ⇒ φ(a) = φ(b).

Proof This is a good exercise.

The following remarkable theorem is the foundation for the results of this section.

Theorem 3 If R is a Euclidean domain and (ai,j) ∈ Rn,t is a non-zero matrix,
then by elementary row and column operations (ai,j) can be transformed to




d1 0 · · · 0
0 d2
...

. . .

dm

0

0 0




where each di 6= 0
¯
, and di|di+1 for 1 ≤ i < m. Also d1 generates the ideal of R

generated by the entries of (ai,j).

Proof Let I ⊂ R be the ideal generated by the elements of the matrix A = (ai,j).
If E ∈ Rn, then the ideal J generated by the elements of EA has J ⊂ I. If E is
invertible, then J = I. In the same manner, if E ∈ Rt is invertible and J is the ideal
generated by the elements of AE, then J = I. This means that row and column
operations on A do not change the ideal I. Since R is a PID, there is an element d1

with I = d1R, and this will turn out to be the d1 displayed in the theorem.
The matrix (ai,j) has at least one non-zero element d with φ(d) a miminum.

However, row and column operations on (ai,j) may produce elements with smaller
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φ values. To consolidate this approach, consider matrices obtained from (ai,j) by a
finite number of row and column operations. Among these, let (bi,j) be one which
has an entry d1 6= 0 with φ(d1) a minimum. By elementary operations of type 2, the
entry d1 may be moved to the (1, 1) place in the matrix. Then d1 will divide the other
entries in the first row, else we could obtain an entry with a smaller φ value. Thus
by column operations of type 3, the other entries of the first row may be made zero.
In a similar manner, by row operations of type 3, the matrix may be changed to the
following form.




d1 0 · · · 0

0
... cij

0




Note that d1 divides each ci,j, and thus I = d1R. The proof now follows by induction
on the size of the matrix.

This is an example of a theorem that is easy to prove playing around at the
blackboard. Yet it must be a deep theorem because the next two theorems are easy
consequences.

Theorem 4 Suppose R is a Euclidean domain, B is a finitely generated free R-
module and A ⊂ B is a non-zero submodule. Then ∃ free bases {a1, a2, ..., at} for A
and {b1, b2, ..., bn} for B, with t ≤ n, and such that each ai = dibi, where each di 6= 0

¯
,

and di|di+1 for 1 ≤ i < t. Thus B/A ≈ R/d1 ⊕ R/d2 ⊕ · · · ⊕ R/dt ⊕ Rn−t.

Proof By Theorem 3 in the section Splitting Short Exact Sequences, A has a
free basis {h1, h2, ..., ht}. Let {g1, g2, ..., gn} be a free basis for B, where n ≥ t. The
composition

Rt ≈−→ A
⊂−→ B

≈−→ Rn

ei −→ hi gi −→ ei

is represented by a matrix (ai,j) ∈ Rn,t where hi = a1,ig1 + a2,ig2 + · · · + an,ign. By
the previous theorem, ∃ invertible matrixes U ∈ Rn and V ∈ Rt such that
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U(ai,j)V =




d1 0 · · · 0
0 d2 0
... 0

. . .

dt

0 · · · 0




with di|di+1. Since changing the isomorphisms Rt ≈−→ A and B
≈−→ Rn corresponds

to changing the bases {h1, h2, ..., ht} and {g1, g2, ..., gn}, the theorem follows.

Theorem 5 If R is a Euclidean domain and M is a finitely generated R-module,
then M ≈ R/d1⊕R/d2⊕· · ·⊕R/dt⊕Rm where each di 6= 0

¯
, and di|di+1 for 1 ≤ i < t.

Proof By hypothesis ∃ a finitely generated free module B and a surjective homo-
morphism B −→ M −→ 0. Let A be the kernel, so 0 −→ A

⊂−→ B −→ M −→ 0 is
a s.e.s. and B/A ≈ M. The result now follows from the previous theorem.

The way Theorem 5 is stated, some or all of the elements di may be units, and for
such di, R/di = 0

¯
. If we assume that no di is a unit, then the elements d1, d2, ..., dt

are called invariant factors. They are unique up to associates, but we do not bother
with that here. If R = Z and we select the di to be positive, they are unique. If
R = F [x] and we select the di to be monic, then they are unique. The splitting in
Theorem 5 is not the ultimate because the modules R/di may be split into the sum
of other cyclic modules. To prove this we need the following Lemma.

Lemma Suppose R is a PID and b and c are non-zero non-unit elements of R.
Suppose b and c are relatively prime, i.e., there is no prime common to their prime
factorizations. Then bR and cR are comaximal ideals.

Proof There exists and a ∈ R with aR = bR + cR. Since a|b and a|c, a is a unit,
so R = bR + cR.

Theorem 6 Suppose R is a PID and d is a non-zero non-unit element of R.
Let d = ps1

1 ps2
2 · · · pst

t be the prime factorization of d. Then the natural map
R/d

≈−→R/ps1
1 ⊕ · · · ⊕ R/pst

t is an isomorphism of R-modules. (The elements psi
i

are called elementary divisors of R/d.)

Proof If i 6= j, psi
i and p

sj

j are relatively prime. By the Lemma above, they are
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comaximal and thus by the Chinese Remainder Theorem, the natural map is a ring
isomorphism. Since the natural map is also an R-module homomorphism, it is an
R-module isomorphism.

