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• Introduction In common usage, the word “induction” means the generalization from particular
cases or facts. The ability to formulate general hypotheses from a limited number of
facts is a distinguishing characteristic of a creative mathematician. The creative
process does not stop here, however. These hypotheses must then be proved or dis-
proved. In mathematics, a special method of proof called mathematical induction
ranks among the most important basic tools in a mathematician’s toolbox. In this sec-
tion mathematical induction will be used to prove a variety of mathematical state-
ments, some new and some that up to now we have just assumed to be true.

We illustrate the process of formulating hypotheses by an example. Suppose we
are interested in the sum of the first n consecutive odd integers, where n is a positive
integer. We begin by writing the sums for the first few values of n to see if we can
observe a pattern:

1 � 1 n � 1

1 � 3 � 4 n � 2

1 � 3 � 5 � 9 n � 3

1 � 3 � 5 � 7 � 16 n � 4

1 � 3 � 5 � 7 � 9 � 25 n � 5

Is there any pattern to the sums 1, 4, 9, 16, and 25? You no doubt observed that each
is a perfect square and, in fact, each is the square of the number of terms in the sum.
Thus, the following conjecture seems reasonable:

Conjecture Pn: For each positive integer n,

1 � 3 � 5 � . . . � (2n � 1) � n2

That is, the sum of the first n odd integers is n2 for each positive integer n.

So far ordinary induction has been used to generalize the pattern observed in the
first few cases listed above. But at this point conjecture Pn is simply that—a conjec-
ture. How do we prove that Pn is a true statement? Continuing to list specific cases will
never provide a general proof—not in your lifetime or all your descendants’ lifetimes!
Mathematical induction is the tool we will use to establish the validity of conjecture Pn.

61. Approximate e0.2 using the first five terms of the series.
Compare this approximation with your calculator evalua-
tion of e0.2.

62. Approximate e�0.5 using the first five terms of the series.
Compare this approximation with your calculator evalua-
tion of e�0.5.
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Before discussing this method of proof, let’s consider another conjecture:

Conjecture Qn: For each positive integer n, the number n2 � n � 41 is a prime
number.

It is important to recognize that a conjecture can be proved false if it fails for
only one case. A single case or example for which a conjecture fails is called a coun-
terexample. We check the conjecture for a few particular cases in Table 1. From the
table, it certainly appears that conjecture Qn has a good chance of being true. You
may want to check a few more cases. If you persist, you will find that conjecture Qn

is true for n up to 41. What happens at n � 41?

412 � 41 � 41 � 412

which is not prime. Thus, since n � 41 provides a counterexample, conjecture Qn is
false. Here we see the danger of generalizing without proof from a few special cases.
This example was discovered by Euler (1707–1783).

EXPLORE-DISCUSS 1 Prove that the following statement is false by finding a counterexample: If n � 2,
then at least one-third of the positive integers less than or equal to n are prime.

We begin by stating the principle of mathematical induction, which forms the basis
for all our work in this section.

Theorem 1 Principle of Mathematical Induction

Let Pn be a statement associated with each positive integer n, and suppose the
following conditions are satisfied:

1. P1 is true.

2. For any positive integer k, if Pk is true, then Pk�1 is also true.

Then the statement Pn is true for all positive integers n.

Theorem 1 must be read very carefully. At first glance, it seems to say that if we
assume a statement is true, then it is true. But that is not the case at all. If the two
conditions in Theorem 1 are satisfied, then we can reason as follows:

P1 is true. Condition 1

P2 is true, because P1 is true. Condition 2

P3 is true, because P2 is true. Condition 2

P4 is true, because P3 is true. Condition 2

. .

. .

. .

• Mathematical
Induction

n n2 � n � 41 Prime?

1 41 Yes

2 43 Yes

3 47 Yes

4 53 Yes

5 61 Yes

TABLE 1
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Since this chain of implications never ends, we will eventually reach Pn for any pos-
itive integer n.

To help visualize this process, picture a row of dominoes that goes on forever
(see Fig. 1) and interpret the conditions in Theorem 1 as follows: Condition 1 says
that the first domino can be pushed over. Condition 2 says that if the kth domino falls,
then so does the (k � 1)st domino. Together, these two conditions imply that all the
dominoes must fall.

