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THE MEANING OF CONICS: HISTORICAL 
AND DIDACTICAL DIMENSIONS 

In this paper, I draw on an analysis of the research project Mathematical Machines, 
which concerns the teaching and learning of geometry in high school (grades 9 to 
13). Although the project is actually broader (see Bartolini Bussi, 1993, 1998, 2000, 
2001; Bartolini Bussi & Mariotti, 1999; Bartolini Bussi et al., 1999; Bartolini Bussi 
& Pergola, 1994, 1996), I have chosen the special topic of conic sections (or conics), 
which I take to be representative of the whole approach. 

My main thesis is that the present meaning of conics is the result of the complex 
relationships between the different processes of studying conics during different 
historical ages, each of which has left a residue in the names, the problems, the 
means of representations, the rules of actions, and the systems of control. To 
investigate the present meaning, we may refer to the historical development of the 
study of conics by means of time periods, each framed in the culture of a different 
age. Even if from today's standpoint all the conics studied in the different time 
periods can be identified as the same objects, inside each time period different 
meanings have been built by geometers to the extent that conics are representative of 
the development of different conceptualisations of space and geometry over the 
ages. As a corollary, I claim that it is not possible to build the meaning of conics 
through only a one-sided approach, as, for instance, through the most widespread 
algebraic definition. 

If history is an unavoidable component of the construction of meaning, a didactic 
problem immediately arises: How is it possible to introduce students to the historical 
problematic without undue oversimplification? 

An exemplary teaching experiment will be described to show how the problem 
of epistemological complexity (as meant by Hanna & Jahnke, 1994), on the one 
hand, and the problem of historical contextualisation, on the other, are coped with 
by means of a selection of tasks. Finally, a small-group study of a special model for 
the parabola (the orthotome, inherited from the Greek tradition) will be analysed. It 
concerns how the meaning is constructed by students through the introduction of a 
conscious anachronism that fosters an intentional recourse to different tools 
developed in different ages and allows the students to relate different ways of 
representation to each other. 
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1. THE MEANING OF CONICS: HISTORICAL DIMENSION 

Consider the special topic of conics (for centuries called conic sections to emphasise 
the generation by means of a cone). I claim that the most common approach, which 
is through analytic geometry (i.e., conics as plane loci satisfying equations of the 
second degree obtained from some metric relations), is not enough. A lot of the 
meaning of conics is lost: Where do their names come from? Why are they studied 
together? Why do they have some special importance in geometry? And so on. 

The algebraic approach is deepened, if, as happens in university courses, 
geometry is replaced by linear algebra and more notions are added. Quadratic forms 
in three variables are considered as special cases of quadratic forms in n + 1 
variables that define hyperquadrics in n-dimensional complex projective space: 
Terms like cone, cylinder, diameter, axis, and so on are used. Why? Bourbaki 
(1974) claims, in his historical reconstruction of the genesis of quadratic forms, that 
in the search for greater and greater "abstraction", it has been considered very 
suggestive and attractive to preserve the terminology that originated in the study of 
cases of two and three dimensions from classical geometry and to extend it to the 
case of n dimensions, to the extent that geometry has been transformed into an 
universal language for contemporary mathematics. But surely the intention to 
convey suggestion and attraction can be realised only for people who also know the 
spatial generation of conics. 

Asked the question, What is the meaning of conics? (which is related to the 
question of the meaning of quadratic forms), one can give many answers. To cite 
just a few, one can consider conics analytically as curves of second degree, 
synthetically in three-dimensional space as conic sections, in the plane as loci 
satisfying some metric conditions, as perceived images of a circle from a variable 
point of view, and so on. All these interpretations are related to each other, yet they 
are concerned with different conceptualisation of conics that can be related now by 
means of the existing body of knowledge. 

To explain the above discourse, it is necessary to reconstruct the historical 
development of conics. Obviously, the figural representations of conics (as signs 
traced by means of a gesture, linkage, or cut made either in the sand, on paper, in the 
air, or on the surface of a cone, and so on) are invariant in time and hence not 
subject to historical changes. What are changed are the way of generating conics, the 
way of looking at them, and the way of studying them. 

These attitudes are actually more general. The history of conics (as well as the 
history of any mathematical object that dates back to antiquity and is still part of 
today's mathematical culture) is a metonymy for a more general history, namely, the 
history of the geometrical conceptualisation of space. As such, it cannot be 
understood inside mathematics only and requires references to the complex 
relationships between mathematics and general culture. 

In short (for details, see Coolidge, 1945), one may identify four major phases: 

1. Greek mathematics, where the early emergence of conic sections is documented. 
2. The 17" century. 
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3. The 18" and 19 '~  centuries. 
4. The 2oth century. 

The two initial phases are of critical importance: The first concerns the birth of 
conics as geometric objects; the second concerns the emergence of the trends of 
discussion that characterise the modern treatment of conics. The jump from Greek 
mathematics to the 17 '~  century is due not to a naive underestimation of the 
contributions of the Middle Ages and the Renaissance (they actually constitute the 
ground on which subsequent development is based) but to the fact that in the 17 '~ 
century one encounters the early results of a complex social phenomenon that 
radically changed the attitude towards mathematics, the sciences, and 
technology-that is, the interaction of merchants, scientists, engineers, artists, 
medical practitioners, humanists, and so on, and its amplification through the 
increasingly widespread diffusion of ideas by means of the printing press (Otte, 
1993). The eruption of new ideas in mathematics is visible also in the approach to 
conics, where new conceptual tools were being accepted from outside mathematics: 
for example, from commercial arithmetic (i.e., algebra), from the arts (i.e., the 
introduction of points at infinity in perspective drawing and the study of 
anamorphoses in painting), and from technology (i.e., machines for drawing curves). 