This theorem carries the splitting as far as it can go, as seen by the next exercise.

Exercise Suppose R is a PID, p ∈ R is a prime element, and s ≥ 1. Then the
R-module R/ps has no proper submodule which is a summand.

To give perspective to this section, here is a brief discussion of torsion submodules.

Definition Suppose M is a module over a domain R. An element m ∈ M is said
to be a torsion element if ∃ r ∈ R with r 6= 0

¯
and mr = 0

¯
. This is the same as

saying m is dependent. If R = Z, it is the same as saying m has finite order. Denote
by T (M) the set of all torsion elements of M . If T (M) = 0

¯
, we say that M is torsion

free.

Theorem 7 Suppose M is a module over a domain R. Then T (M) is a submodule
of M and M/T (M) is torsion free.

Proof This is a simple exercise.

Theorem 8 Suppose R is a Euclidean domain and M is a finitely generated
R-module which is torsion free. Then M is a free R-module, i.e., M ≈ Rm.

Proof This follows immediately from Theorem 5.

Theorem 9 Suppose R is a Euclidean domain and M is a finitely generated
R-module. Then the following s.e.s. splits.

0 −→ T (M) −→ M −→ M/T (M) −→ 0

Proof By Theorem 7, M/T (M) is torsion free. By Theorem 8, M/T (M) is a free
R-module, and thus there is a splitting map. Of course this theorem is transparent
anyway, because Theorem 5 gives a splitting of M into a torsion part and a free part.
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Note It follows from Theorem 9 that ∃ a free submodule V of M such that T (M)⊕
V = M . The first summand T (M) is unique, but the complementary summand V is
not unique. V depends upon the splitting map and is unique only up to isomorphism.

To complete this section, here are two more theorems that follow from the work
we have done.

Theorem 10 Suppose T is a domain and T ∗ is the multiplicative group of units
of T . If G is a finite subgroup of T ∗, then G is a cyclic group. Thus if F is a finite
field, the multiplicative group F ∗ is cyclic. Thus if p is a prime, (Zp)

∗ is cyclic.

Proof This is a corollary to Theorem 5 with R = Z. The multiplicative group G
is isomorphic to an additive group Z/d1 ⊕ Z/d2 ⊕ · · · ⊕ Z/dt where each di > 1 and
di|di+1 for 1 ≤ i < t. Every g in the additive group has the property that gdt = 0

¯
. So

every u ∈ G is a solution to xdt − 1
¯

= 0
¯
. If t > 1, the equation will have degree less

than the number of roots, which is impossible. Thus t = 1 and G is cyclic.

Exercise For which primes p and q is the group of units (Zp×Zq)
∗ a cyclic group?

We know from Exercise 2) on page 59 that an invertible matrix over a field is the
product of elementary matrices. This result also holds for any invertible matrix over
a Euclidean domain.

Theorem 11 Suppose R is a Euclidean domain and A ∈ Rn is a matrix with
non-zero determinant. Then by elementary row and column operations, A may be
transformed to a diagonal matrix




d1 0
d2

. . .

0 dn




where each di 6= 0
¯

and di|di+1 for 1 ≤ i < n. Also d1 generates the ideal generated
by the entries of A. Furthermore A is invertible iff each di is a unit. Thus if A is
invertible, A is the product of elementary matrices.
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Proof It follows from Theorem 3 that A may be transformed to a diagonal matrix
with di|di+1. Since the determinant of A is not zero, it follows that each di 6= 0

¯
.

Furthermore, the matrix A is invertible iff the diagonal matrix is invertible, which is
true iff each di is a unit. If each di is a unit, then the diagonal matrix is the product
of elementary matrices of type 1. Therefore if A is invertible, it is the product of
elementary matrices.

Exercise Let R = Z, A =

(
3 11
0 4

)
and D =

(
3 11
1 4

)
. Perform elementary

operations on A and D to obtain diagonal matrices where the first diagonal element
divides the second diagonal element. Write D as the product of elementary matrices.
Find the characteristic polynomials of A and D. Find an elementary matrix B over
Z such that B−1AB is diagonal. Find an invertible matrix C in R2 such that C−1DC
is diagonal. Show C cannot be selected in Q2.

Jordan Blocks

In this section, we define the two special types of square matrices used in the
Rational and Jordan canonical forms. Note that the Jordan block B(q) is the sum
of a scalar matrix and a nilpotent matrix. A Jordan block displays its eigenvalue
on the diagonal, and is more interesting than the companion matrix C(q). But as
we shall see later, the Rational canonical form will always exist, while the Jordan
canonical form will exist iff the characteristic polynomial factors as the product of
linear polynomials.

Suppose R is a commutative ring, q = a0 + a1x + · · · + an−1x
n−1 + xn ∈ R[x]

is a monic polynomial of degree n ≥ 1, and V is the R[x]-module V = R[x]/q.
V is a torsion module over the ring R[x], but as an R-module, V has a free basis
{1, x, x2, . . . , xn−1}. (See the division algorithm in the chapter on rings.) Multipli-
cation by x defines an R-module endomorphism on V , and C(q) will be the ma-
trix of this endomorphism with respect to this basis. Let T : V → V be defined
by T (v) = vx. If h(x) ∈ R[x], h(T ) is the R-module homomorphism given by
multiplication by h(x). The homomorphism from R[x]/q to R[x]/q given by
multiplication by h(x), is zero iff h(x) ∈ qR[x]. That is to say q(T ) = a0I+a1T +· · ·+
T n is the zero homomorphism, and h(T ) is the zero homomorphism iff h(x) ∈ qR[x].