Now, to illustrate the process of proof by mathematical induction, we return to
the conjecture Pn discussed earlier, which we restate below:

Pn: 1 � 3 � 5 � . . . � (2n � 1) � n2 n any positive integer

We already know that P1 is a true statement. In fact, we demonstrated that P1 through
P5 are all true by direct calculation. Thus, condition 1 in Theorem 1 is satisfied. To
show that condition 2 is satisfied, we assume that Pk is a true statement:

Pk: 1 � 3 � 5 � . . . � (2k � 1) � k2

Now we must show that this assumption implies that Pk�1 is also a true statement:

Pk�1: 1 � 3 � 5 � . . . � (2k � 1) � (2k � 1) � (k � 1)2

Since we have assumed that Pk is true, we can perform operations on this equation.
Note that the left side of Pk�1 is the left side of Pk plus (2k � 1). So we start by
adding (2k � 1) to both sides of Pk:

Pk

Add 2k � 1 to
both sides.

Factoring the right side of this equation, we have

1 � 3 � 5 � . . . � (2k � 1) � (2k � 1) � (k � 1)2 Pk�1

But this last equation is Pk�1. Thus, we have started with Pk , the statement we assumed
true, and performed valid operations to produce Pk�1, the statement we want to be
true. In other words, we have shown that if Pk is true, then Pk�1 is also true. Since
both conditions in Theorem 1 are satisfied, Pn is true for all positive integers n.

Now we will consider some additional examples of proof by induction. The first is
another summation formula. Mathematical induction is the primary tool for proving
that formulas of this type are true.

EXAMPLE 1 Proving a Summation Formula

Prove that for all positive integers n

1

2
�

1

4
�

1

8
� . . . �

1

2n �
2n � 1

2n

• Additional
Examples of

Mathematical
Induction

 1 � 3 � 5 � . . . � (2k � 1) � (2k � 1) � k 2 � (2k � 1)

 1 � 3 � 5 � . . . � (2k � 1) � k 2FIGURE 1 Interpreting mathemati-
cal induction.

Condition 1: The first domino
can be pushed over.

(a)

Condition 2: If the kth domino
falls, then so does the (k � 1)st.

(b)

Conclusion: All the dominoes
will fall.

(c)
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Proof State the conjecture:

Part 1 Show that P1 is true.

Thus, P1 is true.

Part 2 Show that if Pk is true, then Pk�1 is true. It is a good practice to always write out both
Pk and Pk�1 at the beginning of any induction proof to see what is assumed and what
must be proved:

We start with the true statement Pk, add 1/2k�1 to both sides, and simplify the right
side:

Pk

Thus,

Pk�1

and we have shown that if Pk is true, then Pk�1 is true.

Conclusion Both conditions in Theorem 1 are satisfied. Thus, Pn is true for all positive integers
n.
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Matched Problem 1 Prove that for all positive integers n

The next example provides a proof of a law of exponents that previously we had to
assume was true. First we redefine an for n a positive integer, using a recursion formula:

DEFINITION 1 Recursive Definition of an

For n a positive integer

EXAMPLE 2 Proving a Law of Exponents

Prove that (xy)n � xn yn for all positive integers n.

Proof State the conjecture:

Pn: (xy)n � xnyn

Part 1 Show that P1 is true.

Definition 1

Definition 1

Thus, P1 is true.

Part 2 Show that if Pk is true, then Pk�1 is true.

Assume Pk is true.

Show that Pk�1 follows from Pk.

Here we start with the left side of Pk�1 and use Pk to find the right side of Pk�1:

Definition 1

Use Pk: (xy)k � xkyk

Property of real numbers

Definition 1 � xk�1yk�1

 � (xkx)(yky)

 � xkykxy

 (xy)k�1 � (xy)k(xy)1

 Pk�1:  (xy)k�1 � xk�1yk�1

 Pk:  (xy)k � xkyk

 � x1y1

 (xy)1 � xy

 an�1 � ana    n � 1

 a1 � a

1 � 2 � 3 � . . . � n �
n(n � 1)

2
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Thus, (xy)k�1 � xk�1yk�1, and we have shown that if Pk is true, then Pk�1 is true.

Conclusion Both conditions in Theorem 1 are satisfied. Thus, Pn is true for all positive integers
n.

Matched Problem 2 Prove that (x/y)n � xn/yn for all positive integers n.

Our last example deals with factors of integers. Before we start, recall that an
integer p is divisible by an integer q if p � qr for some integer r.

EXAMPLE 3 Proving a Divisibility Property

Prove that 42n � 1 is divisible by 5 for all positive integers n.

