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DEMIDEC 
RESOURCES AND EXAMS 

ALGEBRA 
 

A LITTLE ON THE NATURE OF NUMBERS 
 
Real Number Additive Inverse Multiplicative Inverse Subtraction 
Division Cancellation Law Negative Distributive Property 
Commutative 
Property 

Associative Property Additive Identity Multiplicative Identity 

 
When you think about math, what comes to your mind?  Numbers.  Numbers make the world go 
round; they can be used to express distances and amounts; they make up your phone number and 
zip code, and they mark the passage of time.  The concepts connected with numbers have been 
around for ages.  A real number is any number than can exist on the number line.  At this point in 
your schooling, you are likely to have already come across the number line; it is usually drawn as a 
horizontal line with a mark representing zero.  Any point on the line can represent a specific real 
number.1 
 
One of the easiest and most obvious ways to classify numbers is as either positive or negative.  
What does it mean for a number to be negative?  Well, first of all, it is graphed to the left of the zero 
mark on a horizontal number line, but there’s more.  A negative signifies the opposite of whatever is 
negated.  For example, to say that I walked east 50 miles would be mathematically equivalent to 
saying that I walked west negative 50 miles.2  I could also say that having a bank balance of -$41.90 
is the same as being $41.90 in debt.  The negative in mathematics represents a logical opposite. 
 
When two numbers are added, their values combine.  When two numbers are multiplied, we perform 
repeated (or multiple) additions. 
 

Examples: 
 

3 + 5 = 8 -11 + 9 = -2 19 – 2 = 17 -3 + 91 = 88 12 – 15 = -3 
 

3 × 5 = 5 + 5 + 5 = 15    4 × 2 = 2 + 2 + 2 + 2 = 8 
 5 × 1 = 1 + 1 + 1 + 1 + 1 = 5   2 × 4 = 4 + 4 = 8 
 
 
Here, I’m just rehashing things with which most of you readers are probably already acquainted.3  I 
know of very few high school students (and even fewer decathletes) who have trouble with basic 
addition and multiplication of real numbers.  Sometimes, negatives complicate the fray a bit, but for a 
brief review, you should know the negation rules for multiplication and division. 

                                                 
1 It’s possible you haven’t yet come across non-real numbers.  I wouldn’t worry about it.  Non-real 
numbers enter the picture when you take the square root of negatives, and they shouldn’t be your 
concern this decathlon season. 
2 Um… I wouldn’t recommend actually saying something like this on a regular basis to ordinary people.   
I just wouldn’t.  Trust me on this one. 
3 In fact, this resource is going to operate under the assumption that decathletes already have experience 
with much of this year’s algebra curriculum.  I’m not going to go into detail about the mechanics of 
arithmetic.  I’m also, rather presumptuously, going to use ×, •, and ( ) interchangeably to indicate 
multiplication. 
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o Negative × Negative = Positive 
o Negative × Positive = Negative 
o Positive × Negative = Negative 

o Negative ÷ Negative = Positive 
o Negative ÷ Positive = Negative 
o Positive ÷ Negative = Negative

 
Make a note that these sign patterns are the same for both multiplication and division; we’ll talk more 
about that in just a quick sec.  Also, notice that I didn’t list addition and subtraction properties of 
negative numbers.  When something is negative, it means we go leftward on the number line, while 
positives take us rightward.  When you add and subtract positives with negatives, the sign of the 
answer will have the same sign as the “bigger” number. 
 

Note a few more examples here: 
5 + -5 = 0 2 × 2

1  = 1  

3 + -3 = 0 5 × 5
1  = 1  

 
In the examples above, we see two instances of two numbers adding to 0 and two instances of two 
numbers multiplying to a product of 1.  If you look closely, there is consistency here.  The additive 
inverse (or the opposite) of any number “x” is denoted by “-x.”  The multiplicative inverse (or the 
reciprocal) of any number “y” is written “ y

1 .”  A number and its additive inverse sum to zero; a 
number and its multiplicative inverse multiply to one. 
 

 
 

Note a few more examples here: 
-3 + 0 = -3  12 × 1 = 12 
9 + 0 = 9 -8 × 1 = -8 

 
In these four examples, we see two instances of the addition of 0 and two instances of multiplication 
by 1.  The operations “adding 0” and “multiplying by 1” produce results identical to the original 
numbers, and thus we can name two mathematical identities. 
 

 
 
0 is known as the “additive identity element,” and 1 is known as the “multiplicative identity element.”  
With identities and inverses in mind, we can continue with our discussion of algebra.  To say “x + -x 
= 0” is the same as “x – x = 0.”  This may sound weird to say at first, but it is one of the closely 
guarded secrets of mathematics that subtraction and division, as separate operations, do not really 
exist.  Youngsters are trained to perform simple procedures that they call subtract and divide, but 
from a mature, sophisticated, mathematical point of view, those operations are nothing more than 
special cases of addition and multiplication. 
 

Additive Inverse of a:  -a 
 a + (-a) = 0    
 
 

Multiplicative inverse of a: 
a
1

 

 a × 
a
1

= 1      

The Additive Identity: 
 a + 0 = a 
The Multiplicative Identity: 
 a × 1 = a 
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In addition to knowing these formal definitions for subtraction and division, the astute decathlete 
should be (and probably already is) familiar with several properties of the real numbers.  These 
include the Commutative Properties, the Associative Properties, and the Distributive 
Properties. 
 

 
 
Example: 
Arbitrarily pick some real numbers and verify the distributive property. 
 
Solution: 
I’ll choose 3, 5, and 7, for a, b, and c, respectively. 
Distributive Property: 3 • (5 + 7) = 3 • 5 + 3 • 7.  Can we verify this?  The left side of the 
equation gives   3 • (5 + 7) = 3 • 12 = 36.  The right side of the equation gives 3 • 5 + 3 • 7 = 
15 + 21 = 36.  The Distributive Property holds. 

 
Be wary; sometimes, confused students have conceptual problems with the Distributive Property.  I 
have on occasion seen people write that  a + (b • c) = a + b • a + c.  Such a thing is wrong.  
Remember that multiplication distributes over addition, not vice versa.   
 
This is also a good time to discuss the algebraic order of operations.  The example above assumes 
an elementary knowledge that operations grouped in parentheses are performed first.  The official 
mathematical order of operations is Parentheses/Groupings, Exponents4, Multiplication/Division, 
Addition/Subtraction.  In many pre-algebra and algebra classes, a common mnemonic device for this 
is “Please excuse my dear Aunt Sally.” 
 
A brief example is now obligatory to expand on the order of operations. 
 

Example: 

3
321

))2(4(3 42

+
×+

−+−−−
 

 
Solution: 
This may seem a little extreme as a first example, but it is fairly simple if approached 
systematically.  Remember, the top and bottom (that’s numerator and denominator for you 
terminology buffs) of a fraction should generally be evaluated separately and first; a giant 
fraction bar is a form of parentheses, a grouping symbol.  On the top, we find two sets of 
parentheses, and start with the inside one, so -2 is our starting point.  The exponent comes 
first, so we evaluate (-2)4 = (-2)(-2)(-2)(-2) =  16.  Then, substituting gives -4 + 16 = 12.  We 

                                                 
4 An exponent, if you do not know, is a small superscript that indicates “the number that I’m above is 
multiplied by itself a number of times equal to me.”  If it helps, imagine the exponent saying this in a cute 
pair of sunglasses.  For example, 34 = 3 × 3 × 3 × 3 = 81.  4 is the exponent.  Come to think of it, 
exponents look a lot like footnote references. - Craig 

Commutative Property of Addition:  m + n = n + m 
Commutative Property of Multiplication:  m • n = m • n 
Associative Property of Addition:   a + (b + c) = (a + b) + c 
Associative Property of Multiplication:   a • (b • c) = (a • b) • c 
Distributive Property:    a • (b + c) = a • b + a • c 

Definition of Subtraction: 
 x – y = x + (-y) 
Definition of Division: 

 x ÷ y = x • 
y
1
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are not done, but the whole expression reduces to the considerably simpler 3
321

1232

+
×+
−−

.  

The first bit in the numerator will cause the most misery in this expression, as many people 
make this very common error: -32 = (-3)(-3) = 9.  DON’T DO THIS!  By our standard order of 
operations, the exponent must be evaluated first.  It is often convenient to think of a negative 
sign as a •− )1( , rather than a subtraction.  By order of operations, negatives are evaluated 
with multiplication.  The correct evaluation of the numerator is -21: 
 
-32 – 12 =  
(-1) × 32 – 12 =  
(-1) × 9 – 12 =  
-9 – 12 =  
-21 
 
Once this is done, we turn our attention to the fairly straightforward denominator.  We take 
order of operations into account here. 
 
1 + 2 × 3 = 1 + 6 = 7.  Now we put everything back into the original expression, and matters 

seem far simpler: 0333
7
21

=+−=+
−

.   I guess you could say we did all of that work to 

get nothing for our answer.  Hah!  Never forget the difference between the forms (-x)y and  
–x y ! 

 
The last of the algebra basics to be discussed is the cancellation law.  The cancellation law in its 
abstract form can look quite intimidating. 
 

 
 

This little formula can be quite intimidating, but the cancellation law in layman’s terms says that 
anything divided by itself is 1 and can be “cancelled out.”  You’ve probably been using this law for 
quite some time, possibly without even realizing it, to simplify fractions.  You know of course that 

3
2

12
8 = , but you may have become so familiar with the practice that you’re not even aware of the 

cancellation law operating “behind the scenes”.  Observe: 
 

3
2

43
42

12
8

=
⋅
⋅

=  

 
The numerator and denominator are written as products, and a common factor of 4 is “cancelled 
out.”  Don’t think that simplifying fractions is the only application for the cancellation law, though.  It’s 
that very law, albeit applied in reverse, that allows us to produce common denominators.   
 

Cancellation Law: 
 

c
b

ac
ab

=  as long as 0≠a  and 0≠c  
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Examples: 
Perform the following operations and simplify the answers. 

a) =+
6
1

2
1

 

b) =•+
6
5

2
1

3
1

 

c) =÷
3
5

3
2

 

d) =÷−
3
1

6
1

4
1

 

 
Solutions: 
a) The addition of fractions requires a common denominator.  Remember that getting a 

common denominator requires nothing more than applying the cancellation law in 
reverse; that is, multiplying by a cleverly chosen form of 1.  For this problem, we’ll 

multiply the first fraction by 1 in the form of 
3
3 . 

=+
6
1

2
1

 

=+
⋅
⋅

6
1

32
31

 

=+
6
1

6
3

 

3
2

23
22

6
4

=
⋅
⋅

=  

 
b) Remember that in the order of operations, multiplication is always done before addition 

(unless there are parentheses involved).   
 

=•+
6
5

2
1

3
1

 

=
⋅
⋅

+
62
51

3
1

 

=+
12
5

3
1

 

=+
⋅
⋅

12
5

43
41

 

=+
12
5

12
4

 

4
3

34
33

12
9

=
⋅
⋅

=  
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c) To deal with division of fractions, you’ll need to remember that according to the algebraic 
definition of division, there is no such thing as division at all.  Division by x is simply 
multiplication by the multiplicative inverse, or reciprocal, of x. 
 

=÷
3
5

3
2

 

=×
5
3

3
2

 

5
2

15
6
=  

 
d) Remember again the order of operations.  The division here must occur before the 

subtraction can be done. 
 

=÷−
3
1

6
1

4
1

 

=×− 3
6
1

4
1

 

=−
6
3

4
1

 

=
⋅
⋅

−
22
21

4
1

 

=−
4
2

4
1

 

4
1

−  

 
Perhaps you are already well-versed in the rules for and procedures involved in the arithmetic of 
fractions.  If so, these examples and all of the steps displayed probably seemed unnecessary and 
extravagant.  Soon, however, in a discussion of rational expressions, we will refer back to these 
examples and use them as a models for more complicated mathematics.  Until then, we move on. 
 