Theorem Let V have the free basis {1, x, x2, ..., xn−1}. The companion matrix
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representing T is

C(q) =




0 . . . . . . 0 −a0

1 0 . . . 0 −a1

0 1 0 −a2
...

. . . . . .
...

0 . . . . . . 1 −an−1




The characteristic polynomial of C(q) is q, and |C(q)| = (−1)na0. Finally, if h(x) ∈
R[x], h(C(q)) is zero iff h(x) ∈ qR[x].

Theorem Suppose λ ∈ R and q(x) = (x − λ)n. Let V have the free basis
{1, (x − λ), (x − λ)2, . . . , (x − λ)n−1}. Then the matrix representing T is

B(q) =




λ 0 . . . . . . 0
1 λ 0 . . . 0

0 1 λ
...

...
. . . . . .

...
0 . . . . . . 1 λ




The characteristic polynomial of B(q) is q, and |B(q)| = λn = (−1)na0. Finally, if
h(x) ∈ R[x], h(B(q)) is zero iff h(x) ∈ qR[x].

Note For n = 1, C(a0 + x) = B(a0 + x) = (−a0). This is the only case where a
block matrix may be the zero matrix.

Note In B(q), if you wish to have the 1s above the diagonal, reverse the order of
the basis for V .

Jordan Canonical Form

We are finally ready to prove the Rational and Jordan forms. Using the previous
sections, all that’s left to do is to put the pieces together. (For an overview of Jordan
form, see the section in Chapter 5.)
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Suppose R is a commutative ring, V is an R-module, and T : V → V is an
R-module homomorphism. Define a scalar multiplication V × R[x] → V by
v(a0 + a1x + · · · + arx

r) = va0 + T (v)a1 + · · · + T r(v)ar.

Theorem 1 Under this scalar multiplication, V is an R[x]-module.

This is just an observation, but it is one of the great tricks in mathematics.
Questions about the transformation T are transferred to questions about the module
V over the ring R[x]. And in the case R is a field, R[x] is a Euclidean domain and so
we know almost everything about V as an R[x]-module.

Now in this section, we suppose R is a field F , V is a finitely generated F -module,
T : V → V is a linear transformation and V is an F [x]-module with vx = T (v). Our
goal is to select a basis for V such that the matrix representing T is in some simple
form. A submodule of VF [x] is a submodule of VF which is invariant under T . We
know VF [x] is the sum of cyclic modules from Theorems 5 and 6 in the section on
Euclidean Domains. Since V is finitely generated as an F -module, the free part of
this decomposition will be zero. In the section on Jordan Blocks, a basis is selected
for these cyclic modules and the matrix representing T is described. This gives the
Rational Canonical Form and that is all there is to it. If all the eigenvalues for T are
in F , we pick another basis for each of the cyclic modules (see the second theorem in
the section on Jordan Blocks). Then the matrix representing T is called the Jordan
Canonical Form. Now we say all this again with a little more detail.

From Theorem 5 in the section on Euclidean Domains, it follows that

VF [x] ≈ F [x]/d1 ⊕ F [x]/d2 ⊕ · · · ⊕ F [x]/dt

where each di is a monic polynomial of degree ≥ 1, and di|di+1. Pick {1, x, x2, . . . , xm−1}
as the F -basis for F [x]/di where m is the degree of the polynomial di.

Theorem 2 With respect to this basis, the matrix representing T is




C(d1)
C(d2)

. . .

C(dt)



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The characteristic polynomial of T is p = d1d2 · · · dt and p(T ) = 0
¯
. This is a type of

canonical form but it does not seem to have a name.

Now we apply Theorem 6 to each F [x]/di. This gives VF [x] ≈ F [x]/ps1
1 ⊕ · · · ⊕

F [x]/psr
r where the pi are irreducible monic polynomials of degree at least 1. The pi

need not be distinct. Pick an F -basis for each F [x]/psi
i as before.

Theorem 3 With respect to this basis, the matrix representing T is




C(ps1
1 )

C(ps2
2 ) 0

0
. . .

C(psr
r )




The characteristic polynomial of T is p = ps1
1 · · · psr

r and p(T ) = 0
¯
. This is called the

Rational canonical form for T .

Now suppose the characteristic polynomial of T factors in F [x] as the product of
linear polynomials. Thus in the Theorem above, pi = x − λi and

VF [x] ≈ F [x]/(x − λ1)
s1 ⊕ · · · ⊕ F [x]/(x − λr)

sr

is an isomorphism of F [x]-modules. Pick {1, (x − λi), (x − λi)
2, . . . , (x − λi)

m−1} as
the F -basis for F [x]/(x − λi)

si where m is si.

Theorem 4 With respect to this basis, the matrix representing T is




B((x − λ1)
s1)

0
B((x − λ2)

s2)

0
. . .

B((x − λr)
sr)



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The characteristic polynomial of T is p = (x−λ1)
s1 · · · (x−λr)

sr and p(T ) = 0
¯
. This

is called the Jordan canonical form for T. Note that the λi need not be distinct.