Proof Use the definition of divisibility to state the conjecture as follows:

Pn : 42n � 1 � 5r for some integer r

Part 1 Show that P1 is true.

P1: 42 � 1 � 15 � 5 � 3

Thus, P1 is true.

Part 2 Show that if Pk is true, then Pk�1 is true.

Pk : 42k � 1 � 5r for some integer r Assume Pk is true.

Pk�1: 42(k�1) � 1 � 5s for some integer s Show that Pk�1 must follow.

As before, we start with the true statement Pk:

Pk

Multiply both sides by 42.

Simplify.

Add 15 to both sides.

Factor out 5.

Thus,

Pk�1

where s � 16r � 3 is an integer, and we have shown that if Pk is true, then Pk�1

is true.

 42(k�1) � 1 � 5s

 � 5(16r � 3)

 42(k�1) � 1 � 80r � 15

 42k�2 � 16 � 80r

 42(42k � 1) � 42(5r)

 42k � 1 � 5r
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Conclusion Both conditions in Theorem 1 are satisfied. Thus, Pn is true for all positive 
integers n.

Matched Problem 3 Prove that 8n � 1 is divisible by 7 for all positive integers n.

In some cases, a conjecture may be true only for n � m, where m is a positive
integer, rather than for all n � 0. For example, see Problems 49 and 50 in Exercise
8-2. The principle of mathematical induction can be extended to cover cases like this
as follows:

Theorem 2 Extended Principle of Mathematical Induction

Let m be a positive integer, let Pn be a statement associated with each integer
n � m, and suppose the following conditions are satisfied:

1. Pm is true.

2. For any integer k � m, if Pk is true, then Pk�1 is also true.

Then the statement Pn is true for all integers n � m.

The problem of determining whether a certain statement about the positive integers
is true may be extremely difficult. Proofs may require remarkable insight and inge-
nuity and the development of techniques far more advanced than mathematical induc-
tion. Consider, for example, the famous problems of proving the following statements:

1. Lagrange’s Four Square Theorem, 1772: Each positive integer can be expressed
as the sum of four or fewer squares of positive integers.

2. Fermat’s Last Theorem, 1637: For n � 2, xn � yn � zn does not have solutions
in the natural numbers.

3. Goldbach’s Conjecture, 1742: Every positive even integer greater than 2 is the
sum of two prime numbers.

The first statement was considered by the early Greeks and finally proved in 1772 by
Lagrange. Fermat’s last theorem, defying the best mathematical minds for over 350 years,
finally succumbed to a 200-page proof by Prof. Andrew Wiles of Princeton University
in 1993. To this date no one has been able to prove or disprove Goldbach’s conjecture.

EXPLORE-DISCUSS 2 (A) Explain the difference between a theorem and a conjecture.

(B) Why is “Fermat’s last theorem” a misnomer? Suggest more accurate names
for the result.

• Three Famous
Problems
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Answers to Matched Problems

1. Sketch of proof. State the conjecture: Pn: 1 � 2 � 3 � . . . � n �

Part 1. 1 � . P1 is true.

Part 2. Show that if Pk is true, then Pk�1 is true.

Pk

Pk�1

Conclusion: Pn is true.

2. Sketch of proof. State the conjecture: Pn:

Part 1. . P1 is true. 

Part 2. Show that if Pk is true, then Pk�1 is true.

Conclusion: Pn is true.
3. Sketch of proof. State the conjecture: Pn: 8n � 1 � 7r for some integer r

Part 1. 81 � 1 � 7 � 7 � 1. P1 is true.
Part 2. Show that if Pk is true, then Pk�1 is true.

Pk

Pk�1

Conclusion: Pn is true.

 8k�1 � 1 � 56r � 7 � 7(8r � 1) � 7s

 8(8k � 1) � 8(7r)

 8k � 1 � 7r
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(k � 1)(k � 2)

2

 1 � 2 � 3 � . . . � k � (k � 1) �
k(k � 1)

2
 � (k � 1)

 1 � 2 � 3 � . . . � k �
k(k � 1)

2

1(1 � 1)

2

n(n � 1)

2

EXERCISE 8-2
A
In Problems 1–4, find the first positive integer n that causes
the statement to fail.

1. 3n � 4n � 5n 2. n2 � 3n 	 100

3. 17n � 1 is divisible by 2n 4. n2 � 5n � 6

Verify each statement Pn in Problems 5–10 for n � 1, 2,
and 3.