 
EEP: EXPRESSIONS, EQUATIONS, AND POLYNOMIALS 
 
Expression Equation Monomial Polynomial 
Equivalent Equations Constant Variable  
 
In the previous section, when working through the early example to verify the distributive property, I 
wrote down, using numbers, 3 • (5 + 7) = 3 • 5 + 3 • 7.  When the property was originally written, 
however, it was listed as “a • (b + c) = a • b + a • c.”  What is the difference between these two 
listings of the distributive property?  It should be obvious.5  The property was originally listed using 
letters while the example instance used numbers.  A variable in algebra is a symbol (almost always 
a letter, occasionally Greek) that represents a number or group of numbers the specific value of 
which is not known.  A constant is a symbol that represents only one value.  In other words, a 
variable represents some number(s) and a constant is some number. 
 

Example: 
Make a short list of possible variable names, and make another list of constants. 
 

                                                 
5 If it’s not obvious, then <insert your own witty insult here>. 
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Solution: 
Variables: x, y, z, a, n, θ, φ 
Constants: 1, 2, 3, -12.90, 7.0001, 5 , e ≈ 2.7183, π ≈ 3.1416 
 

These variables and constants together make up the “nouns” of algebra.  Any string of variables 
and/or constants connected by algebraic operators (the “action verbs” of algebra) that can represent 

a value is an expression.  Possible expressions include 12+x , 3 10
2

413
, y , n200 , 

643 3 −− xx , and 1.  Notice that single variables as well as lone numbers qualify as expressions.   
 
Subsequently, an equation in algebra is a statement that two expressions have the same value; the 
verb is the “=” symbol and is read “equals.”  Conventionally, everyone thinks of algebra as a math 
that involves solving equations; what does it mean, though, to “solve” an equation?  As regards 
equations with one variable – if an equation states that two expressions are, without fail, equal to 
each other with only one distinct variable in common, then a person doing mathematics can explicitly 
solve for all values of that variable that can make the equation true.  Let’s look at some sample 
equations. 
 

Sample Equation #1: 
14 + 6 = 4 × 5 
 
Sample Equation #2: 
x – 12 = 3x + 4 
 
Sample Equation #3: 
x4 – 3x3 + 2x2 + 7x + 9 = x4 – 3x3 + 2x2 + 7x + 9 
 
Sample Equation #4: 
x2 + 3x = -10 
 
Sample Equation #5: 
x + 4 = x – 2 
 

What can we say about these equations?  Well, the first one is obviously true.  When simplified, it 
gives us that 20 = 20.  The other four equations are bit harder to assess—unless we assign a 
particular value to x, we cannot say whether the equations are true or false statements.  What we 
can do though, and this is the part of algebra that the average person is most familiar with, is solve 
the equations to find the value(s) of x that result in true statements.   
In order to do this, we transform each equation into equivalent equations.  Equivalent equations 
are equations that have the same “meaning” as each other; in math terms, we say that the equations 
have the same solution set.  For example, I do not need to tell you how to solve an equation for x 
such as “x + 5 = 11.”  Common sense is just fine.  What value, when five is added to it, gives 
eleven?  The answer is six.  To say “x = 6” is an equivalent equation to the one earlier.  It would also 
be an equivalent equation to say that “x – 1 = 5.”  
 
Transformations are mathematical operations that can produce equivalent equations.  To go from 
the first equation, “x + 5 = 11,” to the second equation, “x = 6,” what was done?  The value of -5 was 
added to each side (remember, we could also say that 5 was subtracted from each side – it has the 
same meaning).  An elementary school math teacher introducing my class to the concept of 
equations once told me, “Think of an equation as a scale saying that two things weigh exactly the 
same.  If you could do something to that scale that keeps the sides weighing the same, then you can 
do it to an equation.”  By far the two most common transformations that equations undergo are (1) 
the addition of an identical value to both sides and (2) the multiplication of an identical value to both 
sides.  I won’t bother listing subtraction or division because I’m a bit stuck on the idea that they are 
just special forms of addition and multiplication.  With that in mind, let’s attempt to transform a 
somewhat complicated equation in order to solve for x. 
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Example: 

Solve for x in the equation 
2
1

x
4

43x
−=

−

−
 

 
Solution: 
Since x found on both sides of the equation, there will have to be steps taken to isolate the 
variable on a single side of the equation.  Here is the list of equivalent equations, along with 
the steps required to produce each. 

2
1

x
4

43x
−=

−

−
 

3x – 4 = -4 (x – 2
1 )  ← multiply each side by the multiplicative inverse of 4

1−  
3x – 4 = -4x + 2 ← apply the distributive property to the right-side expression 
3x = -4x + 6   ← add the additive inverse of -4 to each side 
7x = 6   ← add the additive inverse of -4x to each side 
x = 7

6     ← multiply each side by the multiplicative inverse of 7 
 

All six of the lines listed above are equivalent equations.  Notice that the third line involved 
transforming only one side of the equation (with the distributive property), but that all of the other 
transformations were accomplished by either adding an additive inverse to both sides or multiplying 
both sides by a multiplicative inverse.  These transformations help eliminate the complexities around 
the variable and help solve the equation. 
 
Getting back now to the idea of the expression, there are certain expressions that deserve special 
attention: monomials and polynomials.  A monomial is any term like 3x2 or πn4 that is the product 
of a constant and a variable raised to a nonnegative integral power.6  A polynomial on the other 
hand, refers to any sum of monomials.  In mathematician jargon, a polynomial is “Any expression 
that can be written in the form anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0, where each ai is a constant 
and n is an integer.”  Some examples of polynomials of one variable are: 
 
4 
2x + 6 
3x2 – 12x + 4 
4x10 + x9 + 41x8 – 3x7 – 6 
We need to point out a few things about these examples: first, notice the order in which the terms of 
each polynomial (we’ll talk about that last one in just a second) fall.  The term with the largest 
exponent is always written first and the remaining terms are arranged so that the exponents are in 
descending order.  This arrangement is referred to as the standard form of the polynomial.  While 
the commutative property of addition assures us that –12x + 3 + 3x2 and 3x2 – 12x + 4 are equal, the 
non-standard version just doesn’t appear in reputable mathematical writing.  
 
All right, so if the terms of polynomials ought to be arranged in order of descending exponents, what 
about that long one up there? Shouldn’t there be terms containing x6, x5, and so forth, in 4x10 + x9 + 
41x8 – 3x7 – 6?  Well, that’s the second thing that we need to point out here: standard form does not 
require that the exponent decrease by exactly 1 with each successive term—4x10 + x9 + 41x8 – 3x7 – 
6 is a perfectly legitimate polynomial in spite of a few “missing” terms.  (Some people like to think of 
those absent terms as simply invisible because their coefficients are 0.7)   
 
The last thing that needs to be mentioned about these examples is that last polynomial.  Yes, that’s 
right, 4 is a full-fledged polynomial even though it consists of but a single constant—monomials are 
special-case polynomials. 
 

                                                 
6 Even something like 3πx2n4 is a monomial, but this year’s official decathlon curriculum says that 
competition tests will only deal with monomials and polynomials in one variable and thus, so will we. 
7 They did not think; therefore, they were not. 
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What can we do with polynomials?  Well, in higher math circles, polynomials form what is known as 
a ring.  This is a fancy way of saying that any sum, difference, or product of polynomials will also be 
a polynomial.8  The exact properties of rings, however, are not our concern in the least.  What is 
important here is that we know how to find the sums and differences of polynomials.  To do so, we 
identify all terms that contain the same variable(s) raised to the same power(s) and then we add (or 
subtract) the coefficients of those terms.  The procedure is usually called combining like terms.  
Perhaps a few examples are in order. 
 

Example: 
Find the sum (–x3 + 4x2 + 8x – 4) + (x2 – 3x + 4). 
 
Solution: 
Because of the associative and commutative properties of addition, we can combine these 
terms in any order that we want.  The best thing to do is rearrange the terms where we can 
see the like terms together. 
-x3 + (4x2 + x2) + (8x + -3x) + (-4 + 4) is the result of grouping like terms together, and when 
we add the coefficients of the like terms we get  -x3 + 5x2 + 5x. 
 
Example: 
Find the difference (–x3 + 4x2 + 8x – 4) − (x2 – 3x + 4). 
 
Solution: 
This looks strikingly similar to the previous example, except that now we are taking a 
difference of two polynomials.  First, we will apply the definition of subtraction and the 
distributive property to “distribute the negative” over the parentheses and then add the result.   
(–x3 + 4x2 + 8x – 4) − (x2 – 3x + 4) =  
(–x3 + 4x2 + 8x – 4) + -1 • (x2 – 3x + 4) =  ← definition of subtraction 
(–x3 + 4x2 + 8x – 4) + (-x2 + 3x + -4) =   ← distributive property 
[From this point, we can apply the same technique used in the example above.] 
–x3 + 4x2 + -x2 + 8x + 3x – 4 + -4 =   ← commutative property 
–x3 + 3x2 + 11x – 8 
 

Several pages ago, five sample equations were displayed.  Take a look now at equation #3.  You 
should see that the same polynomial occurs on either side of the equal sign, and it should be evident 
that if we begin the solution process by adding additive inverses to each side, we end up pretty 
quickly with the equivalent equation “0 = 0”.  What does it mean when a statement involving a 
variable simplifies to an equation that is always true?  It means that the original equation is true for 
any value of the variable—the solution to the equation is the set of all real numbers.  No real number 
can possibly falsify the equation. 
 
Look, too, at the 5th of those sample equations.  If we attempt to solve x + 4 = x – 2 by adding the 
additive inverse of x to both sides of the equation, we’ll be faced with the rather dubious statement of 
4 = –2.  Not even in magical fairy lands can this be true.  This 5th equation has no solution at all 
because no possible value of x can transform that false statement into a true one. 
 
AN EQUAL UNEQUAL 
 
Inequality Equivalent Inequality Absolute Value  
 
We have now discussed equations and “solving things” in some detail.9  It is time to move on to 
other mathematical statements.  “But what other mathematical statements ARE there besides saying 
that two things are equal?” you ask enthusiastically, eager to learn more math.  Well, rather 
predictably, I respond that there are mathematical statements that two things are NOT equal, of 
                                                 
8 Obligatory spiel about math: A mathematical ring must also meet some other requirements.  If you’re 
curious, feel free to consult a math major or professor at any university. 
9 I asked someone the relatively deep question once, “What exactly IS algebra?”, to which I received the 
response, “Umm… solving things.”  Touché. 
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course.  Any mathematical statement saying that the value of two expressions is not equal is an 
inequality.  As luck (and maybe the math gods) would have it though, the terminology and 
techniques of inequalities are remarkably similar to their counterparts in the world of equations.  The 
solution set of an inequality is the set of numbers that makes the inequality true, and  equivalent 
inequalities are inequalities with the same solution sets for the variable(s) involved.  
 

 
 
In the box above, there are five inequality symbols listed with their most common verbal equivalents.  
Every mathematical inequality will use one of the five symbols.  Inequalities are solved in much the 
same way as equations; additive inverses are added and multiplicative inverses are multiplied until 
the variable is isolated and explicitly stated.  The solution of an equation is generally a simpler more 
explicit equation—x = 4, for example—so it shouldn’t surprise you in the least to learn that the 
solution of an inequality is generally a simpler inequality—something like x > 5—that gives all 
possible values of the variable. 
 
If you are not familiar with the properties of inequalities, the verbal statements of the signs is almost 
enough to guide you.  To write “x ≤ 7” means that x can take any value less than or equal to 7.  This 
inequality states that x could be 7, 0, 5.381, or even -1,000,000.  The inequality “x < 7” is different 
from “x ≤ 7” only in that x cannot be 7 exactly—with the exception of that one detail, the two 
inequalities x ≤ 7 and x < 7 have the same solution set. 
 

Example: 
Solve  4x + 3 < 11  for x. 
 
Solution: 
4x + 3 < 11 
4x < 8    ← add the additive inverse of 3 to each side 
x < 2   ← multiply by the multiplicative inverse of 4 on each side 
 
The solution for x in this inequality is x < 2, meaning that the variable x could take on any 
value less than (but not including) 2 and still create a true statement.  On this number line, 
the shaded region represents the values that x could take. 
 
 
 
 
 

The solutions to an inequality are often graphed on a horizontal number line for clearness.  Here, the 
number line is shaded to the left, meaning that values less than two will satisfy the inequality.  Also 
note the shaded line ending in the open circle, indicating that all values up to but not including 2 are 
valid solutions to this particular inequality.  It might be intuitive that a closed circle would mean that 
all values less than and including 2 are correct.   
 