Note A diagonal matrix is in Rational canonical form and in Jordan canonical
form. This is the case where each block is one by one. Of course a diagonal matrix
is about as canonical as you can get.

Exercise This section is loosely written, so it is important to use the transpose
principle to write three other versions of the last two theorems.

Exercise Suppose F is a field of characteristic 0 and T ∈ Fn has trace(T i) = 0
¯

for 0 < i ≤ n. Show T is nilpotent. Let p ∈ F [x] be the characteristic polynomial of
T . The polynomial p may not factor into linears in F [x], and thus T may have no
conjugate in Fn which is in Jordan form. However this exercise can still be worked
using Jordan form. This is based on the fact that there exists a field F̄ containing F
as a subfield, such that p factors into linears in F̄ [x]. This fact is not proved in this
book, but it is assumed for this exercise. So ∃ an invertible matrix U ∈ F̄n so that
U−1TU is in Jordan form, and of course, T is nilpotent iff U−1TU is nilpotent. The
point is that it sufficies to consider the case where T is in Jordan form, and to show
the diagonal elements are all zero.

So suppose T is in Jordan form and trace (T i) = 0
¯

for 1 ≤ i ≤ n. Thus trace
(p(T )) = a0n where a0 is the constant term of p(x). We know p(T ) = 0

¯
and thus

trace (p(T )) = 0
¯
, and thus a0n = 0

¯
. Since the field has characteristic 0, a0 = 0

¯
and so 0

¯
is an eigenvalue of T . This means that one block of T is a strictly lower

triangular matrix. Removing this block leaves a smaller matrix which still satisfies
the hypothesis, and the result follows by induction on the size of T . This exercise
illustrates the power and facility of Jordan form. It also has a cute corollary.

Corollary Suppose F is a field of characteristic 0, n ≥ 1, and (λ1, λ2, .., λn) ∈ F n

satisfies λi
1 + λi

2 + · · +λi
n = 0

¯
for each 1 ≤ i ≤ n. Then λi = 0

¯
for 1 ≤ i ≤ n.

To conclude this section here are a few comments on the minimal polynomial of a
linear transformation. This part should be studied only if you need it. Suppose V is
an n-dimensional vector space over a field F and T : V → V is a linear transformation.
As before we make V a module over F [x] with T (v) = vx.



Chapter 6 Appendix 127

Definition Ann(VF [x]) is the set of all h ∈ F [x] which annihilate V , i.e., which
satisfy V h = 0

¯
. This is a non-zero ideal of F [x] and is thus generated by a unique

monic polynomial u(x) ∈ F (x), Ann(VF [x]) = uF [x]. The polynomial u is called the
minimal polynomial of T . Note that u(T ) = 0

¯
and if h(x) ∈ F [x], h(T ) = 0

¯
iff h is a

multiple of u in F [x]. If p(x) ∈ F [x] is the characteristic polynomial of T , p(T ) = 0
¯

and thus p is a multiple of u.
Now we state this again in terms of matrices. Suppose A ∈ Fn is a matrix

representing T . Then u(A) = 0
¯

and if h(x) ∈ F [x], h(A) = 0
¯

iff h is a multiple of
u in F [x]. If p(x) ∈ F [x] is the characteristic polynomial of A, then p(A) = 0

¯
and

thus p is a multiple of u. The polynomial u is also called the minimal polynomial of
A. Note that these properties hold for any matrix representing T , and thus similar
matrices have the same minimal polynomial. If A is given to start with, use the linear
transformation T : F n → F n determined by A to define the polynomial u.

Now suppose q ∈ F [x] is a monic polynomial and C(q) ∈ Fn is the compan-
ion matrix defined in the section Jordan Blocks. Whenever q(x) = (x − λ)n, let
B(q) ∈ Fn be the Jordan block matrix also defined in that section. Recall that q is
the characteristic polynomial and the minimal polynomial of each of these matrices.
This together with the rational form and the Jordan form will allow us to understand
the relation of the minimal polynomial to the characteristic polynomial.

Exercise Suppose Ai ∈ Fni
has qi as its characteristic polynomial and its minimal

polynomial, and A =




A1 0
A2

. . .

0 An


 . Find the characteristic polynomial

and the minimal polynomial of A.

Exercise Suppose A ∈ Fn.

1) Suppose A is the matrix displayed in Theorem 2 above. Find the characteristic
and minimal polynomials of A.

2) Suppose A is the matrix displayed in Theorem 3 above. Find the characteristic
and minimal polynomials of A.

3) Suppose A is the matrix displayed in Theorem 4 above. Find the characteristic
and minimal polynomials of A.
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4) Suppose λ ∈ F . Show λ is a root of the characteristic polynomial of A iff λ
is a root of the minimal polynomial of A. Show that if λ is a root, its order
in the characteristic polynomial is at least as large as its order in the minimal
polynomial.

5) Suppose F̄ is a field containing F as a subfield. Show that the minimal poly-
nomial of A ∈ Fn is the same as the minimal polynomial of A considered as a
matrix in F̄n. (This funny looking exercise is a little delicate.)

6) Let F = R and A =


 5 −1 3

0 2 0
−3 1 −1


. Find the characteristic and minimal

polynomials of A.