In the next two centuries, this new attitude was developed and carried to 
extremes: The complete algebraisation of conics allowed the development of the 
theory of quadratic forms in connection with problems from arithmetic, analysis, 
and mechanics; the great projective school allowed the characterisation of conics on 
the basis of location and intersection rather than of metric properties; the theory of 
articulated systems, developed in connection with kinematics, on the one hand, and 
the theoretical treatment of geometric transformations, on the other, allowed the 
characterisation of algebraic curves (which include conics) as the curves that can be 
traced by linkages. Later, in the 2oth century, the Bourbakist program for the 
complete algebraisation of conics up to the theory of quadratic forms had a great 
effect on devisualisation, and only in the last decade of the century did the 
introduction of computer aids reintroduce a visual dimension into that purely 
algebraic world. 

Within each period of time, different objects were built by geometers. What the 
objects have in common is the name (and sometimes not even that, as we shall see) 
and some classical problems. The difference is so deep that mathematicians often 
feel obliged toprove that the new objects are actually the same as in the past. 

There is not space in this chapter to offer an account of the different time 
periods. For the purpose of this paper, I limit myself to reminding the reader that at 
the beginning of the story, a parabola was obtained by Greek geometers by cutting a 
right-angled right circular cone with a plane perpendicular to one element of the 
cone (whence the Greek name orthotome), whilst the curves today known as ellipse 
and hyperbola were obtained by cutting an acute-angled and an obtuse-angled cone 
(whence the Greek names of oxytome and amblytome) in the same way (some details 
on these issues are in Coolidge, 1945; a proof in the case of orthotome is given in 
the section "Students' construction of meaning" below). 
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Later, things changed. For instance, Descartes (Bos, 1981) treated the curves in 
totally different ways according to their role as either a solution of a problem (a 
product) or a means of finding solutions. A pointwise construction of a conic by 
ruler and compass is sufficient when it occurs as a solution, but when in a problem it 
is necessary to find solutions by intersecting conics, a pointwise construction is no 
longer sufficient. A stronger criterion is required: It is necessary to have a method to 
trace the curve by means of "some regular motion" that allows one to find all the 
points so that the intersections with other lines are precisely (and not only 
approximately) constructable. The problem of continuity is solved by referring to 
motion and time. In the same fashion, further developments added new elements to 
the meaning of conics to constitute a complex object. 

2. THE MEANING OF CONICS: DIDACTIC DIMENSION 

The present meaning of conics is the result of an accretion of terms, problems, ways 
of representations, rules of actions and systems of control that have been inherited 
from the different time periods. This fact has important consequences on the didactic 
plane: To construct the meaning of conics in the classroom, it is necessary to 
reconstruct some elements of their historical development. 

This is actually a didactic problem: Is it possible to introduce students to the 
historical problematic without undue oversimplification? In what way? This section 
of the paper is devoted to that issue, showing how my colleagues and I designed and 
implemented a field of experience for students' activity in the classroom in order to 
implement the historical reconstruction of the meaning of conics. The experiments 
were carried on in secondary classrooms up to the late 1990s. Later, they were 
shifted to the university level and to pre-service teacher education. 

The context of classroom activity is characterised by the presence of physical 
models (either static or dynamic), which are not simply shown to students but are 
objects for students' investigation. So, for instance, students are given a three- 
dimensional model of a conic section or a plane trammel that draws a conic, and the 
task is to determine the geometrical properties of the points on the curve. These 
models are historically contextualised by means of guided reading of historical 
sources. 

I illustrate this process by means of three kinds of data: 

a) a scheme of a long-term teaching experiment designed and implemented in the 
classroom to realise the main motives of the whole activity, 

b) the analysis of a task whose goals are consistent with the motives of the whole 
activity, 

c) the analysis of a small-group session up to the product of a collective written 
text. 
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2.1 Motives of the teaching-learning activity for Mathematical Machines 

The teaching-learning activity in the research project Mathematical Machines is 
polimotivated. The term motives is used after Leont'ev (1978) to mean the objects of 
an activity, to be distinguished from goals  (or aims) and conditions. The 
macrostructure of an activity consists of actions, each of which is directed to a 
specific goal; the ways of realising actions in concrete conditions are operations. 
The study of long-term processes concerns the relationships between the levels of 
teacher's motives, actions, and operations and the effects produced on students' 
activity. 

The motives can be briefly sketched as follows (they are surely mutually 
intertwined): 

1. the conceptualisation of mathematics not as an isolated body of knowledge but 
as a part of the global cultural development of mankind to be studied in its 
relationships with other fields of knowledge, 

2. the historical contextualisation of accepted rules of behaviour, 
3. the multifaceted meaning of conics aside from the more usual plane meaning as 

loci of points defined by metric relations, 
4. the dynamic interpretation of either dynamical or static objects used to guess 

conjectures and to guide the construction of early proofs, plus the introduction of 
movements and of the principle of continuity (implicitly) to cope with the 
problem of "generic" points 

The motives can be determined a priori by the analysis of the teacher's 
programmatic documents (Pergola & Zanoli, 1994, 1995) and can be checked a 
posteriori by either the definition of school tasks or the quality of interaction in the 
classroom. Below, I give the scheme of the tasks of a particular teaching experiment 
and some exemplary excerpts of small-group interaction during the study of the 
orthotome. 