It’s been pointed out in words and by example that the procedure for solving inequalities is very 
similar to that used to solve equations.  There is, however, one significant aspect to solving 
inequalities that the algebra enthusiast (or non-enthusiast, for that matter) must be acutely aware of:  
when both sides of an inequality are multiplied (or divided) by a negative number, the inequality 
symbol must “flip”—that is, the ≥ symbol must become ≤, and the < symbol must become >.  At first, 
this may seem to make no logical sense but if you remember that “to negate” is just another way to 
say “take the opposite,” then it might start to make sense.  If we have -x ≤ -2 and we multiply both 

≤  - “less than or equal to” 
  or “at most” 
≥ - “greater than or equal to” 
  or “at least” 
< - “less than” 
> - “greater than” 
≠ - “not equal to” 

0 2 
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sides by -1, then we’re looking for “the opposite” inequality.  Is that x ≥ 2 or x ≤ 2?  Look at the 
number lines… 
 

 
 
Remember, the inequality sign must be flipped when a multiplication by a negative is introduced. 
 

Example: 
Solve -2x + 4 ≥ -7x – 16 for x. 
 
Solution: 
We can solve this inequality by isolating x on either side of the equation.  First, let’s solve the 
inequality by isolating x on the left-hand side. 
-2x + 4 ≥ -7x – 16 
5x + 4 ≥ -16    ← adding the additive inverse of -7x to each side 
5x ≥ -20    ← adding the additive inverse of 4 to each side 
x ≥ -4     ← multiplying by the multiplicative inverse of 5 on each side 
 
Now, let’s try solving the inequality by isolating x on the right-hand side. 
-2x + 4 ≥ -7x – 16 
4 ≥ -5x −16     ← adding the additive inverse of -2x to each side 
20 ≥ -5x    ← adding the additive inverse of -16 to each side 
-4 ≤ x  ← multiplying by the multiplicative inverse of -5 on each side, 

and flipping the inequality symbol 
x ≥ -4  ← if we say that -4 is less than or equal to x, then that means 

that x is greater than or equal to -4 
 
The solution is pictured below. 
 
 
 
 
 
 

The algebra component of this year’s math curriculum is to focus primarily on solving linear 
equations and inequalities.  As long as you remember to add the same quantity to both sides, 
multiply by the same factor on both sides, and flip the inequality symbols when necessary, these test 
questions should pose no huge problem.  There, is, however, one more topic concerning these 
single-variable equations/inequalities that should be addressed: absolute value. 

0 2 -2 

-x: 

0 2 -2 

x: 

0 2 -2 

x: 

logical 

uh…no 

0 4 -4 
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Absolute value is a very unique mathematical operator.  No matter what value it takes in, it spits out 
a positive value as a result.  On paper, the absolute value of a quantity is represented by a pair of 
vertical lines surrounding that quantity. 
 

Examples: 
Find the following: |-2|, |4|, |-12.08|, | 5

3− |, |12|, and |x|. 
 
Solution: 
Again, no matter what quantity the absolute value operator takes in, it gives a positive-valued 
result.  This means that the five examples listed above take the values 2, 4, 12.08, 5

3 , and 
12, respectively.  The last example, the simplification of |x|, is a bit harder to write.  We 
cannot simply write the answer as |x| = x because we do not know the value of x.  If x were 
to equal -3, for example, we would have just asserted that |-3| = -3.  The algebraic definition 
of absolute value is given below.  
 

 
 

“Whoa!” you say.  “How is it possible that the absolute value of anything can be negative?”  The 
answer is that it cannot.  Look closely at that definition again and think “the opposite” when you see 
a negative sign.  |x| = -x is only a true equation if x < 0.  Try it with a few numbers.  Input a positive 
number, and you get that positive number back.  Input a negative number—you get that number’s 
opposite.  It works!  Now that we have understanding concerning the properties of absolute value, 
we are left with the inevitable: solving equations and inequalities with absolute value.  
Comprehension comes here most easily with examples. 
 

Example: 
Solve |x| = 4 for all possible values of x. 
 
Solution: 
We want to know what numbers have an absolute value of 4.  This is not difficult; the 
possibilities are either x = 4 or x = -4. 
 
 
Example: 
Solve |y| = 11 for all possible values of y. 
 
Solution: 
We now want to know what values have an absolute value of 11.  This is not difficult, either; 
the possibilities are either y = -11 or y = 11. 
 

These previous two examples are probably the easiest that absolute value equations can possibly 
get.  Note that in both instances there are two possible solutions.  This will be the case as long as 
the quantity within the absolute value bars equals some quantity greater than 0. 
 
 

 
 
 
This takes care of the simplest absolute value equations.  What now about the slightly more 
complicated ones?  Let’s again inspect a few examples. 
 

| x | = c  means that  x = c  or x = -c, 
as long as c > 0 

|x| = x,   if x ≥ 0 
 
|x| = -x,  if x < 0 
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Example: 
Solve |z – 12| = 3 for all possible values of z. 
 
Solution: 
This is only marginally more complicated than the previous examples.  We know that the 
quantity inside the absolute value bars must be either 3 or -3 so we know that we have the 
two equations  z – 12 = -3  or  z – 12 = 3.  From there, we can solve the equations 
individually to obtain   z = 9 or z = 15. 
 
Example: 
Solve |3a + π| = 14 for all possible values of a. 
 
Solution: 
This absolute value equation now is again becoming more complicated.  We know that the 
quantity inside the absolute value bars, 3a + π, must be equal to either -14 or 14 so we write 
the customary two equations and solve both. 
3a + π = -14 or 3a + π = 14 
3a = -14 – π or 3a = 14 – π   ← add the additive inverse of π to each side 

a = 
3

14 π−−
  or  a = 

3
14 π−

   ← multiply each side by the mult. inverse of 3 

a ≈ -5.714 or a ≈ 3.619   ← find the decimal approximations 
 

These examples illustrate the concept of absolute value.  Whatever quantity sits comfortably inside 
the absolute value bars must equal either the positive or the negative of the value that it is set equal 
to.  Sadly, the official decathlon curriculum this year does not expect decathletes to solve equations 
concerning absolute value.  Instead, it lists “solution of basic inequalities containing absolute value.”  
Inequalities containing absolute value are a bit more complicated than equations but are still quite 
manageable.  Much like absolute value equations, absolute value inequalities are probably best 
understood by examples. 
 

Example: 
Solve |x| ≤ 2 for x. 
 
Solution: 
We start by examining the inequality, looking for some logical route to follow.10  Perhaps if 
we start listing possible solutions to the equation, we can figure out the solution.  Possible 
values of x that can make this a true equation are 1, 0, -1, 1.8, 1.201, -1.99, -0.3, 0.97, 2, 
and -1.41.  Eureka!  There is indeed a pattern.  x will be any value between -2 and 2.  In 
math language, this means that both x ≤ 2 and x ≥ -2.  We might also just simplify our lives 
entirely by writing  -2 ≤ x ≤ 2.  One thing that is very important to note here is that many 
textbooks refer to absolute value as the distance from 0 on a number line.  In that sense, the 
inequality itself says “x is no more than 2 units away from 0 on a number line.” 
 

 
 
Example: 
Solve |y| ≥ 2 for y. 
 
Solution: 
It would make sense if the solution of this problem included all numbers that were not in the 
solution of the previous example.  Possible values of y that can make this a true equation by 
having absolute value greater than 2 are 3, 10, 1400, -2.091, -5, -12, and -100.  Essentially, 
the solution giving all possible y values is all numbers such that either  y ≥ 2  or  y ≤ -2.  

                                                 
10 This is very important.  Many people, when doing algebra, start blindly following procedures that have 
been programmed into them.  Forgetting to think is a bad thing. 

0 2 -2 
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Considering our alternate definition of absolute value, the inequality reads “the distance of y 
to the origin is greater than or equal to 2.”  No problem. 
 

 
 
 

These two examples illustrate the general solutions to absolute value inequalities, stated concisely in 
the box below. 
 

 
 

There is one very important thing to note in this general formula: the difference between the word 
“and” versus the word “or.”  Look back to the previous examples.  Given two inequalities, saying “or” 
means that either of the two inequalities can be true.  Saying “and” means that both of the given 
inequalities must be true.  Saying x < 2 and x > -2 means that x must be somewhere between -2 and 
2 on the number line.  Saying x < 2 or x > -2 means essentially that x could be any real number.  
Saying that x > 2 or x < -2 is a way of indicating x could be any real number outside of the interval 
from -2 to 2.  Saying that x > 2 and x < -2 means that there is no solution.  It seems like a list of facts 
to memorize, but in reality there is only one fact.  “And” means that both conditions must be true 
while “or” means that only one is required to be true.  We can finish up our work with absolute value 
inequalities with one last example. 
 

Example: 
Solve | -3q + 5 | > 7 for q. 
 
Solution: 
Given the form of the question, we know that we break apart the given expression into two 
inequalities joined by an “or.” 
-3q + 5 > 7 or -3q + 5 < -7  ← break the absolute value inequality apart 
-3q > 2  or -3q < -12 ← add the additive inverse of 5 to each side 

q < 
3
2

−  or q > 4   ← flip the inequality signs 

 

 
 
 

WHEN TWO VARIABLES LOVE EACH OTHER VERY MUCH… 
 
Ordered Pairs Point-Slope Formula Slope-Intercept Form Standard Form 
Abscissa Ordinate Cartesian-Coordinate x-intercept 
Slope Origin   
 
Thus far, we have discussed equations of one variable.  We have worked with equations in which we 
solved explicitly for the possible value(s) of x, y, z, n, m, t, or whatever variable is named.  What 
happens, then, if an equation has more than one variable?  What if we are dealing with an equation 
like “-2x + 6y – 4 = x + 2” ?  We now have two variables, x and y.  If we try solving the equation for 
one of the variables, we’ll get an expression containing the other variable instead of a number.  

0 4 -
3
2

 

| u | > c  means that     u > c    or u < -c 
 
| u | < c  means that  u < c      and  u > -c 
  means more concisely that   -c < u < c 
 
provided that   c > 0 

0 2 -2 
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Solving for x gives us the equation x = 2y - 2.  Similarly, solving for y gives the equation y = 2
1 x + 1.  

Clearly, we need some new ideas.  What sorts of numbers can satisfy the equation?  Maybe we can 
rely on our old friend logic to find a few combinations of x and y that make the equation true.  One 
such solution is “x = 4, y = 3,” while another is “x = -2, y = 0,” and still another is “x = 0, y = 1.” 
 
What we can choose to do is this: we can represent all of these combinations of x and y as ordered 
pairs of numbers.  The three combinations of x and y above would be written as (4, 3), (-2, 0), and 
(0, 1)—in each case, we write the x value as the first of two numbers, hence the term “ordered pair.”  
Other possible examples of ordered pairs that satisfy this equation are ( )4

5
2
1 ,  and (-4, -1).  If, as 

mathematicians,11 we want a way to organize all of the possible solutions to this linear equation at 
the same time, we can graph these ordered pairs on a two-dimensional plane with the first number, 
or the abscissa, representing the x-coordinate and the second number, the ordinate, representing 
the y-coordinate.  This two-variable equation has an infinite number of solutions; the five ordered 
pairs listed above appear below left. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the left graph, we see the five points on the coordinate-plane.  The idea of using two numbers to 
represent a place on a plane is known as the Cartesian-Coordinate system. The primary thing that 
we notice about the graph on the left is that the five points that are all solutions to the equation 
appear to be lying on a straight line.  On the right, we confirm our guess and show that the five 
points are indeed on a straight line.  Any linear equation (an equation with no exponents) that has 
two variables “x” and “y” has an infinite number of solutions, and those solutions can be graphed 
onto a plane as a straight line that extends infinitely in both directions.  The graphs as pictured here 
do not extend forever, but in actuality, even the point (200, 101) exists on the line and is a solution to 
the equation.  
 
The equation itself, “-2x + 6y – 4 = x + 2,” gives us much information.  Using a bit of algebraic 
rearranging, we can transform this to an equivalent equation, 3x – 6y = -6.  An equation with two 
variables in this ax + by = c form is said to be in standard form. 
 