Determinants

In the chapter on matrices, it is stated without proof that the determinant of the
product is the product of the determinants (see page 63). The purpose of this section
is to give a proof of this. We suppose R is a commutative ring, C is an R-module,
n ≥ 2, and B1, B2, . . . , Bn is a sequence of R-modules.

Definition A map f : B1 ⊕ B2 ⊕ · · · ⊕ Bn → C is R-multilinear means that if
1 ≤ i ≤ n, and bj ∈ Bj for j 6= i, then f |(b1, b2, . . . , Bi, . . . , bn) defines an R-linear
map from Bi to C.

Theorem The set of all R-multilinear maps is an R-module.

Proof From the first exercise in Chapter 5, the set of all functions from B1⊕B2⊕
· · · ⊕ Bn to C is an R-module (see page 69). It must be seen that the R-multilinear
maps form a submodule. It is easy to see that if f1 and f2 are R-multilinear, so is
f1 + f2. Also if f is R-multilinear and r ∈ R, then (fr) is R-multilinear.

From here on, suppose B1 = B2 = . . . = Bn = B.

Definition

1) f is symmetric means f(b1, . . . , bn) = f(bτ(1), . . . , bτ(n)) for all
permutations τ on {1, 2, . . . , n}.

2) f is skew-symmetric if f(b1, . . . , bn) = sign(τ)f(bτ(1), . . . , bτ(n)) for all τ .
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3) f is alternating if f(b1, . . . , bn) = 0
¯

whenever some bi = bj for i 6= j.

Theorem

i) Each of these three types defines a submodule of the set of all
R-multilinear maps.

ii) Alternating ⇒ skew-symmetric.
iii) If no element of C has order 2, then alternating ⇐⇒ skew-symmetric.

Proof Part i) is immediate. To prove ii), assume f is alternating. It sufficies to
show that f(b1, ..., bn) = −f(bτ(1), ..., bτ(n)) where τ is a transposition. For simplicity,
assume τ = (1, 2). Then 0

¯
= f(b1 + b2, b1 + b2, b3, ..., bn) = f(b1, b2, b3, ..., bn) +

f(b2, b1, b3, ..., bn) and the result follows. To prove iii), suppose f is skew symmetric
and no element of C has order 2, and show f is alternating. Suppose for convenience
that b1 = b2 and show f(b1, b1, b3, . . . , bn) = 0

¯
. If we let τ be the transposition (1, 2),

we get f(b1, b1, b3, . . . , bn) = −f(b1, b1, b3, . . . , bn), and so 2f(b1, b1, b3, . . . , bn) = 0
¯
, and

the result follows.

Now we are ready for determinant. Suppose C = R. In this case multilinear
maps are usually called multilinear forms. Suppose B is Rn with the canonical basis
{e1, e2, . . . , en}. (We think of a matrix A ∈ Rn as n column vectors, i.e., as an element
of B ⊕ B ⊕ · · · ⊕ B.) First we recall the definition of determinant.

Suppose A = (ai,j) ∈ Rn. Define d : B⊕B⊕· · ·⊕B → R by d(a1,1e1+a2,1e2+· · ·+
an,1en, ....., a1,ne1 + a2,ne2 + · · ·+ an,nen) =

∑
all τ sign(τ)(aτ(1),1aτ(2),2 · · · aτ(n),n) = |A|.

The next theorem is from the section on determinants in Chapter 4.

Theorem d is an alternating multilinear form with d(e1, e2, . . . , en) = 1
¯
.

If c ∈ R, dc is an alternating multilinear form, because the set of alternating forms
is an R-module. It turns out that this is all of them, as seen by the following theorem.

Theorem Suppose f : B ⊕ B ⊕ . . . ⊕ B → R is an alternating multilinear form.
Then f = df(e1, e2, . . . , en). This means f is the multilinear form d times the scalar
f(e1, e2, ..., en). In other words, if A = (ai,j) ∈ Rn, then f(a1,1e1 + a2,1e2 + · · · +
an,1en, ....., a1,ne2 + a2,ne2 + · · · + an,nen) = |A|f(e1, e2, ..., en). Thus the set of alter-
nating forms is a free R-module of dimension 1, and the determinant is a generator.
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Proof For n = 2, you can simply write it out. f(a1,1e1 + a2,1e2, a1,2e1 + a2,2e2) =

a1,1a1,2f(e1, e1) + a1,1a2,2f(e1, e2) + a2,1a1,2f(e2, e1) + a2,1a2,2f(e2, e2) = (a1,1a2,2−
a1,2a2,1)f(e1, e2) = |A|f(e1, e2). For the general case, f(a1,1e1 + a2,1e2 + · · ·+
an,1en, ....., a1,ne1 + a2,ne2 + · · · + an,nen) =

∑
ai1,1ai2,2 · · · ain,nf(ei1 , ei2 , ..., ein) where

the sum is over all 1 ≤ i1 ≤ n, 1 ≤ i2 ≤ n, ..., 1 ≤ in ≤ n. However, if any is = it

for s 6= t, that term is 0 because f is alternating. Therefore the sum is

just
∑

all τ aτ(1),1aτ(2),2 · · · aτ(n),nf(eτ(1), eτ(2), . . . , eτ(n)) =
∑

all τ sign(τ)aτ(1),1

aτ(2),2 · · · aτ(n),nf(e1, e2, . . . , en) = |A|f(e1, e2, ..., en).