2.2 Tasks in the laboratory of Mathematical Machines 

Student activity takes place in a special room (the mathematical laboratory), where 
several physical models (either static or dynamic) are at the students' disposal (two 
catalogues of the models can be found on line at http://www.mmlab.unimore.it). 
Large-sized models (built on bases that are more than 60 cm by 60 cm) have been 
built by the teachers themselves using wood, brass, plexiglas, coloured threads, 
sinkers, and so on. Models are sometimes used by the teacher to illustrate a concept, 
but more often they are handled by the students themselves in order to examine them 
according to some specific task. Concrete handling of models is contextualised by 
means of the guided reading of some selected and annotated historical sources. 

For the special topic under scrutiny, several models are available for either solid 
or plane study and for either static contemplation or the dynamic generation of 
conics. We have models from the Greek period (e.g., models from Menaechmus and 
Apollonius) and models from the 1 6 ' ~  to 2oth centuries (e.g., models for the 
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mechanical generation and the projective study of conics). However, the models 
alone are opaque; only the reading of sources and guided manipulation can make the 
different conceptualisations explicit. 

Figure 1: The model of the orthotome studied by students 
in small-group work 

2.3 A teaching experiment 

Long-term teaching experiments are designed and implemented in the laboratory as 
standard part of the curriculum. In some cases, the model substitutes for the need for 
an explicit proof; in other cases, it generates the need for a proof. In any case, it 
allows the teacher to introduce historical digressions that contextualise the study in 
the culture of the corresponding age. The first part of an exemplary teaching 
experiment is described below (see Tufo, 1995). 

2.3.1 The teacher's lesson: A historical introduction to conics in ancient Greece 
The teacher motivates the historical introduction with the need to reconstruct a deep 
geometrical meaning for the algebraic relationships between coordinates (already 
known by students and applied to a classical derivation of conics from focal 
properties) that represent conics in the Cartesian plane. He illustrates the conceptual 
difference between the way of looking at conic sections in ancient Greece and at 
conics in the modern age (since the 16th century). He focuses on three issues: 
1. conics as solid curves versus conics as plane curves, 
2. conics as existing objects to be studied (plane sections of cones) versus conics as 

products (representations of laws or drawings by instruments), 
3. synthetic versus analytic study of conics 
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2.3.2 Small-group work: The study of the orthotome model 
The whole class is divided into five small groups, each studying a different model. A 
small group of four students is given the task of studying the model of the orthotome 
and of deriving the "symptom" of the parabola. The students are prompted to refer 
to theorems on right triangles and on similar right triangles and to avoid recourse to 
coordinates, as coordinates and analytic geometry did not exist in ancient Greece. 
They have to state the symptom and to prove it, in order to be able to explain it to 
their schoolmates in a later lesson. Small-group work is carried on with some 
interventions by the teacher, who walks around the classroom to observe the groups 
at work. A final written report is requested from the group (see below). 

2.3.3 Students' explanation of the orthotome model 
Two students in the group present to the whole class the result and the proof arrived 
at in their small-group work. 

2.3.4 The teacher's lesson: Models of the orthotome and the equations of conics 
The model of the orthotome is considered again: A system of coordinates is 
introduced to derive the canonical equation of the parabola 

2 k x = y 2  

2.3.5 The rest of the experiment 
A leap is made to the 17" century to introduce the study of conics according to de 
1'Hospital. The teacher introduces this different approach by means of conic- 
drawing instruments, discussing the changes in attitudes towards geometry. Then he 
proposes the study of conics by means of three different definitions from de 
l'Hospita1, based on conic-drawing instruments. They are quite different from each 
other and make it clear than the conceptualisation of ellipse, hyperbola, and parabola 
as different manifestations of the same geometrical object is quite difficult from a 
metric perspective. 

2.3.6 Students' construction of meaning 
In this section, I discuss the small-group work up to the collective essay produced by 
the students at the end of their study of the orthotome model. The final text was 
produced collectively after a 2-hour small-group laboratory on the model of the 
orthotome. In this section, I use a two-column format: In the right column are 
transcripts of discussions and texts produced by the students; in the left column are 
the students' original drawings and comments by my colleagues and me. 

2.3.7 The quality of small group interaction 
The task, assigned verbally by the teacher, was the following (according to the 
complete transcript of the laboratory; see Tufo, 1995): 
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Teacher: You have to obtain an important 
property of parabola. I can help you a bit: It is 
the property that Greek geometers obtained by 
examining this situation, where the parabola is 
already drawn. As you see, it is in three- 
dimensional space, on the surface of the cone. 
It is the same one that is described by the 
Cartesian equation of the parabola that you 
know. You have to discover the relationship 
between the green line segment [VS in Figure 
21 and this line segment [PS in Figure 21. 

1. The task 
In this task, the conjecture phase is cut 
short: The students already know the 
property, which is expressed by the usual 
canonical form of the parabola equation. In 
other tasks (see Bartolini Bussi, 1993), the 
conjecture phase is explicitly assumed as a 
part of the task. 

The teacher clearly states that the study 
in the solid setting and in the algebraic 
setting can be considered "the same": it is 
an example of regressive appropriation that 
depends on today's knowledge. 

The small-group work can be divided into several episodes, which we have 
numbered and labelled. Some of these episodes contain joint activity with the 
teacher. Below are some exemplary short excerpts that are related to different issues: 

a) the quality of help offered by the teacher to introduce the problem, 
b) the quality of help offered by the teacher to explore the model, 
c) the quality of dynamic exploration carried out by the students, 
d) the quality of help offered by the teacher to sum up the whole process. 

