
Different kinds of Mathematical Induction 
 
(1) Mathematical Induction 

  Given  A ⊂ N,   [1∈A  ∧  (a∈A  ⇒  a+1∈A)]  ⇒   A = N. 
 
(2) (First) Principle of Mathematical Induction 
 
 Let P(x) be a proposition (open sentence), if we put   
  A = {x : x ∈ N  ∧  p(x) is true} in (1), we get the Principle of Mathematical Induction. 
 
 If (1) P(1) is true; 
  (2) P(k) is true for some  k ∈ N  ⇒ P(k+1) is true 
 then  P(n) is true ∀ n ∈ N. 
 
(3) Second Principle of Mathematical Induction 
 

 If (1) P(1) is true; 

  (2) ∀ 1 ≤ i ≤ k,  P(i) is true  [i.e. P(1) ∧ P(2) ∧ …. ∧P(k) is true] 

   ⇒ P(k+1) is true 

 then  P(n) is true ∀ n ∈ N. 
 
(4) Second Principle of Mathematical Induction (variation) 
 

 If (1) P(1) ∧ P(2) is true; 

  (2) P(k-1) ∧ P(k)  is true for some  k ∈ N\{1}  ⇒ P(k+1) is true 

 then  P(n) is true ∀ n ∈ N. 
 
(5) Second Principle of Mathematical Induction (variation) 
 

 If (1) P(1) ∧ P(2) ∧ …. ∧ P(m) is true; 

  (2) P(k)  is true for some  k ∈ N ⇒ P(k+m) is true 

 then  P(n) is true ∀ n ∈ N. 
 
(6) Odd-even M.I. 
 

 If (1) P(1) ∧ P(2) is true; 

  (2) P(k)  is true for some  k ∈ N ⇒ P(k+2) is true 

 then  P(n) is true ∀ n ∈ N. 

                                          Page 1



More difficult types of Mathematical Induction 
(7) Backward M.I. 
 

 If  (1) P(n) is true ∀ n ∈ A, where A is an infinite subset of N; 

  (2) P(k) is true for some  k ∈ N  ⇒ P(k–1) is true 

 then  P(n) is true ∀ n ∈ N. 
 
(8) Backward M.I. (variation) (more easily applied than (7)) 
 

 If (1) P(1) is true; 

  (2) P(2k) is true for some  k ∈ N  ⇒ P(2k+1) is true; 

  (3) P(k) is true for some  k ∈ N  ⇒ P(k–1) is true 

 then  P(n) is true ∀ n ∈ N. 
 
(9) Different starting point 
 

 If (1) P(a) is true, where a ∈ N; 

  (2) P(k) is true for some  k ∈ N, where k ≥ a  ⇒ P(k+1) is true 

 then  P(n) is true ∀ n ∈ N\{1, 2, …., a – 1 }. 
 
(10) Spiral M.I. 
 

 If (1) P(1) is true; 

  (2) P(k) is true for some  k ∈ N ⇒ Q(k) is true 

   Q(k) is true for some  k ∈ N ⇒ P(k+1) is true 

 then  P(n) , Q(n)  are true ∀ n ∈ N. 
 
(11) Double M.I. 
 
 Double M.I. involves a proposition  P(m, n) with two variables m, n. 
 

 If (1) P(m, 1) and P(1, n)  is true ∀ m, n ∈ N; 

  (2) P(m+1, n) and P(m, n+1) are true for some  m, n∈ N 

   ⇒ P(m+1, n+1) is true 

 then  P(m, n)  is true  ∀ m, n ∈ N. 
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A Prime Number Theorem  [Second Principle of Mathematical Induction] 

Prove that the nth prime number   . 
n2

n 2p <

Solution 

Let  P(n)  be the proposition :  .            
n2

n 2p <

For  P(1),    ∴  P(1)  is true.   
12

1 22p <=

Assume  P(i)  is true ∀  i  s.t.  1≤ i ≤ k , i.e.  …. (*)  
k21 2

k
2

2
2

1 2p,...,2p,2p <<<

For  P(k + 1),  Multiply all inequalities in (*),    
k21 222

k21 2....22p....pp <

   
1k1kk21k21 2222....22222

k21 2222....221p....pp
++

<==≤+ −+++

∴ For any prime factor  p  of 1p....pp k21 +  , we have 
1k22p
+

<  .   

