Ορισμός

Ο Γαλιλαίος Γαλιλέι είπε: «Το σύμπαν δεν μπορεί να διαβαστεί παρά μόνο αφού μαθευτεί η γλώσσα του και έχει γίνει εξοικείωση με τους χαρακτήρες με τους οποίους η γλώσσα του είναι γραμμένη. Η γλώσσα του είναι η μαθηματική γλώσσα, και τα γράμματα είναι τρίγωνα, κύκλοι και άλλα γεωμετρικά σχήματα, χωρίς τα οποία συνεπώς είναι ανθρωπίνως αδύνατο να κατανοηθεί έστω και μια λέξη. Χωρίς αυτά, κάποιος (που ασχολείται με την έρευνα για το σύμπαν) είναι σαν να περιπλανιέται σε ένα σκοτεινό λαβύρινθο».[13] Ο Καρλ Φρίντριχ Γκάους αναφέρεται στα Μαθηματικά ως «η βασίλισσα των επιστημών». O Μπέντζαμιν Πιρς ονόμασε τα μαθηματικά ως «…την επιστήμη που σχεδιάζει απαραίτητα συμπεράσματα»[14]. Ο Ντέιβιντ Χίλμπερτ είπε για τα μαθηματικά: «Δεν μιλάμε εδώ σε καμμιά λογική για αυθαιρεσίες. Τα Μαθηματικά δεν είναι σαν ένα παιχνίδι στο οποίο τα καθήκοντα μπορούν να καθορίζονται από τους κανόνες που ορίζονται αυθαίρετα. Μάλλον, είναι ένα εννοιολογικό σύστημα το οποίο έχει εσωτερική ανάγκη που δεν μπορεί παρά να είναι έτσι και σε καμία περίπτωση το αντίθετο».[15] Ο Άλμπερτ Αϊνστάιν δήλωσε ότι «…όσο οι νόμοι των μαθηματικών αναφέρονται στην πραγματικότητα, δεν είναι σίγουροι. Και στο μέτρο που είναι βέβαιοι, δεν αναφέρονται στην πραγματικότητα».[16] Πιο πρόσφατα ο Μάρκους ντου Σατόυ ονόμασε τα Μαθηματικά: «…η Βασίλισσα των Επιστημών…η κύρια οδηγήτρια δύναμη πίσω από την επιστημονική ανακάλυψη».[17]

Τα Μαθηματικά χρησιμοποιούνται σε όλο τον κόσμο ως ένα απαραίτητο εργαλείο σε πολλούς τομείς, συμπεριλαμβανομένης της φυσικής επιστήμης, της μηχανικής, της ιατρικής, καθώς και τις κοινωνικές επιστήμες. Τα Εφαρμοσμένα Μαθηματικά, είναι ο κλάδος των μαθηματικών που ασχολείται με την εφαρμογή της μαθηματικής γνώσης σε άλλους τομείς, εμπνέεται από τη μαθηματική σκέψη και κάνει χρήση των νέων μαθηματικών ανακαλύψεων, που έχουν οδηγήσει στην ανάπτυξη εντελώς νέων τομέων των μαθηματικών, όπως η στατιστική και η θεωρία παιγνίων. Οι μαθηματικοί ασχολούνται επίσης με τα λεγόμενα «καθαρά μαθηματικά», ή μαθηματικά χωρίς εξωτερική αιτία, δηλαδή ασχολούνται με τα μαθηματικά καθεαυτά, χωρίς να έχουν καμία πραγματική εφαρμογή υπόψη. Δεν υπάρχει βέβαια καμμιά σαφής διαχωριστική γραμμή μεταξύ καθαρών και εφαρμοσμένων μαθηματικών, καθώς και πρακτικές εφαρμογές ξεκίνησαν από έρευνα που ξεκίνησε ως καθαρά μαθηματικά, αλλά και καθαρά μαθηματικά προέκυψαν τελικά από τις πρακτικές εφαρμογές. Επομένως τα δυο αυτά είδη μαθηματικών ουσιαστικά αλληλοεπικαλύπτονται[18].

Κατηγορίες: Αναρτήσεις, Μαθηματικά, Υλικό. Προσθήκη στους σελιδοδείκτες.