Example: 
Rewrite the two-variable equation  12x – 3y = 9 + 17x – y + 2  in standard form. 
 
Solution: 
12x – 3y = 9 + 17x – y + 2 
12x – 3y = 17x – y + 11 ← Commutative Property 
-5x – 3y = - y + 11   ← Add the additive inverse of 17x to both sides 
-5x – 2y = 11    ← Add the additive inverse of -y to both sides 
5x + 2y = -11   ← Multiply both sides by -1 so that the first number is positive 
The last step here is entirely optional.  It seems to be mathematical custom to make the x-
coefficient a positive in ax + by = c, but either of the last two lines could be considered the 
standard form of the equation. 
 

                                                 
11 If you’re not a mathematician, then at least pretend you are for the time being. 
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What else can we say about the graphs above?  There is a point, called the x-intercept, where the 
line intersects the x-axis.  That x-intercept is (-2,0).  There is another point, called the y-intercept, 
where the line intersects the y-axis.  That y-intercept is (0,1). 
 

Example: 
What is the only point that can be both an x-intercept and a y-intercept for the same line? 
 
Solution: 
For a point to be a line’s x-intercept and y-intercept simultaneously, it must be on both axes.  
The only such point is the point (0,0), known as the origin. 
 

All graphed lines with have both an x-intercept and a y-intercept, with the exception of completely 
horizontal and completely vertical lines. 

 
Example: 
What are the x-intercept and y-intercept of the standard form line  3x + 7y = 84 ? 
 
Solution: 
The x-intercept of a line occurs when y = 0.  Thus, we can find the x-intercept by substituting 
y = 0 into the equation. 
3x + 7(0) = 84 
3x = 84 
x = 28 
The x-intercept is (28,0). 
The y-intercept of the line then will occur when x = 0.  The y-intercept can then be found 
when we substitute x = 0 into the equation. 
3(0) + 7y = 84 
7y = 84 
y = 12 
The y-intercept is (0,12). 

 
There is one other descriptor of lines: their steepness, or slope.  In algebra classes, a line’s slope is 
commonly taught as “rise over run.”  What that means mathematically is that to find the slope of a 
line, you take the vertical change and divide by the horizontal change between any two arbitrary 
points on the line.  For example, if we revisit the line we graphed earlier, we have five points already 
labeled on the line.  (Remember that the line has an infinite number of points on it – we happen to 
have five conveniently labeled.)  If we take any two of these points and calculate the vertical change 
divided by the horizontal change (rise divided by run), we can find the slope. 
 

 
 
 
 
 
 
 
 
 
 
 
Example: 
Find the slope of the line above. 
 
Solution: 
We want to find vertical change over horizontal change.  
This means we want to find change in “y” and divide by 
change in “x.”  I arbitrarily pick two points: in this case, I’ll 
choose (-2,0) and (4,3).  y goes from 0 to 3 so the change 
in y is 3.  x goes from -2 to 4 so the change in x is 6.  The 
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slope is then 6
3 , or 2

1 .  Note that we could have taken the points in the reverse order; the 
final answer would have been the same.  If we had said that y goes from 3 to 0, the change 
in y would have been -3.  x going from 4 to -2 would have given a change of -6.  That means 
there would have been a slope of 6

3
−
− , or 2

1 . 
 
Frequently, rather than expressing equations in standard form (ax + by = c), mathematicians prefer 
expressing equations in slope-intercept form, or y = mx + b  form. 
 

Example: 
Express the equation  2x – 4y = -12  in slope-intercept form, and find the line’s x-intercept 
and y-intercept. 
 
Solution: 
2x – 4y = -12   
-4y = -2x – 12   ← add the additive inverse of 2x to each side 
y = - 4

1 (-2x – 12)  ← multiply by the multiplicative inverse of -4 on each side 

y = 2
1 x + 3  ← distributive property 

To solve for the x-intercept, we substitute  y = 0: 
0 = 2

1 x + 3 

-3 = 2
1 x   ← add the additive inverse of 3 to each side 

-6 = x    ← multiply by the multiplicative inverse of 2
1  on each side 

The x-intercept is (-6,0). 
To solve for the y-intercept, we substitute in  x = 0: 
y = 2

1 (0) + 3 
y = 3 
The y-intercept is (0,3). 

 
Because the substitution of  x = 0  allows us to find the y-intercept, we know that in slope-intercept 
form  y = mx + b, (0,b) must be the y-intercept.  In the example problem above, (0,3) was the y-
intercept.  This allows us to graph lines very quickly if they are given in slope intercept form.  “m” is 
the slope, and “b” is the y-intercept. 
 

Example: 
Find the slope and y-intercept of 
a) 13x + 12y = -5 
b) mx + ny = p 

 
Solution: 
a) 13x + 12y = -5 

12y = -13x – 5  ← add the additive inverse of 13x to each side 
y = - 12

13 x – 12
5  ← multiply by the multiplicative inverse of 12 on each side 

The slope is - 12
13 , and the y-intercept is - 12

5 . 
b) mx + ny = p 

ny = -mx + p  ← add the additive inverse of mx to each side 
y = - n

m x + n
p  ← multiply by the multiplicative inverse of n on each side 

The slope is - n
m , and the y-intercept is n

p . 
 

Example: 
By rearranging into slope-intercept form, quickly graph the lines 
a) 12x + 15y = 30 
b) 3x – 4y = -12 
c) y – 2

1  = 0 
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Solution: 
a) 12x + 15y = 30 

15y = -12x + 30  ← add the additive inverse of 12x to each side 
y = - 5

4 x + 2  ← multiply by the multiplicative inverse of 15 on each side 

We know that this line must intersect the y-axis at (0,2) and have a slope of - 5
4 .  In the 

graph below for (a), there is a rise of -4 (a fall of 4) proportional to a run of 5. 
b) 3x – 4y = -12 

-4y = -3x – 12  ← add the additive inverse of 3x to each side 
y = 4

3 x + 3  ← multiply by the multiplicative inverse of -4 on each side 

This line must now have a y-intercept of (0,3) and a slope of 4
3 .  In the graph for (b), 

there is a rise of 3 proportional to a run of 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) y – 2

1  = 0    

y = 2
1    ← add the additive inverse of - 2

1  to each side 

y = 0x + 2
1    ← add the additive identity element to the right expression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The last example was written to set the stage for another lesson concerning lines.  Equations of the 
form  y = c  or  x = c  create horizontal and vertical lines, respectively.  People often forget which 
type of equation creates which line.  Remember, though, that the line resulting from an equation is a 
graph of all the points that can satisfy the equation.  With that in mind, the graph of  x = 2  must 
contain the points (2,0), (2,-3), (2,5), (2,-10), (2,7), etc.  If those points are graphed on a Cartesian 
Coordinate plane, then they will form a vertical line.  Likewise, a graph of the equation  y = -3  
contains all of the points (0,-3), (5,-3), (-2,-3), (12,-3), etc. and forms a horizontal line.  In addition, 
since slope is defined as run

rise , a horizontal line has a slope of 0 (no rise with arbitrary run) while a 
vertical line has an undefined slope (arbitrary rise divided by zero run).12 
                                                 
12 Remember that any division by 0 is always undefined.  In fact, division by 0 is one of the seven cardinal 
no-nos of mathematics.  I’ll make up the other six later. 
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Example: 
What are the equations of the x and y axes? 
 
Solution: 
The x-axis is a horizontal line that crosses the y-axis at the point (0,0).  The x-axis must have 
equation  y = 0.  The y-axis is a vertical line that crosses the x-axis at the point (0,0).  The y-
axis must then have  x = 0  as its equation. 
 
Example: 
What is the equation in slope-intercept form of a line that passes through (-2,3) and (3,5)? 
 
Solution: 
The first logical thing to do in this case is find the slope.  We are already given two points on 
the line, so all we must calculate is the change in y and the change in x.  The slope must 
then be 5

2 , and we know that  m = 5
2  in the equation  y = mx + b.  We now need a logical 

way to find b in the equation.  This equation must be true for all of the points along the line, 
including the two we were already given; intuitively, if we substitute one of the given points 
into the equation, we can solve for the missing variable b.  I’ll arbitrarily choose the second 
point (3,5) and substitute. 
 
y = mx + b 
5 = 5

2 (3) + b ← substitution of what we know (the slope and one point) 

5
19  = b   ← add the additive inverse of 5

6  to each side 
 
We already knew the slope and have now solved for the y-intercept.  Thus, the equation in 
slope-intercept form is  
y = 5

2 x + 5
19  

 
The above example illustrates one way of finding the equation of a line given two points (or one point 
and the slope).  Substitution into the slope-intercept form is one very intuitive method of finding the 
equation of a line.  Another method is the substitution into the point-slope formula.  Given slope m 
and a point (x1,y1) on a line, we can solve for the equation of the line using the formula 
y – y1 = m (x – x1).  We can also use the formula in reverse to quickly graph a line given its point-
slope form. 
 

Example: 
Use the point-slope formula to find the equation of a line with slope 5

2 , passing through the 
point (-2,3). 
 
Solution: 
We recognize this as the same line that was found above.  We should get the same answer. 
y – y1 = m(x – x1) ← point-slope formula 
y – 3 = 5

2 (x – (-2)) ← substitution of what we know 

y – 3 = 5
2 x + 5

4   ← distributive property 

y = 5
2 x + 5

19   ← add the additive inverse of -3 to each side 
 
Example: 

Quickly graph the equation y – 2 = 
5
3

− (x + 3) 
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Solution: 
At first, we may be tempted to rearrange this equation into slope-intercept form, but in the 
point-slope formula, it is already ripe for graphing.  We see that a point on the line is (-3, 2); 
we also know there is a slope of 5

3− .  Those two facts alone are enough to form a graph. 
 
 
 
 
 
 
 
 
 

 
 
 
Remember, there are three different forms for the equation of a line: standard form (ax + by = c), 
point-slope form (y – y1 = m(x – x1)), and slope-intercept form (y = mx + b).  Each form has different 
properties with which you should be familiar, and which form is most appropriate will have to be 
determined on a case-by-case basis. 
 
SYSTEMS OF EQUATIONS 
 
Independent Inconsistent Dependent  
 
We have just finished examining that linear two-variable equations have an infinite number of 
solutions; those solutions can be “graphed” to form a straight line.  What happens, then, if we have 
two linear equations, each containing the same two variables?  Is there exactly one solution that 
satisfies both equations?  Frequently, the answer is yes. 
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In the upper leftmost graph, two lines intersect at one point.  If one line contains all of the solutions to 
one equation and the other line contains all of the solutions to the other equation, the intersection is 
the one and only solution to both equations.  Two equations such as these are known as 
independent equations.  In the upper right graph, the two lines are parallel and do not intersect.  In 
this case, there is no solution which satisfies both equations simultaneously; such equations are said 
to be inconsistent.  Lastly, in the lower graph, two lines coincide.  This can only occur if the two 
equations are actually equivalent; all of the points along the line(s) then satisfy both equations, and 
the equations are termed dependent.  It is a major rule of algebra that to solve several equations 
simultaneously, one must have at least as many independent equations as one has unknowns.13 
 
To solve these “systems” of two equations, there are several methods we could choose to use.  As 
the pictures above illustrate, we could choose to graph the solutions of the two equations and see 
what point(s), if any, satisfy both equations.  The method of graphing to solve systems has two 
drawbacks though: it is slow, and unless the slopes and intercepts are “nice” numbers, it is 
inaccurate and subject to visual error.  We need other methods.  The first major method of solving 
simultaneous equations is the method of substitution.  For substitution, solve for one variable using 
one equation, then substitute that expression into the second equation.  Another example is in order. 
 

Example: 
Solve the system of equations below by substitution. 
x – 4y = -13 
5x + 2y = 1 
 
Solution: 
In the first equation, x has no coefficient and can be easily isolated. 
x – 4y = -13  ← [first equation] 
x = 4y – 13   ← add the additive inverse of  -4y  to each side 
5x + 2y = 1  ← [second equation] 
5(4y – 13) + 2y = 1 ← substitute 4y – 13 in place of x (as it was solved for above) 
20y – 65 + 2y = 1 ← distributive property 
22y – 65 = 1  ← commutative property 
22y = 66   ← add the additive inverse of -65 to each side 
y = 3    ← multiply both sides by the multiplicative inverse of 22 
x = 4y – 13   ← solved for above; restatement of line 2 
x = 4(3) – 13   ← substitute  y = 3 
x = -1    ← simplification 
The solution of the equation is  x = -1, y = 3, or (-1,3). 