This incredible classification of these alternating forms makes the proof of the
following theorem easy. (See the third theorem on page 63.)

Theorem If C,A ∈ Rn, then |CA| = |C||A|.
Proof Suppose C ∈ Rn. Define f : Rn → R by f(A) = |CA|. In the notation of
the previous theorem, B = Rn and Rn = Rn ⊕ Rn ⊕ · · · ⊕ Rn. If A ∈ Rn, A =
(A1, A2, ..., An) where Ai ∈ Rn is column i of A, and f : Rn ⊕ · · · ⊕ Rn → R
has f(A1, A2, ..., An) = |CA|. Use the fact that CA = (CA1, CA2, ..., CAn) to
show that f is an alternating multilinear form. By the previous theorem, f(A) =
|A|f(e1, e2, ..., en). Since f(e1, e2, ..., en) = |CI| = |C|, it follows that |CA| = f(A) =
|A||C|.

Dual Spaces

The concept of dual module is basic, not only in algebra, but also in other areas
such as differential geometry and topology. If V is a finitely generated vector space
over a field F , its dual V ∗ is defined as V ∗= HomF (V, F ). V ∗ is isomorphic to V , but
in general there is no natural isomorphism from V to V ∗. However there is a natural
isomorphism from V to V ∗∗, and so V ∗ is the dual of V and V may be considered
to be the dual of V ∗. This remarkable fact has many expressions in mathematics.
For example, a tangent plane to a differentiable manifold is a real vector space. The
union of these spaces is the tangent bundle, while the union of the dual spaces is the
cotangent bundle. Thus the tangent (cotangent) bundle may be considered to be the
dual of the cotangent (tangent) bundle. The sections of the tangent bundle are called
vector fields while the sections of the cotangent bundle are called 1-forms.

In algebraic topology, homology groups are derived from chain complexes, while
cohomology groups are derived from the dual chain complexes. The sum of the
cohomology groups forms a ring, while the sum of the homology groups does not.
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Thus the concept of dual module has considerable power. We develop here the basic
theory of dual modules.

Suppose R is a commutative ring and W is an R-module.

Definition If M is an R-module, let H(M) be the R-module H(M)=HomR(M,W ).
If M and N are R-modules and g : M → N is an R-module homomorphism, let
H(g) : H(N) → H(M) be defined by H(g)(f) = f ◦ g. Note that H(g) is an
R-module homomorphism.

M N

W

f

g

H(g)(f) = f ◦ g

-

?

Z
Z

Z
Z

Z
Z

ZZ~

Theorem

i) If M1 and M2 are modules, H(M1 ⊕ M2) ≈ H(M1) ⊕ H(M2).

ii) If I : M → M is the identity, then H(I) : H(M) → H(M) is the

identity.

iii) If M1
g−→ M2

h−→ M3 are R-module homomorphisms, then H(g)◦H(h) =

H(h ◦ g). If f : M3 → W is a homomorphism, then

(H(g) ◦ H(h))(f) = H(h ◦ g)(f) = f ◦ h ◦ g.

M1 M2 M3

g h

ff ◦ h

W

f ◦ h ◦ g

--

?

PPPPPPPPPPPPPPPq

Z
Z

Z
Z

ZZ~

Note In the language of the category theory, H is a contravariant functor from
the category of R-modules to itself.
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Theorem If g : M → N is an isomorphism, then H(g) : H(N) → H(M) is an
isomorphism, and H(g−1) = H(g)−1.

Proof

IH(N) = H(IN) = H(g ◦ g−1) = H(g−1) ◦ H(g)

IH(M) = H(IM) = H(g−1 ◦ g) = H(g) ◦ H(g−1)

Theorem

i) If g : M → N is a surjective homomorphism, then H(g) : H(N) → H(M)
is injective.

ii) If g : M → N is an injective homomorphism and g(M) is a summand
of N , then H(g) : H(N) → H(M) is surjective.

iii) If R is a field, then g is surjective (injective) iff H(g) is injective
(surjective).

Proof This is a good exercise.

For the remainder of this section, suppose W = RR. In this case H(M) =
HomR(M,R) is denoted by H(M) = M∗ and H(g) is denoted by H(g) = g∗.

Theorem Suppose M has a finite free basis {v1, ..., vn}. Define v∗
i ∈ M∗ by

v∗
i (v1r1 + · · · + vnrn) = ri. Thus v∗

i (vj) = δi,j. Then v∗
1, . . . , v

∗
n is a free basis for

M∗, called the dual basis.

Proof First consider the case of Rn = Rn,1, with basis {e1, . . . , en} where ei =




0
·
1i

·
0




.

We know (Rn)∗ ≈ R1,n, i.e., any homomorphism from Rn to R is given by a 1 × n
matrix. Now R1,n is free with dual basis {e∗1, . . . , e∗n} where e∗i = (0, . . . , 0, 1i, 0, . . . , 0).

For the general case, let g : Rn ≈→ M be given by g(ei) = vi. Then g∗ : M∗ → (Rn)∗

sends v∗
i to e∗i . Since g∗ is an isomorphism, {v∗

1, . . . , v
∗
n} is a basis for M∗.