The excerpts have been chosen from the complete transcript to illustrate some 
critical features of joint activity. In particular, the issues (b) and (c) are related, as 
they represent some of the teacher's operations and the process thereby induced in 
the students. The effects of the help offered in (a) and (d) is better acknowledged in 
the final written report, which is analysed in the next section. 

Figure 2: Figures produced by students during group work with coding letters 

T: [.. .I The problem is to discover, on the 2. The teacher's introduction 
basis of well-known theorems, theorems In this long introduction, the teacher offers 
about right angles and similar right angles, help by referring to some geometrical figures 
which is the property that links these line (right angles) to be focused on. He also 
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segments, the green segment that we call 
abscissa and this segment that we call 
ordinate. You have to observe the model, this 
circle, this right-angled cone. You have to 
elicit all these hypothetical elements; then, 
by reasoning about them, you have to obtain 
a property of parabola that is perfectly 
equivalent to the equation that we write now, 
to the equation that Descartes would write 
many centuries later. It is the same relation, 
and it is possible to obtain it only in space. 
Look and try, say, for a quarter on an hour. 
It's a reasonable time. Then if you do not 
have any idea, call me; otherwise, go on with 
the things you have seen. 

T: Sometimes it is necessary to consider also 
figures that are not immediately visible. For 
instance, in this case there is a right triangle 
that is fundamental, but it is not traced yet. 
You can look for it by taking into account 
that you need to consider those triangles 
whose sides are among the lines segments 
you have to relate to each other. 
S 1: There is a right triangle [ O P  S]... It 
changes; when you change the plane the base 
is changed.. . 
S 2: Yes, but in the meantime this other 
triangle changes.. . 
T: This exploration seems a good idea. You 
have to reason in plane geometry but not 
always in the same plane; remember that 
Greek geometers saw the figure in space, 
even when they did plane reasoning, by 
considering different planes 

S 2: Yes, this [Y = PSI is the height of the 
right triangle [PHK], PS the point [sic!]. PS 
is the height of the right triangle that is going 
to be formed [Italian: si viene a formare] in 
the semicircle. The angle in the semicircle is 
always 90°, isn't it? 
S 1: It is! Hence this triangle.. . 
S 3: Practically there is the triangle that 

defines the degrees of freedom for the 
students: They cannot work for days but have 
a limited time to explore the model. At the 
same time, he introduces all the motives: 
- the reference to history, to justify the 

accepted rules of behaviour 
- the equivalence of synthetic and analytic 

description and their contribution to the 
meaning of parabola 

- the necessary reference to the physical 
object so as to guess conjectures and be 
guided in proving 

These elements will be refocused again and 
again during the small group to construct the 
sense of activity. 

The students start to draw the 
fundamental elements of the model. 

3. Helping to explore 
The teacher also gives methodological help 
to students to direct their search towards 
effective strategies. Students put into practice 
the teacher's suggestions: They have a rigid 
model, made of wood, Plexiglas, and thread; 
they cannot do real experiments (as in Cabri 
with dragging), but they see the changes. 
(The letters in brackets are only for the 
reader's help; see Figure 2.) 

In this phase, the recourse to coding 
points by letters is very limited; the teacher 
too points at the model and speaks about 
"this triangle" and "this point". Coding with 
letters becomes essential (to the problem) 
only later, when proportions are to be written 
down. In this phase, it is more useful to build 
a dynamic ideal object on which to make a 
mental experiment for guessing conjectures. 

4. The dynamic exploration 
The habit of moving a static object is typical 
of this classroom. I have explicitly stressed 
an unusual Italian expression (si viene a 
formare) that emphasises the progressive 
formation of an object that does not yet exist 
in the figure but is created at this moment in 
the mental process. Surely not all the 
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rotates on the semicircle; that is, it moves on explorations are effective for the solution; 
the semicircle. they are indeed necessary to create the 
S 2: Only the height of this triangle is dynamic ideal object. 
changing [she gestures with her hand palm 
upwards to show that when the horizontal 
plane is going up the height of the triangle 
PHK is changing]. 
S 3: Considering the two planes [i.e., the 
horizontal and the oblique plane]. . . Yes, but 
there is also this plane [the vertical plane]. 
S 2: In this plane [vertical], if we consider 
this triangle [VAS] when the plane changes, 
when the plane moves, it changes too. 

The process of building a proof is long. It is necessary to choose the useful triangles 
and to mark on them the useful proportions. The proportions are to be interpreted 
within the theory of application of areas (to behave like Greek geometers), up to the 
statement of the symptom of parabola: 

Only later does the teacher suggest relating this formula to the post-Cartesian 
approach. It is done by making the following substitutions: 

This yields: 

The final interpretation is done by the teacher, who sums up all that has been already 
said during the- goup work: 

T: When we write 

it is the same. Only the notations are 
changed. This is the modern notation, and 
that is the one that they [the Greeks] used, 
but the equation is the same: It is the 
equation of the parabola. It is the geometric 
property of parabola. 

That [i.e., VA] is constant, since when I 
move this one [he gestures to indicate 
moving up and down the horizontal plane], 
this does not change, because the vertex of 
the cone and the secant [oblique] plane are 

5. Helping to sum up the process 
At first, the relation between the proportion 
and the equation is recalled. This is a way to 
emphasise the spatial interpretation of the 
equation of the parabola that otherwise risks 
being lost. 