 
The second major method of solving systems of equations is known as elimination, also called linear 
combination in many textbooks.  To solve a system of equations by elimination, we form equivalent 
equations that can be added together in a useful way.  In other words, we transform the equations 
such that one variable “cancels out.”  This explanation makes more sense in an application than it 
does in a paragraph form; yet another example is in order. 
 

Example: 
Solve the system of equations below by elimination. 
3x + 12y = 19 
6x – 9y = 5 
 

                                                 
13 This algebraic rule comes in very handy in physics, where solving simultaneous equations actually has 
a practical purpose.  This is an answer to those asking, “When will I need this in life?”  So there. 
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Solution: 
Look at the x-coefficients.  If we multiply the first equation by -2, the x terms will become 
additive inverses. 
3x + 12y = 19  ← [first equation] 
-6x – 24y = -38  ← multiply both sides by -2 to create an equivalent equation 
6x – 9y    =   5  ← [second equation] 
-33y = -33   ← add the two equations, term by term, to create a new equation 
y = 1   ← multiply both sides by the multiplicative inverse of -33 
3x + 12(1) = 19  ← substitute y = 1 into one of the original equations 
3x = 7    ← add the additive inverse of 12 to each side 
x = 3

7    ← multiply both sides by the multiplicative inverse of 3 
 
The solution is ( 3

7 ,1). 
 
In the above example, there was a simple multiplication that resulted in a cancellation of variables.  
The next problem presents a more complicated example; nevertheless, the concept remains the 
same.  Also, many people prefer to work the elimination method in a combination of horizontal and 
vertical calculations.  The explanations have been left out of each step, showing the work in a logical 
vertical and horizontal manner. 

 
Example: 

Solve the system  
137y7x

1711y3x

=−

=+
  by elimination. 

 
Solution: 

137y7x

1711y3x

=−

=+
     

3921y21x

11977y21x

−=+−

=+
 

       98y = 80 
 3x + 11( 49

40 ) = 17       y = 49
40  

  3x + 49
440 = 49

833  

   3x = 49
393  

    x = 49
131   The solution to the system is ( 49

131 , )49
40 . 

 
In this example, the system of equations presents a little more difficulty.  The x terms do not cancel 
with a simple multiplication as in the earlier example.  Instead, the x terms must have a common 
multiple found so that they can cancel out.  In this case, that multiple is 21, and this provides us our 
“jumping off point” for the elimination.  In the two worked examples above, we chose to cancel x and 
find y first; remember that this is only an arbitrary choice – y could have been cancelled first if we 
had wanted. 
 
Systems of independent equations can be solved by either substitution or elimination, but what 
should be done with systems of dependent or inconsistent equations?  Recall that a system of two 
dependent equations will coincide so that there are an infinite number of solutions; a system of two 
inconsistent equations will run parallel so that there are no possible solutions to the system.  Two 
dependent equations can be transformed to equivalent equations; inconsistent equations can be 
recognized because, as parallel lines, they will have identical slopes but different y-intercepts. 
  

Examples: 
Characterize the following two systems are either inconsistent or dependent. 
(1)   2x – 6y = 12   (2)   14x + 7y = 21 
 x – 3y = 8    -21x – 10.5y = -31.5 
 

×7 
×(-3) 
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Solutions: 
(1)  2x – 6y = 12  x – 3y = 8 
 -6y = -2x + 12  -3y = -x + 8 
 y = 3

1 x – 2   y = 3
1 x + 3

8  
These two equations have identical slope but differing 
y-intercepts.  They form an inconsistent system and 
there is no common solution. 
 
 
(2)  14x + 7y = 21  -21x – 10.5y = -31.5 
 7y = -14x + 21  -10.5y = 21x – 31.5  
 y = -2x + 3  y = -2x + 3 
These two equations are actually equivalent.  This 
means the graphs will coincide and have infinite 
common solutions.  This creates a dependent system. 

 
 
If, in an overzealous spout of alge-mania14, you attempted to solve a system of (presumably indep-
endent) equations, and substitution or elimination yielded a statement such as “-3 = 0” or “5 = 5,” you 
would know that there are either no solutions or an infinite number of solutions, respectively.  
Remember, an algebraic truth means that there are tons of possible solutions, and an algebraic 
untruth means that there are none. 
 
 
As an additional aside, you should also know that two lines that are perpendicular have slopes that 
are additive multiplicative inverses of each other (we more commonly say that one slope is the 
negative reciprocal of the other).  That is, for two lines to be graphed perpendicularly to each other, 
one will have slope m and the other will have slope   - m

1 .  This also means that if we have two 
slopes such that slope1 × slope2 = -1, the respective lines are perpendicular. 
 
BIGGER SYSTEMS OF EQUATIONS 
 
Real headaches begin when more than two variables are involved in a system.  With only two 
variables, we can easily graph and/or visualize coincident, parallel, and intersecting lines to 
understand the concepts of systems that have different numbers of solutions.  If we have three or 
more variables, however, the system must be visualized in three (or more? Yikes!) dimensions.  We 
won’t let that stop us.  As long as there are as many independent equations as there are variables, 
we can still find one distinct solution to the system. 
 
The standard methods used for two-variable systems, substitution and elimination, are also used to 
solve three-variable systems.  In the case of these larger systems though, the methods will often 
have to be used repeatedly in order to make any headway in solving the system. 
 

Example: 
Solve the system below first by substitution and then by elimination. 
2x + y – 4z = -19 
-4x + 2y + 3z = 8 
12x – 6y + 3z = 0 
 

                                                 
14 Not to be confused with DemiDec’s board game, AcaMania. 

x 

y 

x 

y 
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Solution by Substitution: 
If we solve for y in the first equation then substitute into the second and third equations, we 
will create a two-variable system of two equations. 
2x + y – 4z = -19 
y = 4z – 2x – 19    ← solve for y in the first equation 
-4x + 2(4z – 2x – 19) + 3z = 8  ← substitute y into the second equation 
-4x + 8z – 4x – 38 + 3z = 8  ← distributive property 
-8x + 11z = 46    ← simplify 
12x – 6(4z – 2x – 19) + 3z = 0  ← substitute y into the third equation 
12x – 24z + 12x + 114 + 3z = 0  ← distributive property 
24x – 21z = -114   ← simplify 
24x = 21z – 114    ← add the additive inverse of -21x to each side 
x = 24

11421z−     ← multiply by the multiplicative inverse of 24 

x = 8
387z−     ← simplify the fraction 

-8 ( )8
387z−  + 11z = 46    ← substitute into the 5th line 

-7z + 38 + 11z = 46   ← distributive property 
4z = 8     ← add the additive inverse of 38 to each side 
z = 2     ← multiply by the multiplicative inverse of 4 
2x + y – 4z = -19    ← rewrite the first equation 
2x + y – 4(2) = -19    ← substitute the value of z into the first equation 
2x + y = -11    ← add the additive inverse of -8 to each side 
y = -2x – 11     ← solve for y now 
-4x + 2y + 3z = 8   ← rewrite the second equation 
-4x + 2(-2x – 11) + 3(2) = 8   ← substitute both y and z into this equation 
-4x – 4x – 22 + 6 = 8    ← distributive property 
-8x = 24     ← add the additive inverse of -16 to each side 
x = -3      ← multiply by the multiplicative inverse of -8 
y = -2x – 11     ← rewrite an equation from six lines up 
y = -2(-3) – 11     ← substitute x into this equation 
y = -5      ← simplify 
 
The solution to the system is thus (-3, -5, 2).  As you can see, substitution is quite tedious 
when applied to a system of three variables.  Often, a combination of substitution and 
elimination, or even the exclusive use of elimination, is easier. 
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Solution by Elimination: 
2x + y – 4z = -19 
-4x + 2y + 3z = 8 
12x – 6y + 3z = 0 
 
This system is very rare in that it is peculiarly easy.  Most often, an elimination will eliminate 
only one variable.  Two eliminations will create a two-variable system with two variables.  In 
this case, however, not just one, but two variables are eliminated from the 2nd and 3rd 
equations at the same time. 
 
-12x + 6y + 9z = 24    ← multiply the second equation by 3 
12x – 6y + 3z = 0    ← rewrite the third equation 
12z = 24    ← add these lines 
z = 2      ← multiply by the multiplicative inverse of 12 
2x + y – 4(2) = -19   ← substitute z into the first equation 
2x + y = -11    ← add the additive inverse of -8 to each side 
-4x + 2y + 3(2) = 8   ← substitute z into the second equation 
-4x + 2y = 2    ← add the additive inverse of 6 to each side 
4x + 2y = -22    ← multiply that above equation by 2 
4y = -20     ← add the two lines above 
y = -5     ← multiply by the multiplicative inverse of 4 
2x + (-5) = -11    ← substitute y into an above equation 
2x = -6     ← add the additive inverse of -5 to each side 
x = -3     ← multiply by the multiplicative inverse of 2 
 
The solution to the system is thus (-3, -5, 2), and we have found it with significantly less work 
than the method of substitution. 

 
Most commonly, a three-variable system will lend itself to a combination of both substitution and 
elimination.  Another example is shown below with the explanations removed and logical arrows 
added. 
 

Example: 
Solve the system below. 
2x – 3y + 5z = 7 
-3x + 2z = -15 
9x + y – 4z = 46 
 
Solution: 

 
 

The solution is (5,1,0).  Note that many substitutions were used in this case, and only one 
elimination was convenient.  The work is a bit cluttered and hard to examine, but the first step is the 
solving for y in the first equation.  The equation is transformed from  2x – 3y + 5z = 7  to  

2x – 3y + 5z = 7 
-3x + 2z = -15 
9x + 6y – 4z = 51 

y = 
3

75z2x −+
 

9x + 6 ( )3
75z2x −+  − 4z = 51 

9x + 4x + 10z – 14 – 4z = 51 
13x + 6z = 65 
9x – 6z = 45 

×(-3) 
22x = 110 
x = 5 9(5) – 6z = 45 

-6z = 0 
z = 0 

y = 
3

75z2x −+
 

y = 
3

75(0)2(5) −+
 

y = 1 

1 

2 

3 

4 

5 
6 

×3 

×2 
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3
75z2xy −+

= .  Step 2 is the substitution of y into the third equation, which then simplifies to   

13x + 6z = 65.  Steps 3 and 4 involve transforming the original 2nd equation and the subsequent 
elimination of z from the new two-variable system containing x and z.  Step 5 is then the substitution 
of x into the modified 2nd equation in order to find z, and step 6 is the substitution of x and z to find y.  
There is a lot going on in many directions at once.  Pause briefly to soak up the massive 
mathematical manipulation manifest in this model and multi-dimensional miracle.15  Also, I should 
make mention of the matrices made available on many models of modern calculators.16 
 
The mathematics of matrices are beyond the scope of this resource, but you should feel free to 
consult a solid second-year algebra textbook to understand the inner workings of matrices; they 
provide a direct way of solving systems. 
 

Example: 
Solve the system below. 
2x – 3y + 5z = 7 
-3x + 2z = -15 
9x + y – 4z = 46 
 
Solution: 
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The solution as an ordered triple is (5,1,0). 
 
THE POLYNOMIALS’ FRIEND, THE RATIONAL EXPRESSION 
 
GCF FOIL Rational Expression  
 
It is now time to reexamine the ideas and concepts of polynomials.  Earlier, a polynomial was 
defined most simply as any sum of monomials; for all the mathematicians out there, a polynomial 
was defined as “Any expression that can be written in the form anxn + an-1xn-1 + an-2xn-2 + … + a1x + 
a0, where each ai is a constant and n is an integer.”  For a brief, (seemingly) pointless digression, 
let’s work some binomial multiplication together.  (A binomial is a polynomial with exactly two terms.) 
 