Since  p1, p2 , …., pk  are not prime factor of  1p....pp k21 + ,  we have  pk < p  and hence  pk+1 ≤ p. 

∴      ∴ P(k + 1)  is true. 
1k2

1k 2pp
+

<≤+

By the Second Principle of Mathematical Induction,  P(n)  is true  ∀ n ∈  . 

 

Recurrive formula   [Second Principle of Mathematical Induction] 

 Let  {an}  be a sequence of real numbers satisfying  a1 = 2,  a2 = 3  and  an+2 = 3an+1 – 2an . 

 Prove that  an = 2n-1 + 1 . 

Solution 

 Let  P(n)  be the proposition :  an = 2n-1 + 1 . 

 For  P(1) ∧ P(2), a1 = 2 = 21-1 + 1,  a2 = 2 = 22-1 + 1 . ∴ P(1) ∧ P(2)  is true. 

 Assume  P(k) ∧ P(k+1)  is true for some  k∈  . 

 i.e. ak = 2k-1 + 1   …. (1) 

  ak+1 = 2k + 1   …. (2) 

 For  P(k+2), ak+2  = 3ak+1 – 2ak = 3(2k + 1) – 2(2k-1 + 1) = 2k+1 + 1 

 ∴ P(k + 2)  is true. 

By the Second Principle of Mathematical Induction,  P(n)  is true  ∀ n ∈  . 

 

Odd Even Mathematical Induction 

 Let  a1 = 2, a2 = 2 an+2 = an + 1 

 Prove that  ( ) ( )[ ]n
n 11

4
11n

2
1a −+++=  . 

 

Solution 
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 Let  P(n)  be the proposition :  ( ) ( )[ ]n
n 11

4
11n

2
1a −+++=  . 

 For  P(1),  ( ) ( )[ ]1
1 11

4
111

2
11a −+++==  

For  P(2),  ( ) ( )[ ]2
2 11

4
112

2
11a −+++==   ∴ P(1) ∧ P(2)  is true. 

Assume  P(k)  is true for some  k∈  .  i.e. ( ) ( )[ ]k
k 11

4
11k

2
1a −+++=   …. (*) 

For  P(k + 2), 

ak+2  = ak + 1 ( ) ( )[ ] 111
4
11k

2
1 k +−+++=   , by (*) 

 ( )[ ] ( )[ ]1k11
4
111k

2
1 +−++++=  

∴ P(k + 2)  is true. 

∴ By the Principle of Mathematical Induction,  P(n)  is true  ∀ n ∈  . 

 

Backward Mathematical Induction 

 Let f(x) be a convex function defined on [a, b], i.e. ⎟
⎠
⎞

⎜
⎝
⎛ +

≤+
2

xx
f2)x(f)x(f 21

21  for all x1, x2 ∈ [a, b]. 

 For each positive integer n, consider the statement: 

 I(n) : If  xi ∈ [a, b],  i = 1, 2, …, n, then ⎟
⎠
⎞

⎜
⎝
⎛ ++

≤++
n

x...x
nf)x(f...)x(f n1

n1 . 

 (a) Prove by induction that  I(2k) is true for every positive integer k. 

 (b) Prove that if  I(n)  (n ≥ 2) is true, then I(n-1) is true. 

 (c) Prove that  I(n)  is true for every positive integer n. 

Solution 

(a) I(n) : If  xi ∈ [a, b],  i = 1, 2, …, n, then ⎟
⎠
⎞

⎜
⎝
⎛ ++

≤++
n

x...x
nf)x(f...)x(f n1

n1  

 For  I(21), since it is given that  ⎟
⎠
⎞

⎜
⎝
⎛ +

≤+
2

xx
f2)x(f)x(f 21

21 .  ∴ I(21)  is true. 