Theorem Suppose M has a basis {v1, . . . , vm} and N has a basis {w1, . . . , wn}
and g : M → N is the homomorphism given by A = (ai,j) ∈ Rn,m. This means
g(vj) = a1,jw1 + · · · + an,jwn. Then the matrix of g∗ : N∗ → M∗ with respect to the
dual bases, is given by At.
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Proof g∗(w∗
i ) is a homomorphism from M to R. Evaluation on vj gives g∗(w∗

i )(vj) =
(w∗

i ◦ g)(vj) = w∗
i (g(vj)) = w∗

i (a1,jw1 + · · · + an,jwn) = ai,j. Thus g∗(w∗
i ) = ai,1v

∗
1 +

· · · + ai,mv∗
m, and thus g∗ is represented by At.

Exercise If U is an R-module, define φU : U∗ ⊕ U → R by φU(f, u) = f(u).
Show that φU is R-bilinear. Suppose g : M → N is an R-module homomorphism,
f ∈ N∗ and v ∈ M . Show that φN(f, g(v)) = φM(g∗(f), v). Now suppose M =
N = Rn and g : Rn → Rn is represented by a matrix A ∈ Rn. Suppose f ∈ (Rn)∗

and v ∈ Rn. Use the theorem above to show that φ : (Rn)∗ ⊕ Rn → R has the
property φ(f,Av) = φ(Atf, v). This is with the elements of Rn and (Rn)∗ written as
column vectors. If the elements of Rn are written as column vectors and the elements
of (Rn)∗ are written as row vectors, the formula is φ(f,Av) = φ(fA, v). Of course
this is just the matrix product fAv. Dual spaces are confusing, and this exercise
should be worked out completely.

Definition “Double dual” is a “covariant” functor, i.e., if g : M → N is a
homomorphism, then g∗∗ : M∗∗ → N∗∗. For any module M , define α : M → M∗∗ by
α(m) : M∗ → R is the homomorphism which sends f ∈ M∗ to f(m) ∈ R, i.e., α(m)
is given by evaluation at m. Note that α is a homomorphism.

Theorem If g : M → N is a homomorphism, then the following diagram is
commutative.

M M∗∗

N N∗∗

α

α

g g∗∗

-

-
? ?

Proof On M, α is given by α(v) = φM(−, v). On N, α(u) = φN(−, u).
The proof follows from the equation φN(f, g(v)) = φM(g∗(f), v).

Theorem If M has a finite free basis {v1, . . . , vn}, then α : M → M∗∗ is an
isomorphism.

Proof {α(v1), . . . , α(vn)} is the dual basis of {v∗
1, . . . , v

∗
n}, i.e., α(vi) = (v∗

i )
∗.
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Note Suppose R is a field and C is the category of finitely generated vector spaces
over R. In the language of category theory, α is a natural equivalence between the
identity functor and the double dual.

Note For finitely generated vector spaces, α is used to identify V and V ∗∗. Under
this identification V ∗ is the dual of V and V is the dual of V ∗. Also, if {v1, . . . , vn}
is a basis for V and {v∗

i , . . . , v
∗
n} its dual basis, then {v1, . . . , vn} is the dual basis for

{v∗
1, . . . , v

∗
n}.

In general there is no natural way to identify V and V ∗. However for real inner
product spaces there is.

Theorem Let R = R and V be an n-dimensional real inner product space.
Then β : V → V ∗ given by β(v) = (v,−) is an isomorphism.

Proof β is injective and V and V ∗ have the same dimension.

Note If β is used to identify V with V ∗, then φV : V ∗ ⊕ V → R is just the dot
product V ⊕ V → R.

Note If {v1, . . . , vn} is any orthonormal basis for V, {β(v1), . . . , β(vn)} is the dual
basis of {v1, . . . , vn}, that is β(vi) = v∗

i . The isomorphism β : V → V ∗ defines an
inner product on V ∗, and under this structure, β is an isometry. If {v1, . . . , vn} is
an orthonormal basis for V, {v∗

1, . . . , v
∗
n} is an orthonormal basis for V ∗. Also, if U

is another n-dimensional IPS and f : V → U is an isometry, then f ∗ : U∗ → V ∗

is an isometry and the following diagram commutes.

V V ∗

U U∗

β

β

f f∗

-

-
?

6

Exercise Suppose R is a commutative ring, T is an infinite index set, and
for each t ∈ T , Rt = R. Show (

⊕
t∈T

Rt)
∗ is isomorphic to RT =

∏
t∈T

Rt. Now let

T = Z+, R = R, and M =
⊕
t∈T

Rt. Show M∗ is not isomorphic to M .
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Abelian group, 20, 71
Algebraically closed field, 46, 97
Alternating group, 32
Ascending chain condition, 112
Associate elements in a domain, 47, 109
Automorphism

of groups, 29
of modules, 70
of rings, 43

Axiom of choice, 10

Basis or free basis
canonical or standard for Rn, 72, 79
of a module, 78, 83

Bijective or one-to-one correspondence,7
Binary operation, 19
Boolean algebras, 52
Boolean rings, 51