5. Pn: 2 � 6 � 10 � . . . � (4n � 2) � 2n2

6. Pn: 4 � 8 � 12 � . . . � 4n � 2n(n � 1)

7. Pn: a 5an � a 5�n 8. Pn: (a 5) n � a 5n

9. Pn: 9 n � 1 is divisible by 4

10. Pn: 4n � 1 is divisible by 3

Write Pk and Pk�1 for Pn as indicated in Problems 11–16.

11. Pn in Problem 5 12. Pn in Problem 6

13. Pn in Problem 7 14. Pn in Problem 8

15. Pn in Problem 9 16. Pn in Problem 10

In Problems 17–22, use mathematical induction to prove
that each Pn holds for all positive integers n.

17. Pn in Problem 5 18. Pn in Problem 6

19. Pn in Problem 7 20. Pn in Problem 8

21. Pn in Problem 9 22. Pn in Problem 10
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B
In Problems 23–26, prove the statement is false by finding a
counterexample.

23. If n � 2, then any polynomial of degree n has at least one
real zero.

24. Any positive integer n � 7 can be written as the sum of
three or fewer squares of positive integers.

25. If n is a positive integer, then there is at least one prime
number p such that n 	 p 	 n � 6.

26. If a, b, c, d are positive integers such that a2 � b2 � c2 � d2,
then a � c or a � d.

In Problems 27–42, use mathematical induction to prove
each proposition for all positive integers n, unless restricted
otherwise.

27. 2 � 22 � 23 � . . . � 2n � 2n�1 � 2

28.

29. 12 � 32 � 52 � . . . � (2n � 1)2 � (4n3 � n)

30. 1 � 8 � 16 � . . . � 8(n � 1) � (2n � 1)2; n � 1

31. 12 � 22 � 32 � . . . � n2 �

32. 1 � 2 � 2 � 3 � 3 � 4 � . . .

� n(n � 1) �

33. � an�3; n � 3 34. ; n � 5

35. aman � am�n; m, n � N
[Hint: Choose m as an arbitrary element of N, and then use
induction on n.]

36. (an)m � amn; m, n � N

37. xn � 1 is divisible by x � 1; x 
 1
[Hint: Divisible means that xn � 1 � (x � 1)Q(x) for some
polynomial Q(x).]

38. xn � yn is divisible by x � y; x 
 y

39. x2n � 1 is divisible by x � 1; x 
 1

40. x2n � 1 is divisible by x � 1; x 
 � 1

a 5

a n �
1

a n�5

a n

a 3

n(n � 1)(n � 2)

3

n(n � 1)(2n � 1)

6

1
3

1

2
�

1

4
�

1

8
� . . . �

1

2n � 1 � �1

2�
n

41. 13 � 23 � 33 � . . . � n3 � (1 � 2 � 3 � . . . � n)2

[Hint: See Matched Problem 1 following Example 1.]

42.

C
In Problems 43–46, suggest a formula for each expression,
and prove your hypothesis using mathematical induction, 
n � N.

43. 2 � 4 � 6 � . . . � 2n

44.

45. The number of lines determined by n points in a plane, no
three of which are collinear

46. The number of diagonals in a polygon with n sides

In Problems 47–50, prove the statement is true for all inte-
gers n as specified.

47. a � 1 ⇒ an � 1; n � N

48. 0 	 a 	 1 ⇒ 0 	 an 	 1; n � N

49. n2 � 2n; n � 3 50. 2n � n2; n � 5

51. Prove or disprove the generalization of the following two
facts:

33 � 32 � 42 � 52

33 � 43 � 53 � 63

52. Prove or disprove: n2 � 21n � 1 is a prime number for all
natural numbers n.

If {an} and {bn} are two sequences, we write {an} � {bn} if
and only if an � bn , n � N. In Problems 53–56, use mathe-
matical induction to show that {an} � {bn}.

53. a1 � 1, an � an�1 � 2; bn � 2n � 1

54. a1 � 2, an � an�1 � 2; bn � 2n

55. a1 � 2, an � 22an�1; bn � 22n�1

56. a1 � 2, an � 3an�1; bn � 2 � 3n�1

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� . . . �

1

n(n � 1)

�
1

n(n � 1)(n � 2)
�

n(n � 3)

4(n � 1)(n � 2)

1

1 � 2 � 3
�

1

2 � 3 � 4
�

1

3 � 4 � 5
� . . .
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