
ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΣΕ PHP

Γενική περιγραφή
• Το πρόγραμμα επιτρέπει τη διαχείριση χρηστών με πεδία name και email.

• Υλοποιεί λειτουργίες: Προσθήκη, Αναζήτηση, Ενημέρωση, και Διαγραφή.

• Χρησιμοποιεί HTML φόρμες και PHP για να χειριστεί τα δεδομένα.

• Η βάση δεδομένων υποθέτουμε ότι έχει έναν πίνακα users με τουλάχιστον πεδία: id, name,

email.

HTML Μέρος
1. Προσθήκη Χρήστη

<form action="" method="post">
 <label for="name">Όνομα:</label>
 <input type="text" name="name" required>

 <label for="email">Email:</label>
 <input type="email" name="email" required>

 <input type="submit" name="insert" value="Προσθήκη Χρήστη">
</form>

Φόρμα που στέλνει POST αίτημα με όνομα και email.
• Το πεδίο name="insert" στο κουμπί βοηθάει στο να καταλάβουμε ποια λειτουργία ζητάει ο

χρήστης.

2. Αναζήτηση Χρήστη

<form action="" method="get">
 <label for="search_name">Όνομα:</label>
 <input type="text" name="search_name" required>
 <input type="submit" name="search" value="Αναζήτηση">
</form>

• Φόρμα που στέλνει GET αίτημα με το όνομα που θέλουμε να αναζητήσουμε.

• Η αναζήτηση γίνεται με μερικό ταίριασμα ονόματος.

PHP Μέρος

Σύνδεση με βάση δεδομένων
$servername = "localhost";
$username = "root";
$password = "";
$dbname = "my_database";

$conn = new mysqli($servername, $username, $password, $dbname);

if ($conn->connect_error) {
 die("Σφάλμα σύνδεσης: " . $conn->connect_error);
}

 Δημιουργεί αντικείμενο σύνδεσης με MySQL βάση.

 Αν η σύνδεση αποτύχει, σταματά το πρόγραμμα με μήνυμα σφάλματος.

1. Προσθήκη Χρήστη

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_POST['insert'])) {
 $name = $_POST['name'];
 $email = $_POST['email'];

 $stmt = $conn->prepare("INSERT INTO users (name, email) VALUES (?, ?)");
 $stmt->bind_param("ss", $name, $email);

 if ($stmt->execute()) {
 echo "<p style='color: green;'> Ο χρήστης προστέθηκε επιτυχώς!</p>";✅
 } else {
 echo "<p style='color: red;'> Σφάλμα: " . $stmt->error . "</p>";❌
 }
 $stmt->close();
}

• Ελέγχει αν η φόρμα προσθήκης υποβλήθηκε.

• Παίρνει τα δεδομένα name και email από τη φόρμα.

• Χρησιμοποιεί προετοιμασμένη δήλωση (prepare) για ασφάλεια από SQL injection.

• Εισάγει νέο χρήστη στον πίνακα users.

• Εμφανίζει μήνυμα επιτυχίας ή σφάλματος.

2. Διαγραφή Χρήστη

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_POST['delete'])) {
 $user_id = $_POST['user_id'];

 $stmt = $conn->prepare("DELETE FROM users WHERE id = ?");
 $stmt->bind_param("i", $user_id);

 if ($stmt->execute()) {
 echo "<p style='color: green;'> Ο χρήστης διαγράφηκε επιτυχώς!</p>";✅
 } else {
 echo "<p style='color: red;'> Σφάλμα: " . $stmt->error . "</p>";❌
 }
 $stmt->close();
}

Αν υποβληθεί φόρμα διαγραφής, παίρνει το user_id.
• Διαγράφει τον χρήστη από τη βάση.

• Εμφανίζει μήνυμα επιτυχίας ή σφάλματος.