 Assume  I(2k)  is true. i.e. ⎟
⎠

⎞
⎜
⎝

⎛ ++
≤++

k
21k

21 2

x...x
f2)x(f...)x(f k

k  ….(1) 

 For  I(2k+1),   
)x(f...)x(f)x(f...)x(f 1kkk 21221 ++++++

+
 

  ⎥⎦

⎤
⎢⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ++
+⎟

⎠

⎞
⎜
⎝

⎛ ++
=⎟

⎠

⎞
⎜
⎝

⎛ ++
+⎟

⎠

⎞
⎜
⎝

⎛ ++
≤

++ ++
k

212
k

21k
k

212k
k

21k

2

x...x
f

2

x...x
f2

2

x...x
f2

2

x...x
f2 1kkk1kkk , by (1) 

  ⎥⎦

⎤
⎢⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ++
+

++
≤⎥⎦

⎤
⎢⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ++
+⎟

⎠

⎞
⎜
⎝

⎛ ++
=

++ ++
k

212
k

21k
k

212
k

21k

2

x...x

2

x...x

2
1

f22
2

x...x
f

2

x...x
f2 1kkk1kkk , by I(2) 

  ⎥⎦

⎤
⎢⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ +++++
=

+
++ +

1k
212211k

2

x...xx...x
f2 1kkk   ∴ I(2k+1)  is true 
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(b) Assume  I(n)  is true  (n ≥ 2), 

 i.e.  ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
+

−

++−
=⎟

⎠
⎞

⎜
⎝
⎛ ++

≤++ −

1n
x

1n
x...x

n
1n

nf
n

x...x
nf)x(f...)x(f n1n1n1

n1  

 Put  
1n

x...x
x 1n1

n
−

++
= − , then 

 ⎟
⎠
⎞

⎜
⎝
⎛

−

++
≤⎟

⎠
⎞

⎜
⎝
⎛

−

++
+++ −−

− 1n
x...x

nf
1n

x...x
f)x(f...)x(f 1n11n1

1n1  

 ⎟
⎠
⎞

⎜
⎝
⎛

−

++
−≤++ −

− 1n
x...x

f)1n()x(f...)x(f 1n1
1n1  ∴ I(n – 1) is also true. 

(c) ∀n ∈ ,  ∃ (k ∈  and r ∈ )  such that   n = 2k – r. 

 

Spiral Mathematical Induction 

Given a sequence  {an}  satisfying   a2m-1= 3m(m – 1) + 1 and  a2m = 3m2,  where  m ∈  . 

Let   , prove that  ∑
=

=
n

1i
in aS

( )
( ) )2....(

)1....(

1m3m4m
2
1S

1m3m4m
2
1S

2
m2

2
1m2

⎪
⎩

⎪
⎨

⎧

++=

+−=−
 

Solution 

Let  P(m)  be the proposition :  ( )1m3m4m
2
1S 2

1m2 +−=−  

 Q(m)  be the proposition :  ( )1m3m4m
2
1S 2

m2 ++=  

For  P(1),  S1 = a1 = 1  ∴ (1)  is true for  m = 1 . 

Assume  P(k)  is true for some  k∈  .,  i.e. ( )1k3k4k
2
1S 2

1k2 +−=−   …. (*) 

(a) For  Q(k),  S2k = S2k-1 + a2k = ( ) ( )1k3k4k
2
1k31k3k4k

2
1 222 ++=++−  . ∴ Q(k)  is true. 

(b) For  P(k + 1), 

  S2k+1 = S2k + a2k+1 = ( ) ( )[ ]1k1k31k3k4k
2
1 2 +++++  

  ( ) ( ( )[ ]1k3k6k34k12k12k4
2
1 223 ++++−+++= )  

  ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]11k31k41k
2
11k1k31k4

2
1 223 ++−++=+++−+=  .  ∴ P(k + 1) is true. 

Since   (1)  P(1) is true. 

  (2) P(k) is true  ⇒ Q(k)  is true  ⇒ P(k + 1) is true 

∴ By the Principle of Mathematical Induction,  P(n)  is true  ∀ n ∈  . 

Since  (1) P(1) is true. ⇒ Q(1)  is true  

  (2) Q(k)  is true  ⇒ P(k + 1) is true ⇒ Q(k + 1)  is true  

 ∴ By the Principle of Mathematical Induction,  Q(n)  is true  ∀ n ∈  . 
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Mathematical Induction with parameter 

 

Let    f(a, 1) =  . 
⎩
⎨
⎧

∈>
=

Na  1,  a when ,0
1  a when ,1

and   f(a, n+1) =  . 
( )

( ) ( )⎩
⎨
⎧

∈>−+
=+

Na  1,  a when ,n,1afna,f
1  a when ,1n,af

Prove that   ( ) ( ) ( )
!a

1an...1nnn,af +−−
=     

Solution 

Let  P(n)  be the proposition : ( ) ( ) ( )
!a

1an...1nnn,af +−−
=       …. (1) 

(1) For  P(1),  there are two cases: 

 When  a = 1,  L.H.S. = f(1, 1) = 1.  R.H.S. = 1
!1

1
=  

 When a > 1, L.H.S. = f(a, 1) = 0.  R.H.S. = ( ) ( ) 0
!a

1a1...1n1
=

+−−  .  ∴  P(1)  is true.  