The introduction of the constant k is 
justified on the model by observing that a 
part of the configuration does not change 
when the auxiliary horizontal plane is 
changed. 

The change in the secant plane is 
imagined on the fixed model by gesturing. 
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the same. The secant plane goes closer to the 
If I cut with a plane closer to the vertex, vertex.. . 

how does the parabola change? 
Because, if I keep the secant plane fixed 

and change this [the horizontal] plane, the 
parabola is the same; what changes is only 
this arch that becomes longer or shorter. But 
if I change the secant plane, and I cut the 
cone with a secant plane closer to the vertex ... or farther from the vertex.. . 
of parabola, how does the parabola change? 
Ss: [looking at the model] It narrows. 
T: Right, it narrows. And if this becomes 
longer, if this plane goes here.. . 
Ss: It widens. 
T: Right. And this is what happens [he points 
at the equation], isn't it? 

Let the equation of the parabola be 
... and this change is related to the equation. 

If this [h] changes, the width of the parabola 
changes. 

2.3.8 The final report 
The report is produced as a collective homework by the group after the laboratory 
ends, on the basis of drawings and personal notes. In the left column below, the 
students' text (before any correction by the teacher) is translated literally. In the 
right column, a division into sections is suggested. This division clearly shows that 
the students have always succeeded in giving a logical organisation to the long text. 
The complete analysis of the transcript (Tufo, 1995) shows that the order is not the 
same order of the exploration during the group work: Then it represented a further 
control on the collective activity. 

Plane Section of a Right-Angled Cone 
It is necessary to distinguish between RIGHT 
cone and RIGHT-ANGLED cone. On the 
one hand, a right cone is when the 
perpendicular from the vertex to the plane of 
the circle (i.e., the directrix of the cone) is in 
the centre of the circle itself. On the other 
hand, a right-angled cone is generated by 
rotating an isosceles right-angled triangle 
about a cathetus [leg]. The cone is called 
right-angled as the angle between two 
opposite generatrices is 90 degrees. If it were 
acute, the cone would be acute-angled; if 
obtuse, obtuse-angled. 

1. Definition of right-angled right cone 
The students start from a possible 
misunderstanding about right and right- 
angled cone. They probably remember a 
personal experience. They recall Euclid's 
definition and relate the definition of right- 
angled cone to other kinds of cones. This 
means relating the orthotome to other conic 
sections. 

They are consciously in the solid setting 
and are consciously using an approach 
inspired by history. A few lines below, they 
make an explicit reference. 
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Description 
The model reproduces a RIGHT-ANGLED 
cone generated through the rotation of an 
isosceles right triangle cut by a plane 
perpendicular to the generatrix AH and 
parallel to the opposite generatrix AK. The 
model contains also two perpendicular 
PLANES: the plane t of the circle (directrix 
of the cone) and the plane t ' (MERIDIAN) of 
the axis A 0  of the cone. The plane t ' 
contains the segment VS, from the vertex of 
the section (ORTHOTOME) to the point S 
(the intersection of the diameter HK of the 
circle of the plane t with the line PM of the 
secant plane). 

The section of a right-angled cone 
produces a curve named ORTHOTOME by 
the ancient geometers prior to Apollonius. 

The property or SYMPTOM (verified by 
all the points of the curve), that allows one to 
recognise the kind of plane section of the 
cone is based on the [equality is 
erased] relationship between the segments PS 
and V S ,  i.e., on the cxpd&y [equality is 
erased] equivalence of two geometrical 
figures that individualise the position of the 
point P. 

The reasoning from which the property is 
drawn, a property valid not for a special 
point of the orthotome, as the secant plane 
maintains always the same distance from the 
vertex of the cone and the same slope, is the 
following: 

2. Description of the model 
The physical object is carefully described. 
Two planes are explicitly named: The former 
[t] is a physical plane, realised by a wooden 
base; the latter [t'] is an ideal plane, 
determined by a wooden frame. The secant 
plane is made of plexiglas. 

The reference to history is explicit. 

3. Task 
The students are recalling the task and the 
accepted rules of behaviour that have been 
stated by the teacher in the contract. They 
have to behave like Greek geometers and use 
proportions and equivalence of areas. An 
incorrect term is erased by them and replaced 
by a better one. 

(Generalisation to any point of the 
orthotome) 
Someone might believe that the reasoning 
works only for the special point of the figure: 
The students explain that it works for every 
point, anticipating now what will be argued 
at the end (see point 9 below). 
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Figure 3: The first drawing produced by the students 

Figure 4: The second drawing produced by the students 

Let us apply the reasoning first to the plane t 4. Reasoning on the plane t 
on which the circle is. The students are using the theorem of Euclid 

If we consider point P of the orthotome, for right triangles. 
we observe that it, obtained from the 
intersection between the secant plane and the 
directrix of the cone, lies on the circle, 
whatever the distance A V between the vertex 
of the cone and the plane. Every triangle 
inscribed in a semicircle has an angle of 90"; 
hence the triangle HPK inscribed in the 
semicircle with diameter HK is right-angled, 
with HPK = 90" (THEOREM). Hence it is They state the theorem referring to mean 
possible to apply the theorem of Euclid in proportionals ... 
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right-angled triangles. The height PS, drawn 
by means of the perpendicular from P to the 
diameter H K ,  is the mean proportional 
between the projections of the catheti [legs] 
of the triangle on the hypotenuse, i.e. the 
diameter HK. 