3. Ενημέρωση Χρήστη

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_POST['edit'])) {
 $user_id = $_POST['user_id'];
 $new_name = $_POST['new_name'];
 $new_email = $_POST['new_email'];

 $stmt = $conn->prepare("UPDATE users SET name = ?, email = ? WHERE id = ?");
 $stmt->bind_param("ssi", $new_name, $new_email, $user_id);

 if ($stmt->execute()) {
 echo "<p style='color: green;'> Ο χρήστης ενημερώθηκε επιτυχώς!</p>";✅
 } else {
 echo "<p style='color: red;'> Σφάλμα: " . $stmt->error . "</p>";❌
 }
 $stmt->close();

}

Αν υποβληθεί φόρμα ενημέρωσης, παίρνει το user_id και τα νέα στοιχεία.

• Ενημερώνει τα στοιχεία του χρήστη στη βάση.

• Εμφανίζει μήνυμα επιτυχίας ή σφάλματος.

4. Αναζήτηση Χρήστη
if ($_SERVER["REQUEST_METHOD"] == "GET" && isset($_GET['search'])) {
 $search_name = $_GET['search_name'];

 $stmt = $conn->prepare("SELECT id, name, email FROM users WHERE name LIKE ?");
 $search = "%" . $search_name . "%";
 $stmt->bind_param("s", $search);
 $stmt->execute();
 $result = $stmt->get_result();

 echo "<h3>Αποτελέσματα Αναζήτησης:</h3>";
 if ($result->num_rows > 0) {
 echo "";
 while ($row = $result->fetch_assoc()) {
 echo "
 <form action='' method='post' style='display:inline;'>
 <input type='hidden' name='user_id' value='" . $row['id'] . "'>
 <input type='text' name='new_name' value='" . htmlspecialchars($row['name']) . "'
required>
 <input type='email' name='new_email' value='" . htmlspecialchars($row['email']) . "'
required>
 <input type='submit' name='edit' value='Ενημέρωση'>
 <input type='submit' name='delete' value='Διαγραφή'>
 </form>
 ";
 }
 echo "";
 } else {
 echo "<p style='color: red;'> Δεν βρέθηκαν χρήστες.</p>";❌
 }
 $stmt→close();
}
Λαμβάνει το όνομα που αναζητήθηκε.

• Χρησιμοποιεί LIKE με % για μερικό ταίριασμα.

• Εμφανίζει όλα τα αποτελέσματα σε λίστα.

• Κάθε αποτέλεσμα έχει τη δική του φόρμα για ενημέρωση ή διαγραφή

Τελικές ενέργειες

$conn->close();

Κλείνει τη σύνδεση με τη βάση δεδομένων.

Επιπλέον Σχόλια

πιπλέον Σχόλια
• Ασφάλεια: Χρησιμοποιεί prepare και bind_param, αποφεύγοντας το SQL injection.

• Δομή: Όλες οι ενέργειες γίνονται στην ίδια σελίδα, με βάση το είδος του αιτήματος (GET ή

POST) και ποιο submit κουμπί πατήθηκε.

• Χρήση HTML ειδικών χαρακτήρων: Στην εμφάνιση ονομάτων/email στην αναζήτηση,

χρησιμοποιείται htmlspecialchars για αποφυγή XSS.

• Προβλήματα προς βελτίωση:

• Δεν υπάρχει validation πέραν του required.

• Δεν γίνεται έλεγχος για μοναδικό email.

• Μπορεί να βελτιωθεί το UI και να διαχωριστούν οι φόρμες σε διαφορετικές σελίδες για
καλύτερη οργάνωση.

• Θα ήταν καλό να υπάρχει έλεγχος για έγκυρη μορφή email από την πλευρά του server.

	Γενική περιγραφή
	HTML Μέρος
	1. Προσθήκη Χρήστη
	2. Αναζήτηση Χρήστη

	PHP Μέρος
	Σύνδεση με βάση δεδομένων
	2. Διαγραφή Χρήστη
	4. Αναζήτηση Χρήστη

	Επιπλέον Σχόλια
	πιπλέον Σχόλια

