
ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΣΕ PHP



Γενική περιγραφή
• Το πρόγραμμα επιτρέπει τη διαχείριση χρηστών με πεδία name και email.

• Υλοποιεί λειτουργίες: Προσθήκη, Αναζήτηση, Ενημέρωση, και Διαγραφή.

• Χρησιμοποιεί HTML φόρμες και PHP για να χειριστεί τα δεδομένα.

• Η βάση δεδομένων υποθέτουμε ότι έχει έναν πίνακα users με τουλάχιστον πεδία: id, name, 

email.

HTML Μέρος
1. Προσθήκη Χρήστη

<form action="" method="post">
    <label for="name">Όνομα:</label>
    <input type="text" name="name" required>
    <br>
    <label for="email">Email:</label>
    <input type="email" name="email" required>
    <br>
    <input type="submit" name="insert" value="Προσθήκη Χρήστη">
</form>

Φόρμα που στέλνει POST αίτημα με όνομα και email.
• Το πεδίο name="insert" στο κουμπί βοηθάει στο να καταλάβουμε ποια λειτουργία ζητάει ο

χρήστης.

2. Αναζήτηση Χρήστη

<form action="" method="get">
    <label for="search_name">Όνομα:</label>
    <input type="text" name="search_name" required>
    <input type="submit" name="search" value="Αναζήτηση">
</form>

• Φόρμα που στέλνει GET αίτημα με το όνομα που θέλουμε να αναζητήσουμε.

• Η αναζήτηση γίνεται με μερικό ταίριασμα ονόματος.



PHP Μέρος

Σύνδεση με βάση δεδομένων
$servername = "localhost";
$username = "root";
$password = "";
$dbname = "my_database";

$conn = new mysqli($servername, $username, $password, $dbname);

if ($conn->connect_error) {
    die("Σφάλμα σύνδεσης: " . $conn->connect_error);
}

    Δημιουργεί αντικείμενο σύνδεσης με MySQL βάση.

    Αν η σύνδεση αποτύχει, σταματά το πρόγραμμα με μήνυμα σφάλματος.

1. Προσθήκη Χρήστη

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_POST['insert'])) {
    $name = $_POST['name'];
    $email = $_POST['email'];

    $stmt = $conn->prepare("INSERT INTO users (name, email) VALUES (?, ?)");
    $stmt->bind_param("ss", $name, $email);

    if ($stmt->execute()) {
        echo "<p style='color: green;'>  Ο χρήστης προστέθηκε επιτυχώς!</p>";✅
    } else {
        echo "<p style='color: red;'>  Σφάλμα: " . $stmt->error . "</p>";❌
    }
    $stmt->close();
}

• Ελέγχει αν η φόρμα προσθήκης υποβλήθηκε.

• Παίρνει τα δεδομένα name και email από τη φόρμα.

• Χρησιμοποιεί προετοιμασμένη δήλωση (prepare) για ασφάλεια από SQL injection.



• Εισάγει νέο χρήστη στον πίνακα users.

• Εμφανίζει μήνυμα επιτυχίας ή σφάλματος.

2. Διαγραφή Χρήστη

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_POST['delete'])) {
    $user_id = $_POST['user_id'];

    $stmt = $conn->prepare("DELETE FROM users WHERE id = ?");
    $stmt->bind_param("i", $user_id);

    if ($stmt->execute()) {
        echo "<p style='color: green;'>  Ο χρήστης διαγράφηκε επιτυχώς!</p>";✅
    } else {
        echo "<p style='color: red;'>  Σφάλμα: " . $stmt->error . "</p>";❌
    }
    $stmt->close();
}

Αν υποβληθεί φόρμα διαγραφής, παίρνει το user_id.
• Διαγράφει τον χρήστη από τη βάση.

• Εμφανίζει μήνυμα επιτυχίας ή σφάλματος.

3. Ενημέρωση Χρήστη

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_POST['edit'])) {
    $user_id = $_POST['user_id'];
    $new_name = $_POST['new_name'];
    $new_email = $_POST['new_email'];

    $stmt = $conn->prepare("UPDATE users SET name = ?, email = ? WHERE id = ?");
    $stmt->bind_param("ssi", $new_name, $new_email, $user_id);

    if ($stmt->execute()) {
        echo "<p style='color: green;'>  Ο χρήστης ενημερώθηκε επιτυχώς!</p>";✅
    } else {
        echo "<p style='color: red;'>  Σφάλμα: " . $stmt->error . "</p>";❌
    }
    $stmt->close();



}

Αν υποβληθεί φόρμα ενημέρωσης, παίρνει το user_id και τα νέα στοιχεία.

• Ενημερώνει τα στοιχεία του χρήστη στη βάση.

• Εμφανίζει μήνυμα επιτυχίας ή σφάλματος.

4. Αναζήτηση Χρήστη
if ($_SERVER["REQUEST_METHOD"] == "GET" && isset($_GET['search'])) {
    $search_name = $_GET['search_name'];

    $stmt = $conn->prepare("SELECT id, name, email FROM users WHERE name LIKE ?");
    $search = "%" . $search_name . "%";
    $stmt->bind_param("s", $search);
    $stmt->execute();
    $result = $stmt->get_result();

    echo "<h3>Αποτελέσματα Αναζήτησης:</h3>";
    if ($result->num_rows > 0) {
        echo "<ul>";
        while ($row = $result->fetch_assoc()) {
            echo "<li>
                    <form action='' method='post' style='display:inline;'>
                        <input type='hidden' name='user_id' value='" . $row['id'] . "'>
                        <input type='text' name='new_name' value='" . htmlspecialchars($row['name']) . "' 
required>
                        <input type='email' name='new_email' value='" . htmlspecialchars($row['email']) . "' 
required>
                        <input type='submit' name='edit' value='Ενημέρωση'>
                        <input type='submit' name='delete' value='Διαγραφή'>
                    </form>
                  </li>";
        }
        echo "</ul>";
    } else {
        echo "<p style='color: red;'>  Δεν βρέθηκαν χρήστες.</p>";❌
    }
    $stmt→close(); 
}
Λαμβάνει το όνομα που αναζητήθηκε.

• Χρησιμοποιεί LIKE με % για μερικό ταίριασμα.

• Εμφανίζει όλα τα αποτελέσματα σε λίστα.

• Κάθε αποτέλεσμα έχει τη δική του φόρμα για ενημέρωση ή διαγραφή



Τελικές ενέργειες 

$conn->close();

Κλείνει τη σύνδεση με τη βάση δεδομένων.

Επιπλέον Σχόλια

πιπλέον Σχόλια
• Ασφάλεια: Χρησιμοποιεί prepare και bind_param, αποφεύγοντας το SQL injection.

• Δομή: Όλες οι ενέργειες γίνονται στην ίδια σελίδα, με βάση το είδος του αιτήματος (GET ή 

POST) και ποιο submit κουμπί πατήθηκε.

• Χρήση HTML ειδικών χαρακτήρων: Στην εμφάνιση ονομάτων/email στην αναζήτηση, 

χρησιμοποιείται htmlspecialchars για αποφυγή XSS.

• Προβλήματα προς βελτίωση:

• Δεν υπάρχει validation πέραν του required.

• Δεν γίνεται έλεγχος για μοναδικό email.

• Μπορεί να βελτιωθεί το UI και να διαχωριστούν οι φόρμες σε διαφορετικές σελίδες για 
καλύτερη οργάνωση.

• Θα ήταν καλό να υπάρχει έλεγχος για έγκυρη μορφή email από την πλευρά του server.
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