We state the proportion (HPK = 90"): 

H S :  P S = P S :  SK 

that is, 

We have proved that the area of the square 
built on the segment PS is equal to the area 
of the rectangle with sides K S  and H S  
(geometrical interpretation). 

Let us consider now the meridian plane t '  
perpendicular to the former one. We try to 
state a proportion that can relate PS and VS. 
We observe that on the meridian plane there 
are two similar triangles. The former is HVS, 
with hypotenuse the projection of the 
cathetus PH on the diameter HK and cathetus 
the distance from the vertex of the orthotome 
to the intersection of the generatrix AH with 
the circle. The two catheti VS and VH are 
equal, as the angle VSZ is 45" (the secant 
plane is perpendicular to the generatrix AH, 
and the angle V H Z  is 45" ( A H 0  is an 
isosceles right triangle. 

Hence the triangles VZH and VZS are 
equal, whence VS= VH. 

The other right triangle to be considered 
is A VT, formed by the line VM parallel to the 
diameter HK and by the axis A 0  of the cone. 

As the angles TAM = VAT = 45", HAK = 

90". As they both have an angle of 90°, A VT 
=AMT=45Oand VT=AT. 

The triangle AVT, as an isosceles right 
triangle, is similar to the triangle HVS. We 
can state the proportions: 

H S :  V H = A V :  VT 

hypotenuse : cathetus = hypotenuse : cathetus 

... and interpret the proportion, like Greek 
geometers, as an equivalence of areas. 

5. Reasoning on the plane t' 
Among the many triangles and proportions 
that could be observed in the model, the 
students claim to focus on a relationship 
between PS and VS. This statement clearly 
represents a conscious control of the strategy. 
In the workgroup, explorations have been 
actually much more extensive: not all the 
explorations have proved to be useful. 

The two isosceles triangles are found. 
The proportion is stated with the control of 
the meaning.. . 

. . .and translated into an equivalence of areas. 

That is, 
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If we compare the proportion with the above 6.  Linking the two planes together 
relationship Up to now, two different steps have been 

realised: the former in the base plane t ,  the 
P S .  P S = H S .  SK latter in the meridian plane t '. A link between 

we observe that them can be found. 

H S = 2 .  VT 

as VS I/ MK, i.e., VMSK is a parallelogram 
and the triangles 

AVT= ATM. 

We obtain: 

S K = 2 .  VT 

P S .  PS= HS.  SK. 

As in both the first and the second equations A fundamental relation is obtained (the 
[sic], there are both HS and SK symptom) and interpreted as equivalence of 

2  A V .  VH= 2  H S .  VT areas. 

multiplying each member by two in order to 
obtain 

2 VT= SK 

whence 

PP = 2  A V .  VH. 

The area of the square built on the height PS 
is equal to twice the area of the rectangle 
with sides VH = VS and AV. 

If we introduce a suitable system of 
coordinates x and y in the secant plane, the 
coordinates of P are given by 

Hence, we have 

y2 = 2 A V x .  

7. The system of coordinates: from 
symptoms to equations 
A conscious anachronism is introduced to 
shift from the solid to the algebraic setting, 
and the standard equation is obtained. 

The k constant is introduced by repeating 
the teacher's words (see "Helping to sum up 
the process" above) 

As in the reasoning the distance between V 
and A is always the same, AV = k 
then y2 = 2kx and x = (112)k . y2. 
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When k changes, i.e., when the secant plane 
is translated parallel, the width of the 
orthotome increases. On the other hand, 
when k decreases, the width decreases until, 
when k decreases to zero, we obtain the 
degenerate orthotome, i.e., the line AK 
(equation y = 0). 

The obtained symptom characterises 
whatever point of the section is chosen 
because, if the distance A V = k is the same 
and the plane t (where the generator circle 
lies) is translated parallel to itself, the proof 
is valid for any other point on the section. 
Only the length of the arc of the curve has 
changed. 

Such a section was considered as a solid 
curve in three dimensions, as it lies on a 
right-angled cone, and its property is 
obtained by means of reasoning about two 
different planes that are perpendicular in 
space. 

8. The meaning of k 
The meaning of k is constructed by changing 
it. Also, in the change, the limit case appears 
and is interpreted correctly. 

9. Generalisation to any point of the 
orthotome 
The reasoning is generalised to any point of 
the orthotome by moving one of the fixed 
planes. 
Actually, in the movement some lengths are 
not changed. The final sentence shows the 
correct interpretation on the model. 

10. General comments 
This final comment shows the detachment of 
the students from the approach of Greek 
geometers. The section was considered a 
solid curve. Actually, this term also appears 
in Descartes' work. This conceptualisation is 
correctly related by the students to two 
different issues: the way of obtaining the 
curve (as a conic section) and the way of 
proving the symptom by means of figures 
lying in two perpendicular planes. 

3. DISCUSSION 

In this section, I shall go through the teaching experiment once more to summarise 
the relationships between the motives, tasks and operations as they can be detected 
by looking at the teacher's side, in both the designing and the functioning, and their 
traces that can be detected by looking at the students' side, in both the oral 
interaction and the written report. A brief comparison between teacher's side and 
students' side can be seen in Table 1. This analysis is surely incomplete since I shall 
refer only to the short excerpts that have been quoted in the text. Some reference to 
the other available data (Tufo, 1995), however, will be made from time to time. 