Examples: 
Multiply the following: 
a) (x – 1)(x + 2) 
b) (x + 3)(x + 5) 
c) (x – 4)(3x + 2) 

                                                 
15 …unable to abstain from the alliterative allure. 
16 Good grief!  I’ve never seen so many “m” words in my life! 
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d) (a + b)(c + d) 
e) (x – 7)(x + 7) 
 
Solutions: 
In multiplying binomials, many of us learned the FOIL acronym in school: we multiply 
together the first terms, the outside terms, the inside terms, and the last terms, then combine 
like terms.  The terms do not have to be multiplied in that order, but it is usually the most 
logical course of action. 
a) Multiply first terms: x and x, inside terms: -1 and x, outside terms: 2 and x, and last 

terms: -1 and 2.  The like terms 2x and -1x can combine for +x. 
(x – 1)(x + 2) = 
x2 + 2x – 1x – 2 = 
x2 + x – 2  

b) Following the same procedure as above, we have 
(x + 3)(x + 5) = 
x2 + 5x + 3x + 15 = 
x2 + 8x + 15 

c) (x – 4)(3x + 2) = 
3x2 + 2x – 12x – 8 = 
3x2 – 10x – 8  

d) (a + b)(c + d) = 
ac + ad + bc + bd  ← no like terms to combine 

e) (x – 7)(x + 7) = 
x2 + 7x – 7x – 49 = 
x2 – 49 
 

Example (d) is the general formula for binomial multiplication, and example (e) is a special case in 
which the two “x terms” add to 0 and we are left with only the difference of two squared terms.   
 
Now, what if we were asked to reverse a binomial multiplication?  Many decathletes will recognize 
such a request as a prompt to begin factoring, in which one expression is rewritten as a product of 
other expressions. 
 

Examples: 
Factor the following expressions: 
a) x2 – 7x + 12 
b) x2 + 2x – 15  
c) 2x2 – 3x – 5 
d) 10x3 – 15x2 – 25x 
e) 3x2 – 75  
 
Solutions: 
a) By observing the examples above, we realize that our factorization will likely be in the 

form (x + a)(x + b).  a and b must multiply to give 12, and they must add to -7.  The only 
possible solution, then, is that  a = -3  and  b = -4.  (The order is not important, however; I 
could have also said that  a = -4  and  b = -3.)  Thus, the factorization is  
x2 – 7x + 12 = 
(x – 3)(x – 4) 

b) This plan of attack is the same as above.  In this case, a and b must multiply to give -15, 
and they must add to 2.  a = -3  and  b = 5  now satisfy the conditions. 
x2 + 2x – 15 = 
(x – 3)(x + 5) 

c) This trinomial17 is a bit harder to factor than the first two, primarily because of that 
leading coefficient.  We know that “first × first” equals 2x2 so the factorization must now 
take the form  (2x + a)(x + b), and now, a and b must multiply to -5, but   2b + a  will add 

                                                 
17 In case the prefix does not make it obvious to you, a trinomial is a polynomial consisting of exactly 
three terms. 
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to -3.  This gives us the solution for our factorization that  a = -5  and  b = 1.  Thus, 
2x2 – 3x – 5 = 
(2x – 5)(x + 1) 

d) Before launching into a homicidal rage upon seeing a problem like this, we need only to 
examine what we know and what we must do.  This first term contains x3, a problem we 
have not encountered before.  In a flash of genius, however, we notice that each term is 
a multiple of the same factor: 5x.  Let’s first factor that term out by itself, sort of a reverse 
of the distributive property, if you will. 
10x3 – 15x2 – 25x = 
5x(2x2 – 3x – 5) =  ← factor out the 5x. Ha! We’ve seen this trinomial. 
5x(2x – 5)(x + 1) 

e) As we did in example (d) above, we’ll factor out a common term: this time, it’s 3.  After 
that, we are left with the expression x2 – 25, one of those “special forms” with no middle 
term.  Because of the previous examples, this should be no problem. 
3x2 – 75 = 
3(x2 – 25) = 
3(x – 5)(x + 5) 

 
Although these example illustrate how the factoring process works in general, the only way to 
become a really competent factorer is to practice factoring.  There are a few aids, though, that 
should prove helpful in factoring polynomials:  (1)  Always look first for a GCF—the greatest common 
factor shared by the polynomial’s terms, and (2)  Memorize the factoring patterns for a difference of 
squares, a difference of cubes, and a sum of cubes, and (3)  Learn that a sum of squares cannot be 
factored with real numbers. 
 

A Difference of Two Squares 
x2 – y2 = (x – y)(x + y) 

 
A Difference of Two Cubes A Sum of Two Cubes 

a3 – b3 = (a – b)(a2 + ab + b2) a3 + b3 = (a + b)(a2 – ab + b2) 
 

Examples: 
In each of the following three expressions, first state the GCF.  Then factor each expression 
as completely as possible. 
a) 5nxm2 – 125xn3 
b) 4af2x3 + 108a4f2y3 
c) 1458p6 – 128q6 
 
Solutions: 
a) In this case, the GCF is 5nx. 

5nxm2 – 125xn3 = 
5nx(m2 – 25n2) =   ← factor out the GCF 
5nx(m – 5n)(m + 5n)  ← follow the pattern for a difference of two squares 
 

b) The GCF here is 4af2. 
4af2x3 + 108a4f2y3 =   
4af2(x3 + 27a3y3) =   ← factor out the GCF 
4af2[x3 + (3ay)3] =   ← rewrite the sum of two cubes to be more readable 
4af2(x + 3ay)(x2 – 3axy + 9a2y2) ← follow the pattern for a sum of two cubes 
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c) The GCF here is not difficult to find.  It is simply 2.  The two terms share nothing else in 

common. 
1458p6 – 128q6 = 
2(729p6 – 64q6) =   ← factor out the GCF 
2[(27p3)2 – (8q3)2] =  ← rewrite the difference of two squares18 
2(27p3 – 8q3)(27p3 + 8q3) = ← factor the difference of two squares 
2[(3p)3 – (2q)3][(3p)3 + (2q)3] = ← rewrite the cube patterns to be more readable 
2(3p – 2q)(9p2 + 6pq + 4q2)(3p + 2q)(9p2 – 6pq + 4q2) 

 
 
Now that we can factor these simple polynomials (perhaps example (c) wasn’t so simple) at a 
satisfactory level, we must turn our attention to a dear friend of the polynomial: the rational 
expression.  A rational expression is any expression that can be written as a ratio of polynomials. 
 

Example: 
List some rational expressions. 
 
Solution: 

1    1,3x4x    x,
315297x43x13x2x

405279x27x19x2x
    ,

1x

65xx 23
234

234

2

2

−+−
−−−+

++−−

−

−+
 

 
Note in particular the last two rational expressions out of the four listed.  Remember that any 
constant can be a polynomial, even “1” alone.  Thus, any polynomial is itself a rational expression 

because any polynomial can be written 
1

polynomial .  1 is then a rational expression because 
1
1

 is a 

ratio of polynomials.19  Rational expressions, in a manner of speaking, resemble fractions.  Instead 
of having integers in the numerator and denominator, rational expressions have polynomials in those 
positions instead.  It’s time to revisit our examples for the arithmetic of fractions and the cancellation 
law.  Recall the cancellation law from much earlier – it is rewritten here for your convenience.  The 
cancellation law says, in essence, that when a common factor appears in both the numerator and 
the denominator of an expression, it can be cancelled out provided the denominator not equal 0.   

 
Cancellation Law 

c
b

ac
ab

=  as long as 0≠a  and 0≠c  

 
Example: 

Use the cancellation law to simplify 
1x

65xx
2

2

−

−+
. 

Solution: 
We should first factor both the numerator and denominator to see if there are common 
factors that can cancel out.  We practiced factoring polynomials earlier, so these should not 
phase us in the least. 

=
−

−+

1x
65xx

2

2

 

=
+−

−+

1)1)(x(x
1)6)(x(x

 

                                                 
18 Be sure you know why this was treated as a difference of two squares instead of a difference of two 
cubes.  If you don’t know, try working this example with a difference of two cubes from this point. 
19 Redundant people, those mathematicians… and they repeat themselves often. 
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1x
6x

+

+
, as long as  x – 1 ≠ 0  and  x + 1 ≠ 0.   

Therefore, 
1x
6x

1x
65xx

2

2

+

+
=

−

−+
  as long as   x ≠ 1  and  x ≠ -1. 

 
The procedure illustrated above is completely analogous to the process involved in reducing a 
fraction to its lowest terms.  Rational expressions can also be added, subtracted, multiplied, and 
divided exactly as fractions are.  As is the case with fractions, multiplication is carried out “straight 
across,” and division is defined simply as multiplication by the reciprocal.  Also as is the case with 
fractions, addition and subtraction are a bit more complicated, simply because they require the use 
of a common denominator before the numerators can be combined.  Approximately 25 pages ago, 
this algebra resource detailed the procedures involved in the arithmetic of fractions in a step by step 
manner.  Those examples are listed again below, along with an analogous problem involving rational 
expressions. 
 

=+
6
1

2
1

    =
+−

+
− 65xx

1
2x

1
2  

=+
⋅

⋅

6
1

32
31

    =
−−

+
−−

−⋅

3)2)(x(x
1

3)2)(x(x
3)(x1

 

=+
6
1

6
3

    =
+−

+
+−

−

65xx
1

65xx
3x

22  

3
2

23
22

6
4

=
⋅

⋅
=     

3x
1

3)2)(x(x
2x

65xx
13x

2 −
=

−−

−
=

+−

+−
, as long as  x ≠ 2  and  x ≠ 3 

 
The first line of these addition problems is the original problem.  The second displays the 
transformation required to produce a common denominator.  In the case of this rational expression 
problem, a common denominator is easily evident; sometimes, however, finding a common 
denominator will take a bit more digging.  After like terms are combined, the resulting numerator and 
denominator are factored and the cancellation law is applied.  Let’s now revisit and expand on the 
second example. 
 

=•+
6
5

2
1

3
1

   =
+

+
•

−
+

+ 3)2(x
5x

2x
1

3x
1

 

=
⋅

⋅
+

62
51

3
1

   =
+−

+⋅
+

+ 3)2)(x2(x
5)(x1

3x
1

 

=+
12
5

3
1

   =
−+

+
+

+ 122x2x
5x

3x
1

2  

=+
⋅

⋅

12
5

43
41

   =
−+

+
+

−⋅+

−⋅

122x2x
5x

2)2(x3)(x
2)2(x1

2  

=+
12
5

12
4

   =
−+

+
+

−+

−

122x2x
5x

122x2x
42x

22  

4
3

34
33

12
9

=
⋅

⋅
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122x2x
13x

2 −+

+
 

 
Note that this rational expression problem does not simplify in the end; there are no common factors 
in the numerator and denominator of the final answer.  Note also that the proper order of operations 
still applies: the multiplication of the two original rightmost expressions is still performed before the 
addition.  Also, the common denominator for these rational expressions is a real monster to find; but 
we can make that work easier by examining the rational denominators’ factorizations. 
 
Let’s look at a completely original stand-alone example now. 
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Example: 
Simplify the expression below. 

5)(x
1x

54x2x-
56xx

x- 2

2

2

−÷
−

++
−

+−
 

 
Solution: 
According to the standard order of operations, we must perform the division at the right 
before we can do the subtraction.  Our first order of business is to apply the definition of 
division. 

=−÷
−

++
−

+−
5)(x

1x
54x2x-

56xx
x- 2

2

2

 

=
−

⋅
−

++
−

+− 5x
1

1x
54x2x-

56xx
x- 2

2

2

  ← definition of division 

=
−−

++
−

−− 5)1)(x(x
54x2x-

5)1)(x(x
x- 22

   ← perform the multiplication 

=
−−

++−

5)1)(x(x
5)4x-2xx- 22 (

 ← combine the numerators since there is 

already a common denominator 

=
−−

−−+
5)1)(x(x

54x2xx- 22
    ← definition of subtraction 

=
−−
−−

5)1)(x(x
54xx2

     ← simplify 

=
−−
+−

5)1)(x(x
1)5)(x(x  ← factor the numerator in an attempt to use 

the cancellation law 

1x
1x

−
+   provided  x ≠ 1  and  x ≠ 5.   ← cancellation law 

 
Be careful when simplifying the rational expressions—be sure to get the details straight.  Make sure 
you always “distribute” subtraction across the entire numerator to which it applies.  Remember that, 
just like “regular fractions”, rational expressions are multiplied “straight across” and addition / 
subtraction require a common denominator.  If a common denominator is not readily available, then 
one must be created. 
 