Cancellation law
in a group, 20
in a ring, 39

Cartesian product, 2, 11
Cayley’s theorem, 31
Cayley-Hamilton theorem, 66, 98, 125
Center of group, 22
Change of basis, 83
Characteristic of a ring, 50
Characteristic polynomial

of a homomorphism, 85, 95
of a matrix, 66

Chinese remainder theorem, 50, 108
Classical adjoint of a matrix, 63

Cofactor of a matrix, 62
Comaximal ideals, 108, 120
Commutative ring, 37
Complex numbers, 1, 40, 46, 47, 97, 104
Conjugate, 64
Conjugation by a unit, 44
Contravariant functor, 131
Coproduct or sum of modules, 76
Coset, 24, 42, 74
Cycle, 32
Cyclic

group, 23
module, 107

Determinant
of a homomorphism, 85
of a matrix, 60, 128

Diagonal matrix, 56
Dimension of a free module, 83
Division algorithm, 45
Domain

euclidean, 116
integral domain, 39
of a function, 5
principal ideal, 46
unique factorization, 111

Dual basis, 132
Dual spaces, 130

Eigenvalues, 95
Eigenvectors, 95
Elementary divisors, 119, 120
Elementary matrices, 58

135
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Elementary operations, 57, 122
Endomorphism of a module, 70
Equivalence class, 4
Equivalence relation, 4
Euclidean algorithm, 14
Euclidean domain, 116
Evaluation map, 47, 49
Even permutation, 32
Exponential of a matrix, 106

Factorization domain (FD), 111
Fermat’s little theorem, 50
Field, 39
Formal power series, 113
Fourier series, 100
Free basis, 72, 78, 79, 83
Free R-module, 78
Function or map, 6

bijective, 7
injective, 7
surjective, 7

Function space Y T

as a group, 22, 36
as a module, 69
as a ring, 44
as a set, 12

Fundamental theorem of algebra, 46

Gauss, 113
General linear group Gln(R), 55
Generating sequence in a module, 78
Generators of Zn, 40
Geometry of determinant, 90
Gram-Schmidt orthonormalization, 100
Graph of a function, 6
Greatest common divisor, 15
Group, 19

abelian, 20
additive, 20
cyclic, 23

multiplicative, 19
symmetric, 31

Hausdorff maximality principle, 3, 87,
109

Hilbert, 113
Homogeneous equation, 60
Homormophism

of groups, 23
of rings, 42
of modules, 69

Homomorphism of quotient
group, 29
module, 74
ring, 44

Ideal
left, 41
maximal, 109
of a ring, 41
prime, 109
principal, 42, 46
right, 41

Idempotent element in a ring, 49, 51
Image of a function, 7
Independent sequence in a module, 78
Index of a subgroup, 25
Index set, 2
Induction, 13
Injective or one-to-one, 7, 79
Inner product spaces, 98
Integers mod n, 27, 40
Integers, 1, 14
Invariant factors, 119
Inverse image, 7
Invertible or non-singular matrix, 55
Irreducible element, 47, 110
Isometries of a square, 26, 34
Isometry, 101
Isomorphism
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of groups, 29
of modules, 70
of rings, 43

Jacobian matrix, 91
Jordan block, 96, 123
Jordan canonical form, 96, 123, 125

Kernel, 28, 43, 70

Least common multiple, 17, 18
Linear combination, 78
Linear ordering, 3
Linear transformation, 85

Matrix
elementary, 58
invertible, 55
representing a linear transformation,

84
triangular, 56

Maximal
ideal, 109
independent sequence, 86, 87
monotonic subcollection, 4
subgroup, 114

Minimal polynomial, 127
Minor of a matrix, 62
Module over a ring, 68
Monomial, 48
Monotonic collection of sets, 4
Multilinear forms, 129
Multiplicative group of a finite field, 121

Nilpotent
element, 56
homomorphism, 93

Noetherian ring, 112
Normal subgroup, 26

Odd permutation, 32
Onto or surjective, 7, 79

Order of an element or group, 23
Orthogonal group O(n), 102
Orthogonal vectors, 99
Orthonormal sequence, 99

Partial ordering, 3
Partition of a set, 5
Permutation, 31
Pigeonhole principle, 8, 39
Polynomial ring, 45
Power set, 12
Prime

element, 110
ideal, 109
integer, 16

Principal ideal domain (PID), 46
Principal ideal, 42
Product

of groups, 34, 35
of modules, 75
of rings, 49
of sets, 2, 11

Projection maps, 11

Quotient group, 27
Quotient module, 74
Quotient ring, 42

Range of a function, 6
Rank of a matrix, 59, 89
Rational canonical form, 107, 125
Relation, 3
Relatively prime

integers, 16
elements in a PID, 119

Right and left inverses of functions, 10
Ring, 38
Root of a polynomial, 46
Row echelon form, 59

Scalar matrix, 57
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Scalar multiplication, 21, 38, 54, 71
Self adjoint, 103, 105
Short exact sequence, 115
Sign of a permutation, 60
Similar matrices, 64
Solutions of equations, 9, 59, 81
Splitting map, 114
Standard basis for Rn, 72, 79
Strips (horizontal and vertical), 8
Subgroup, 14, 21
Submodule, 69
Subring, 41
Summand of a module, 77, 115
Surjective or onto, 7, 79
Symmetric groups, 31
Symmetric matrix, 103

Torsion element of a module, 121
Trace

of a homormophism, 85
of a matrix, 65

Transpose of a matrix, 56, 103, 132
Transposition, 32

Unique factorization,
in principal ideal domains, 113
of integers, 16

Unique factorization domain (UFD), 111
Unit in a ring, 38

Vector space, 67, 85
Volume preserving homomorphism, 90

Zero divisor in a ring, 39
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