3.1 The teacher's side 

In the section "Motives of the teaching-learning activity for Mathematical 
Machines" the four motives are listed. The first motive is realised by means of 
extensive historical introductions, with the reading of original sources, too. The 
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meaning of mathematical concepts cannot be constructed only inside mathematics, 
so the problem of the construction of meaning of conics in the classroom has to be 
taken as paradigmatic and as representative of different approaches to the problems 
of space and geometry in the different cultural spaces of different ages (a similar 
approach can be found in Mancini Proia & Menghini, 1984). The second section of 
this chapter sketches the kind of historical introductions that are proposed by the 
teacher. They are not limited to internal history of mathematics but they allude to the 
wide social and cultural environment where mathematicians of the past lived. 
Moreover they stress the collective aspects of scientific progress, where to locate 
individual contributions: hence Euclid, Descartes, Desargues and others are not 
conceived as isolated geniuses that work in a vacuum, but as exceptional 
representatives of existing cultural trends. 

In this teaching experiment this first motive is especially focused in the initial 
historical introduction (section "The teacher's lesson: A historical introduction to 
conics in ancient Greece" and in the presentation of de 1'Hospital's work (section 
"The rest of the experiment"). 

The second motive contributes to defining the rules of the didactic contract: in 
some tasks students are allowed, like Greek geometers, to use application of areas 
and proportions and forbidden to use algebra; in other tasks students are allowed, 
like post-cartesian geometers, to introduce a system of coordinates on the figure and 
to write down algebraically the relationships between some line measures; in other 
tasks only the algebraic equation is considered and so on. The rules are explicitly 
posed by the teacher at the beginning and recalled during the interaction. One of the 
effects is that different formats of proof of the "same" statement are considered, so 
that the meaning of the statement is enriched by the whole activity. The social rules 
are explicitly related by the teacher to the issues that have been presented in the 
general historical introductions. 

In this teaching experiment, this motive is focused in all the phases of the study 
of orthotome (sections "Small-group work: The study of the orthotome model", 
"Students' explanation of the orthotome model" and "The teacher's lesson: Models 
of the orthotome and the equations of conics"). Some traces are found also in the 
excerpts we have quoted, at the level of teacher's operations. For instance in the 
Episodes 1 and 2 of small group interaction, the teacher emphasises the difference 
between "then" (ancient Greece) and "now" (after Descartes) and clearly states the 
first task to be solved without coordinates. Later, in the Episode 5, he states again 
the relationship between ancient and "modern" notation. 

The third motive is realised by the sequence of actions in the teaching 
experiment, with intentional shift to and fro the solid setting and the algebraic 
setting (and later, with De 1'Hospital's work, the mechanical setting too). In the 
Episodes 1 2 and 5, explicit relationships between the two settings as concerns the 
description of the curve and the instrument of proving are stated. 

The fourth motive is realised by the systematic and intentional recourse to 
physical models, either static or dynamic ones. Traces of this emphasis are found 
also in the interaction: in the Episode 2 the teacher explicitly invites students to 
observe the model and to elicit the hypothetical elements. In the Episode 3, the 
teacher encourages students to make exploration: he does not use letters for coding 
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points, but points to the model with gestures; he suggest to introduce also not visible 
elements and to modify in the mind the physical object. In the Episode 5, he shows 
that the point P can be considered a "generic" point, by introducing movement; he 
interprets the change of the secant plane both in the model, imagining a movement, 
and in the equation, imagining a continuous change in the numerical value. 

TEACHER'S SIDE THE STUDENTS' SIDE 

Operations 
(Examples 
from Small 

Group Work] 

Traces 
in Small 

Group Work 

Traces 
in Final 
Report 

Elements of 
Constructed 

Meaning 

Motives1 
Activity 

Actions 
(examples) 

Relationships 
between 
mathematics 
and other fields 
of knowledge 

Wide historical 
introductions 

Not detailed Historical 
contextuali- 
sation 

Historical 
contextuali- 
sation of rules 
of behaviour 

Definition of 
didactic 
contract 

In Episodes 
1,2and5 

got detailed in 
he excerpts 

Sections 
1,2,3,7and l (  

Of problems 
concepts 
and procedures 

Multifaceted 
meaning of 
conics 

Shift to and fro 
solid, algebraic 
(and mechanic- 
al) settings 

In Episodes 
1,2and5 

qot detailed in 
he excerpts 

Sections 
7,8 and 10 

Interplay 
between 
settings 

Dynamic 
interpretation 
of physical 
models 

Dynamic 
interpretation 

Principle of 
continuity 

Systematic 
recourse to 
physical 
models 

In Episodes 
2,3 and 5 

;ection 8 

Section 9 

Table 1: Comparison between teacher's side and students' side 

3.2 The students ' side 

Now we shall go through the students' protocols to find traces of motives, if any. 
We shall draw on a very limited set of data, only a couple of excerpts from 
interaction and the written final report. However, the final report is very long and 
interesting, because it contains, in a well-ordered style, all the relevant issues of 



THE MEANING OF CONICS: HISTOFUCAL AND DIDACTICAL DIMENSIONS 57 

small group interaction. The order of the text is the first relevant feature. This order 
does not mirror the complex exploration of the model during small group work: 
having been able to contextualise and to write down the proof on the base of sketchy 
notes (taken by students standing close to the physical model and not sitting quietly 
at their desks) proves that the text conveys the constructed meaning. 

Traces of the first motive cannot be acknowledged in this limited set of data. 
Actually changes in the conceptualisation of mathematics are not always explicitly 
stated by students. They can be revealed by long term listening at their talks; for 
instance they are evident in the quality of discourse they produce in oral test, in 
mathematics and in other subjects as well (e.g. history, philosophy, literature and so 
on). 