IRRATIONAL NUMBERS 
 
Rational Number Irrational Number radicand  
 
The very beginning of this resource detailed an introduction to the real numbers.  Real numbers, we 
said, are the numbers that can be matched to a position on the number line.  Of course zero, all 
positive numbers, and all negative numbers qualify as real numbers, but there exist even more 
categories and divisions to describe the real numbers.  Any terminating or repeating decimal can be 
represented as a ratio of two numbers (a fraction) and is a rational number.  All of the remaining 
decimals on the number line that neither terminate nor repeat are known as irrational numbers.   
 
The majority of irrational numbers arise as the roots of numbers.  For example, the square root of 2, 
written as 2 , is approximately equal to 1.4142…., but the decimal neither terminates nor repeats.  
The square root of 6, written 6 , is approximately 2.4495, but it too neither terminates nor repeats.  
Many cubic roots, designated 3 x  or 31x , are irrational, as are most 4th and higher degree roots of 
numbers.  What does it mean, then, when the decathlon curriculum lists the simplification of square 
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roots among the amalgam of tasks that should be performable by decathletes?  A square root 
expression is considered simplified if the number under the root symbol (the radicand) has no 
perfect square factors and there are no square roots appearing in any denominator.20  The 
simplification of square roots is yet another topic that is most easily taught and explained through 
examples. 
 

Square Root Simplification Rules 
As long as x ≥ 0 and y ≥ 0, then 

xx 2 =  
yxyx ⋅=⋅  

y
x

y
x
=  

 
 

Examples: 
Simplify the following. 
a) 75  
b) 48  
c) 700  
d) 2016 +  
e) 7548 −  
f) 2712520 −+  
 
Solutions: 
a) 3532532575 =⋅=⋅=  
b) 3431631648 =⋅=⋅=  
c) 71071007100700 =⋅=⋅=  
d) 5245442016 +=⋅+=+  
e) 335347548 −=−=−  
f) 33573355522712520 −=−+=−+  

 
Example problems (a), (b), and (c) are as straightforward as square root simplifications can be.  In 
them, you must attempt to find the largest perfect square that is a factor of the radicand and “pull it 
out of the radical.”  Example problems (d), (e), and (f) illustrate the important concept that radical 
terms can only be combined if they have identical radicand.  In (d) and (f), the terms with different 
numbers under the radical signs cannot be combined as they are not like terms. 
 
The other major radical simplification involves removing radicals from denominators.  To correctly 
simplify these expressions, the fraction must be multiplied by a clever form of 1.21 
 

Examples: 
Simplify the following radical expressions. 

a) 
2

6  

                                                 
20 The reason for these conventions is a bit antiquated.  Decades ago, mathematicians began making 
numerical charts of square roots for computation purposes.  With these simplification criteria, fewer roots 
had to be listed in these radical tables, and division by long decimals was minimized.  (Remember that in 
the days before calculators, multiplication was preferred unanimously over division.)  These reasons are 
no longer applicable, but square roots continue to be simplified by these rules according to convention. 
21 When trying to transform expressions in higher level mathematics, you’ll find the only feasible ways to 
do so involve either adding clever forms of 0 (adding and subtracting the same quantity) or multiplying by 
clever forms of 1 (a number divided by itself). 
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b) 
15

100  

c) 
54

90
6

20
−  

d) 
284

10
+

 

 
Solutions: 
a) To rationalize a denominator in which we find a radical of the form a , we multiply the 

fraction by the clever form of 1: 
a
a .  Thus, this problem can be simplified as follows. 

23
2

26
2
2

2
6

2
6

==×=  

 
In the third step, we make the intuitive leap that when we square the square root of 2, we 
arrive at a number none other than 2 itself. 
 

b) 
3

1520
15

15100
15
15

15
100

15
100

==×=  

 

c) 
3

610
6

620
6
6

6
20

6
20

==×=  

65
6

630
6
6

6
30

6
30

63
90

69
90

54
90

==×===
⋅

=  

3
65

3
615

3
61065

3
610

54
90

6
20 −

=−=−=−  

 
d) To rationalize a denominator of the form ba ± , we multiply the fraction by the clever 

form of 1: 
ba
ba

m

m .  In this way, we multiply by the conjugate of the radical already there, 

and we create a difference of two squares (in a manner of speaking) so that we have 
( )( ) bababa 2 −=−+ , and the radical disappears entirely. 

( )
=

−
⋅−

=
−
−

=
−
−

=
−

−
×

+
=

+ 12
741040

12
281040

2816
28410

284
284

284
10

284
10  

3
1075

3
7510

12
72040 −

=
−
−

=
−
−  

 
 
QUADRATIC EQUATIONS 
 
Discriminant Quadratic Equation Quadratic Formula  
Corollary of the Multiplication Property of Zero    
 
Earlier, we spent a great deal of time and energy solving all types of linear equations for x.  What, 
though, would happen if we were asked to solve the equation  x2 = 81  ?  After our brief and intrepid 
excursion into the world of square roots in the last section, we could find an equivalent equation by 
taking the square root of each side, thus giving us  x = 9.  That answer has one flaw: it is WRONG.  
More accurately, that answer is “not entirely correct.”  “Remember,” whispers the tiny voice of the 
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benevolent math fairy, “all positive numbers have two square roots.”  Think for a second…yes, 
you’ve got it, the other answer here is  x = -9 because  (-9)2 = 81  is also a true equation.  Any 
equation in one variable whose highest exponent is 2 is known as a quadratic equation.  Quadratic 
equations have at most two solutions.  There are two major ways of solving quadratic equations.  
The first is solution by factoring, and the other is solution by the quadratic formula. 
 
To solve quadratic equations by factoring, we need to think back to some of the most basic 
properties of multiplication.  Most decathletes remember The Multiplication Property of Zero from 
beginning algebra or pre-algebra.  The name may not be familiar, but most of us know that, “Zero 
times anything must equal zero.”  In more formal terms, “If a = 0  or  b = 0, then  ab = 0.”  There is an 
important principle related to this property; its names vary from textbook to textbook, but this 
resource will refer to it as the Corollary of the Multiplication Property of Zero. 
 

Corollary of the Multiplication Property of Zero 
If  ab = 0, then either  a = 0  or  b = 0. 

 
In other words, if two numbers multiply together to give 0, then at least one of those two numbers 
must be zero.  Quite intuitively, if three quantities multiply together to give zero as their product, then 
at least one of those three numbers must be zero.  It may not be apparent at first how this can apply 
to the solution of quadratic equations, but a few examples will drive the point home. 
 

Examples: 
Solve the following equations by factoring. 
a) x2 – x + 12 = 0 
b) 6x2 – x – 12 = 0 
c) x2 = 81 
 
Solutions: 
a) This is a simple quadratic equation.  After a bit of searching, we can factor the 

expression on the left to create an equivalent equation. 
x2 – x + 12 = 0 
(x – 4)(x + 3) = 0    ← factor the quadratic expression on the left 
x – 4 = 0 or     x + 3 = 0  ← corollary of the mult. prop. of zero 
x = 4  or  x = -3  ← solve the appropriate equations 
 
This gives the two possible solutions to the quadratic equation. 

 
b) 6x2 – x – 12 = 0 

(2x – 3)(3x + 4) = 0   ← factor the quadratic expression on the left 
2x – 3 = 0 or     3x + 4 = 0  ← corollary of the mult. prop. of zero 

x = 
2
3  or x = 

3
4

−  ← solve the appropriate equations 

 
c) x2 = 81     

x2 – 81 = 0    ← add the additive inverse of 81 to each side 
(x – 9)(x + 9) = 0   ← factor the difference of two squares 
x – 9 = 0 or      x + 9 = 0  ← corollary of the mult. prop. of zero 
x = 9 or x = -9  ← solve the appropriate equations 
 
 

To solve quadratic equations with the quadratic formula, we will need to know and memorize the 
quadratic formula.22  For a derivation of the quadratic formula and an explanation of the solving 
technique “completing the square,” please see the first appendix. 

                                                 
22 Well, duh. 
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The Quadratic Formula 
Given a quadratic equation of the form  ax2 + bx + c = 0, where  a ≠ 0, the solution 
for x is given by the formula  

2a
4acbbx

2 −±−
= , 

where the radicand, b2 – 4ac, is known as the discriminant. 

If  b2 – 4ac = 0, the one and only solution is 
2a

bx −
= . 

If  b2 – 4ac > 0, there are two real solutions.  (If b2 – 4ac is a perfect square, these 
solutions are rational.) 
 
If  b2 – 4ac < 0, there are no real solutions. 

 
Example: 
Solve  6x2 – x – 12 = 0  using the quadratic formula. 
 
Solution: 
This is the same as example (b), which was solved above by factoring.  We should get the 
same answers that we found above.  The equation is already written in the proper form for 
the quadratic formula.  Here, a = 6, b = -1, and c = -12. 

 

2a
4acbbx

2 −±−
=  

2(6)
12)4(6)(11

x
−−±+

=  

12
2891x ±

=  

12
171   xor   

12
171x −

=
+

=  

2
3

12
18x ==  or  

3
4

12
16x −=

−
=  

 
Example: 
Solve   x2 – 10x + 23 = 0  using the quadratic formula. 
 
Solution: 
This equation is already put in the proper form to apply the quadratic formula.  As it is written, 
we have  a = 1, b = -10, and c = 23. 
 

2a
4acbbx

2 −±−
=  

2(1)
4(1)(23)10010

x
−±+

=  

2
810x ±

=  

2
2210x ±

=  

2
2210   xor   

2
2210x −

=
+

=  

25x +=      or    25x −=  
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Example: 
Solve the quadratic equation  x2 = -10x – 50  using the quadratic formula. 
 
Solution: 
The equation is not yet in the proper form to apply the quadratic formula.  We transform the 
equation so that it becomes  x2 + 10x + 50 = 0.  To apply the quadratic formula, we know that 
a = 1, b = 10, and c = 50. 

2a
4acbbx

2 −±−
=  

2(1)
4(1)(50)10010

x
−±−

=  

2
10010x −±−

=  

This quadratic equation has no real solutions because the discriminant, the quantity under 
the square root sign, is negative. 
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APPENDIX A: COMPLETING THE SQUARE AND THE QUADRATIC FORMULA 
 
When we want to solve an equation such as the quadratic  x2 = 121, what do we find for our 
solutions?  In this case, gut instinct leads us to  x = 11  and  x = -11. 
 

General Formula for a Squared Variable 

If we are given that  x2 = c, where c > 0, then we solve for x by saying that  x = c± . 
 

Example: 
Use the general formula for a squared variable to solve  (x + 2)2 = 50. 
 
Solution: 
(x + 2)2 = 50 
x + 2 = ± 50     ← general formula for a squared variable 
x + 2 = ± 25    ← simplify the square root 
x = -2 ± 25    ← add the additive inverse of 2 to each side 
x = -2 + 25    or   x = -2 – 25  

 
We can use this idea to our advantage in an algebraic technique known as completing the square.  
Before we can learn how to complete the square, we have to review one concept concerning the 
multiplication of two binomials. 
 

Square of a Binomial 
(a + b)2 = a2 + 2ab + b2 
(a – b)2 = a2 – 2ab + b2 

 
These formulas come from the FOIL method of multiplying binomials.  If any binomial (a ± b) is 
multiplied by itself, then the multiplication of the binomials will result in 
(a ± b)(a ± b) = 
a2 ± ab ± ab + b2 =  ← FOIL binomial multiplication 
a2 ± 2ab + b2   ← combining like terms 
 
If the square of a binomial can be recognized immediately and quickly, then completing the square is 
a feasible alternative to the quadratic formula.  When we complete the square to solve a quadratic 
equation, we add a common constant to both sides so that the side containing the variable will 
become the square of a binomial.  For example, if the variables and constants are separated to 
opposite sides of the equation, and if the “variable side” of the equation were  x2 – 10x, then only the 
lack of a constant 25 keeps that side from being the square of a binomial—adding 25 to both sides 
of the equation would transform the “variable side” to be x2 – 10x + 25, which could afterwards be 
factored into  (x – 5)2.  The general formula for a squared variable is then valid. 
 