 

(2) Assume  P(k)  is true for some  k∈  .,  i.e.   ( ) ( ) ( )
!a

1ak...1kkk,af +−−
=  …. (2) 

 For  P(k + 1),  there are also two cases: 

 When  a = 1,  L.H.S. = f(a, k + 1) = f(a, k) + 1 = .S.H.R
!1
1k1k1

!1
k

=
+

=+=+  

 When a > 1, L.H.S. = f(a,k) +f(a – 1, k) 

    ( ) ( ) ( ) ( )
( )!1a

2ak...1kk
!a

1ak...1kk
−

+−−
+

+−−
=  , by (2),  f(a,k)  and  f(a – 1, k)  hold . 

    ( ) ( ) ( )[ ]a1ak
!a

2ak...1kk
++−

+−−
=   

    ( ) ( ) ( )
!a

2ak...1kk1k +−−+
=  = R.H.S. 

 ∴ P(k + 1)  is true. 

∴ By the Principle of Mathematical Induction,  P(n)  is true  ∀ n ∈  . 

 

 

Comment  If the proposition with natural number  n  contains a parameter  a , then we need to apply 

mathematical induction for all values of  a . 
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Double Mathematical Induction 

 Prove that the number of non-negative integral solution sets of the equation 

  x1 + x2 + … + xm = n   ,  m , n ∈  . 

 is f(m, n) = ( )
( )!1m!n

!1mn
−
−+          …. (1) 

Solution 

Let  P(m, n)  be the given proposition. 

(a) For  P(1, n),  The only non-negative integral solution set of the equation   x1 = n  is only itself . 

 In  (1) ,  f(1, n) = ( )
( ) 1

!11!n
!11n
=

−
−+  . 

 ∴ P(1, n)  is true . 

 For  P(m, 1),  The non-negative integral solution sets of the equation 

  x1 + x2 + … + xm = 1 

 are  (1, 0, 0 …, 0) , (0, 1, 0, …) , …, (0, 0, 0, …, 1) . 

 There are  m  sets of solution altogether. 

 In (1), f(m, 1) = ( )
( ) m

!1m!1
!1m1
=

−
−+  . 

 ∴ P(m, 1)  is true . 

(b) Assume  P(m, n+1)  and  P(m + 1, n)  are true for some  m , n ∈  . .  i.e 

the number of non-negative integral solution sets of the equations : 

  x1 + x2 + … + xm = n +1         …. (2) 

  x1 + x2 + … + xm + xm+1 = n       …. (3) 

are  f(m, n+1) = ( )
( ) ( )!1m!1n

!mn
−+

+  and   f(m+1, n) = ( )
!m!n

!mn +    respectively . 

For  P(m+1, n+1), The non-negative integral solution sets of the equation : 

 x1 + x2 + … + xm + xm+1 = n + 1       …. (4) 

may be divided into two parts :  xm+1 = 0  or  xm+1 > 0 . 

(i) For  xm+1 = 0 ,  equation (4) becomes equation (2), and the number of non-negative integral solution 

     sets is  f(m, n+1) = ( )
( ) ( )!1m!1n

!mn
−+

+  . 

(ii) For  xm+1 > 0 , replace  xm+1  by  xm+1 + 1  and  equation (4) becomes: 

     x1 + x2 + … + xm + xm+1 = n , and the number of non-negative integral solution 

     sets is   f(m+1, n) = ( )
!m!n

!mn +  . 

∴ The total number of non-negative integral solution sets is   

  ( )
( ) ( )!1m!1n

!mn
−+

+ + ( )
!m!n

!mn +  = ( )
( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]!11m!1n
11m1nm1n

!m!1n
!mn

−++
−+++

=++
+
+  . 

∴ P(m+1, n+1)  is also true . 

∴ By the Principle of Mathematical Induction,  P(m, n)  is true  ∀ m, n ∈  . 
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