On the contrary, traces of the second motive are evident. In the Sections 1,2,3, 7 
and 10 of the written report, explicit reference to history is done again and again. 
Actually this reference is functionally interlaced with proofs, in the solid setting and 
in the algebraic setting as well. 

Also traces of the third motive are present. In the Sections 7, 8 and 10, conscious 
anachronism is repeatedly commented: the students are aware that today we can 
consider the conic section orthotome and the algebraic curve parabola as the same 
object, but they are conscious that both the definition and the instruments of proof 
are quite different and historically contextualised. 

The fourth motive is revealed by different sets of data: the large amount of 
gesturing in small group interaction (some examples are in the Episode 4 of small 
group interaction); the conscious recourse to movement in interpreting the meaning 
of k (Section 8 of the written report) up to the analysis of the limit case (k = 0) that 
had not been considered during small group interaction; and the conscious recourse 
to movement in extending the property to any point of the curve (Section 9 of the 
written report). Actually some of these points had been hinted at by the teacher very 
quickly: the independent written reconstruction is so clear and neat that the students 
are supposed to have internalised joint activity with the teacher. 

If this analysis is correct, the meaning of conics that is now constructed by 
students is more complex than in standard classrooms. At least three elements that 
are usually lacking enter as constitutive parts of the meaning: 

1. the historical contextualisation of problems and concepts, 
2. the relationships between the solid setting and the algebraic setting (and, in the 

last step, the mechanical setting), 
3. the dynamic interpretation of physical models to guess conjectures and to guide 

the construction of proofs 

The development of this complex meaning draws on two special choices that have 
been made in designing the teaching experiments: the recourse to historical sources 
and the activity on physical models. 

As concerns the former, it is clear from the text that, at the beginning, the 
students are (consciously) in the solid setting, while later they shift (consciously) to 
the algebraic setting. The interplay between the two settings is evident when they 
interpret the change of the parameter k (up to the limit case k = 0) as a parallel 
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translation of the plane. Hence the model is studied with the introduction of a 
conscious anachronism, that shows limits and advantages of each approach. In the 
process of solution of the given problem, there is a shift from one setting to another 
and from one time period to another; there is a continuous change of the objects, that 
are identified by means of a process of regressive appropriation: what they know 
now on conics allow them to go to and fro the individual sections and the individual 
settings, using the most advantageous tools for proving. In this process the historical 
reconstruction of meaning is not a way to motivate students or to embellish the 
problem but is a fundamental object of the teaching learning activity. 

The presence of the physical model is essential in the process of solution. The 
observation of the small group work (during which the proof has been built) has 
shown a large volume of visual tactile activity (e.g., gesturing, pointing at the 
model) while the discussion was going on. This is an invariant aspect of all the 
laboratory sessions. Yet a transformation of the physical object into an ideal object 
is observable, as the study of the physical object is done with reference to Euclidean 
theory of proportions and to analytic geometry. This process between the physical 
object and the ideal object is dialectical: at the end the interpretation of the values of 
the parameter k is done on the physical object; besides the generalisation of the 
properties to a whichever point of the section is done again on the physical object. 
The translation of the planes (the plane of the section for k, and the base plane for 
the generalisation) is done looking at the physical object (where the plane are fixed) 
and moving the hands up and down (a further analysis of a similar process on a 
linkage is done in Bartolini Bussi, 1993). 

3.3 Open problems 

In this paper we have introduced some elements of an historical analysis of conics 
(to be meant as a paradigmatic example of geometrical concepts) to claim that their 
present meaning as objects of the knowledge to be taught is not one-sided but 
ground in different settings determined by the processes of studying conics in 
different time periods. 

The didactic problem is how to introduce in the classroom the epistemological 
complexity suggested by this historical study. A pragmatic solution is offered by the 
research project Mathematical Machines. But this solution opens two different kinds 
of problems, concerning: 

1. the microstructure of teaching-learning activity in the classroom, 
2. the relationships between the elements of the context (mainly historical sources 

and physical models) and the student processes. 

The former problem has to be meant as the tentative modelisation of the teaching- 
learning activity at the level of actions-operations (Leont'ev, 1978). As we adopt a 
Vygotskian perspective on the teaching learning process, we claim the need of 
considering phases of joint activity between the teacher and the students (Bartolini 
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Bussi, 1993); however the complexity of the processes does not allow us to make a 
priori analysis of them. 

The latter problem concerns the two main distinctive characters of the context, 
that makes it different from the ordinary one, namely the systematic introduction of 
physical models and of historical sources. The data we have collected until now 
show the extraordinary effect they can have on students' construction of meaning. 
We are interested in detecting more precisely the roles and the conditions of 
fhnctioning of both in this process. Physical models emphasise the role of visual 
tactile activity in a way that appears quite different from software tools: the stiffness 
of physical models forces students to make experiments in the mind and to 
anticipate results that cannot be controlled empirically, while the flexibility of 
dynamic software such as Cabri rather invites students to make concrete 
experiments and to observe their effects. Historical sources fosters student self 
location in the collective cultural activity of mankind. Both aspects are studied in the 
activity theoretical approach drawn on the work of Vygotskij, Leont'ev and others 
(see for instance Tikhomirov, 1984 for the former; Otte & Seeger, 1994 for the 
latter). So, the main aim of our research group now is to look for a comprehensive 
theoretical framework that allows us to interpret the relationships between these two 
characters and student construction of meaning and to design further teaching 
experiment where to realise and analyse such relationships (Bartolini Bussi et al., 
forthcoming). 
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