Example: 
Solve  x2 – 10x = 11  by completing the square. 
 
Solution: 
Details of this problem were discussed in the paragraph above.  We start by adding 25 to 
both sides and continue afterwards by factoring the left side into the square of a binomial. 
x2 – 10x = 11 
x2 – 10x + 25 = 11 + 25  ← add 25 to both sides to create an equivalent equation 
(x – 5)2 = 36   ← factor the left expression; simplify the right expression 
x – 5 = ± 6   ← general formula for a squared variable 
x = 5 ± 6   ← add the additive inverse of -5 to each side 
x = 11   or   x = -1 
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More complications arise if the coefficient of the squared term is not 1.  Nevertheless, the procedure 
of completing the square remains completely valid.  If the squared-term coefficient is not 1, first 
create an equivalent equation by dividing both sides of the equation by the coefficient of the squared 
term, then proceed as before.  Remember that the constant to be added to both sides must equal 
the square of half the linear coefficient.  Then, the variable expression can be factored into the 
square of a binomial and the general formula for a squared variable can be applied. 
 
 

Procedure for Completing the Square 
Step 1: Arrange the equation so that the variable is on one side and 

the constant is on the other. 
Step 2: If the coefficient of the squared term is not 1, then divide both 

sides of the equation by that coefficient. 
Step 3: Add a constant to both sides of the equation.  That constant 

should be the square of half the linear term’s coefficient. 
Step 4: Factor the side containing the variable into the square of a 

binomial. 
Step 5: Apply the general formula for a squared variable. 
Step 6: Finish solving for the variable in question. 

 
 

Example: 
Solve 6x2 – x – 12 = 0 by completing the square. 
 
Solution: 
6x2 – x – 12 = 0 
6x2 – x  = 12    ← Step 1 

x2 – 
6
1 x = 2    ← Step 2 

x2 – 
6
1 x + 

144
1  = 2 + 

144
1   ← Step 3 (half the linear term’s coefficient is 

12
1 ) 

x2 – 
6
1 x + 

144
1  = 

144
289  ← express the constant side as a single fraction 

2

12
1x 





 −  = 

144
289    ← Step 4 

x – 
12
1  = 

144
289

±   ← Step 5 

x – 
12
1  = 

12
17

±    ← simplify the expression on the right 

x = 
12
17

12
1
±    ← Step 6 

 

x = 
2
3

12
18

=  or x = 
3
4

12
16

−=
−  

Revisit the resource section on factoring and the quadratic formula to find that this equation 
has been solved before. 

 
 
Completing the square is an alternative to the quadratic formula that at first seems hardly to be worth 
the effort it requires.  With practice, though, the technique of completing the square can be quite fast 
and useful; sometimes, it is even faster than the quadratic formula. 
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Example: 
Derive the quadratic formula.  That is, solve the equation  ax2 + bx + c = 0  by completing the 
square. 
 
Solution: 
ax2 + bx + c = 0 
ax2 + bx = -c     ← Step 1 

x2 + x
a
b = -

a
c     ← Step 2 

x2 + x
a
b  + 2

2

4a
b = -

a
c  + 2

2

4a
b    ← Step 3 (half the linear term’s coefficient is 

2a
b ) 

x2 + x
a
b  + 2

2

4a
b = -

4aa
4ac
⋅
⋅  + 2

2

4a
b  ← find a common denom. among the rational expressions 

x2 + x
a
b  + 2

2

4a
b = 2

2

4a
4acb −   ← simplify the expression on the right 

2

22

4a
4acb

2a
bx −

=





 +    ← Step 4 

2

2

4a
4acb

2a
bx −

±=+    ← Step 5 

2

2

4a

4acb
2a
bx −

±=+    ← rewrite the square root 

2a
4acb

2a
bx

2 −
±=+    ← simplify the square root 

2a
4acb

2a
bx

2 −
±−=    ← Step 6 

2a
4acbbx

2 −±−
=    ← simplify because of the common denominator 

 

Thus, the solutions to the equation  ax2 + bx + c = 0  are  
2a

4acbbx
2 −+−

=   and  

2a
4acbbx

2 −−−
= . 
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APPENDIX B: IMAGINARY NUMBERS 
 
Complex Number i   
 
 
When mathematicians distinguish between the “real numbers” and the “imaginary numbers,” many 
people get the idea somehow that the imaginary numbers are somehow less substantive and 
corporeal than the real numbers.  Imaginary numbers, however, are simply numbers.  For example, 
the concept of zero, a number representing nothing, was quite simply overlooked until the 
Babylonians stumbled upon it.  Now, the concept of zero is second nature to most, if not all, of us.23  
In the same way, the idea of the imaginary numbers escaped mathematicians for centuries, but only 
a few hundred years ago, these special numbers were “discovered.” 
 
Imaginary numbers arise when the square roots of negatives are computed.  If we were asked to 
solve the equation   10x 2 = , there would be two solutions:  x = 10  and x = 10− .  Frequently, 
though, mathematics arrives at equations such as   4x 2 −= , and, until recently, mathematicians 
were forced to write impotently, “no solution,” victims of a number system we devised for ourselves.  
No real number can possibly square to give a negative number.  However, the number “0” arose 
from a natural need; when there was a lack of anything at all, something had to exist to signify that 
nothingness.  In the same way, imaginary numbers arose because mathematicians realized that it 
was ludicrous to say that there were simply no numbers that squared to be negative.  They defined 
one, and since the “new” number was decidedly not real, it was saddled with the unfortunate 
moniker “imaginary”. 
 

The imaginary unit i 

i 2 = -1          i = 1−  
 

Examples: 
Simplify the following expressions. 
a) 1−  
b) 16−  
c) 4−−  
d) 124 −×−  
e) i7 
 
Solutions: 
a) 1−  = i 
b) i416116 =⋅−=−  
c) i2414 −=⋅−−=−−  
d) 3434322124 2 −==⋅=−×− iii )(  

e) iiiii −=⋅−== 3327 1)()(  
 
On the whole, you can see that the square roots of negative numbers tend to obey the same rules 
as the ordinary real numbers.  Notice in example (d) how the negative sign was taken out of the 
square root before other simplification started.  Make a special note that the rules for simplifying 
square roots do not apply when radicands are negative.  Here is an incorrect way to work example 
(d). 
 

Wrong Solution: 

                                                 
23 … with the possible exception of parking lot attendants, who never quite seem to think that you left 
quickly enough. 
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3448124124 ==−−=−×− ))((  
 
The negatives must be accounted for before they are multiplied away and disappear.  Imaginary 
numbers can actually be used for those quadratic equations that we believed had no solution, those 
pesky quadratic equations with a negative discriminant.  Now that we know how to handle it, the 
negative square root now simply gives us an imaginary number, and our final answer will have a 
dual nature: a real part and an imaginary part.  A complex number is any number of the form a + bi, 
where a represents the number’s real part, and bi represents the number’s imaginary part. 
 

Example: 
Solve the quadratic equation  x2 = -10x – 50  over the complex numbers. 
 
Solution: 
This is the quadratic equation that we stated had no real solution earlier.  It does, however, 
have complex solutions.  Previously, we stopped when we encountered the negative 
discriminant.  Let’s press on. 
 

2
10010x −±−

=  

2
1010x i±−

=  

i55x ±−=  
i55x +−=  or i55x −−=  

 
The two solutions are not only complex numbers, they are complex conjugates. 

 
It’s important to make a special note that all real numbers and all imaginary numbers are complex 
numbers.24  After all, the real number “4” that we have dealt with as far back as 1st grade can 
technically be rewritten as “4+0i” and the imaginary number 2i that we have just learned could itself 
be written as “0+2i.” 
 
Arithmetic of complex numbers is rather instinctive.  If we are to add two complex numbers  a + bi  
and  c + di, then we can simply add the real parts and add the imaginary parts.  If we want to 
subtract two complex numbers, we subtract the real parts and imaginary parts.  Multiplication of 
complex numbers is essentially identical to multiplication of binomials; four terms result from FOIL 
multiplication and like terms are simplified together with the term containing i2 made into a negative 
real number.  These rules are restated in a table below. 
 

The Arithmetic of Complex Numbers 
Addition: (a + bi) + (c + di) = (a + c) + (b + d)i 
Subtraction: (a + bi) – (c + di) = (a – c) + (b – d)i 
Multiplication: (a + bi) • (c + di) = ac + adi + bci + bdi2 [FOIL] =  

ac + adi + bci – bd =  
(ac – bd) + (ad + bc)i 

 
 
Division over the complex numbers, however, is far more complicated.  Much like square roots, 
complex numbers aren’t considered “simplified” until all imaginary units are out of all denominators; 
also like square roots, when complex numbers are found in denominators, multiplication by a 
complex conjugate is the easiest way to remove the imaginary part of the denominator. 
 

Example: 

                                                 
24 … repetitive people, those mathematicians, and they’re redundant too. 
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Substitute the solution  x = -5 + 5i  into the quadratic equation  x2 = -10x – 50  and show that 
it satisfies the equation. 
 
 
 
Solution: 
x2 = -10x – 50 
(-5 + 5i)2 = -10(-5 + 5i) – 50    ← substitute the given value into the equation 
25 – 50i + 25i2 = 50 – 50i – 50   ← square the binomial, distribute the -10 
25 – 50i – 25 = 50 – 50i – 50    ← i2 = -1 
-50i = -50i     ← simplify each side 
 
The equation does indeed hold when this solution is substituted for x. 

 
 

Example: 
Simplify the following complex fractions, and write your answers in  a + bi  form. 

a) 
i
1 

b) 
i
i

43
2
+
−  

 
Solution: 

a) =
i
1  

=
−
−

⋅
i
i

i
1     ← the complex conjugate of  0 + i  is  0 – i  

=
−
−

2i
i     ← perform the fraction multiplication 

=
−−
−

)( 1
i     ← i2 = -1 

i−      ← simplify 
 

b) =
+
−
i
i

43
2  

=
−
−

⋅
+
−

i
i

i
i

43
43

43
2    ← the complex conjugate of  i43 +  is i43 −  

=
−

+−−
2

2

169
4386

i
iii    ← perform the binomial multiplication 

=
+

−−−
169

4386 ii    ← 12 −=i  

=
−
25

112 i     ← simplify 

i
25
11

25
2

−     ← put answer into iba +  form 
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Examples: 
Solve the following complex equations for x. 
a) 8x = 12ix + 13 
b) 3x2 + 4ix = 12 
c) i=2x  
 
Solutions: 
a) This equation is a linear equation so we need only to solve for x. 

8x – 12ix = 13   ← add the additive inverse of 12ix to each side 
x(8 – 12i) = 13   ← factor x to try to isolate the variable 

x = 
i128

13
−

    ← multiply by the mult. inverse of i128 −  

i
i

i 128
128

128
13x

+
+

⋅
−

=   ← multiply by a clever form of 1 to simplify 

214464
156104x
i
i

−
+

=    ← perform the binomial multiplication 

208
156104x i+

=    ← 12 −=i  

4
32x i+

=     ← simplify the fraction 

i
4
3

2
1x +=     ← put the answer in iba +  form 

 
b) This is a quadratic equation, and we will need the quadratic formula to solve. 

3x2 + 4ix = 12 
3x2 + 4ix – 12 = 0   ← put the equation into  ax2 + bx + c = 0  form 

)(
))((

32
1234164

x
2 −−±−

=
ii

 ← apply the quadratic formula 

6
-144)164

x
(−−±−

=
i

  ← simplify with 12 −=i  

6
1284x ±−

=
i    ← simplify 

6
284x ±−

=
i    ← simplify the radical 

3
242x ±−

=
i    ← reduce the fraction 

i
3
2

3
24x −=   or  i

3
2

3
24x −−=  ← put into iba +  form 

 
c) To solve this equation, we need to apply the general formula for a squared variable.  

Unfortunately, we do not have the knowledge we need to go further than i± .  This 
problem is beyond the scope of this appendix.25 

                                                 
25 Sorry – quite a tease, huh?  In case you are simply curious, then ii 2

2
2
2 += .  If you are not curious, 

then why are you reading this footnote? 
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