

Computational Thinking Integration Guide for Secondary Education Teachers

Version F.01

August 2022

Erasmus+ KA201 Project: 2019-1-EL01-KA201-062883

Co-funded by the Erasmus+ Programme of the European Union

Computational Thinking Integration Guide for Secondary Education Teachers

Version F.01

Published by University of the Aegean – Laboratory of Learning Technology and Educational Engineering as deliverable of the "Computational Thinking at School" - "CompuT", Erasmus+ KA201 project - Project Code: 2019-1-EL01-KA201-062883.

Authors:

Fesakis George, Prantsoudi Stavroula, Mavroudi Elisavet, Volika Stamatia, Kefalas Ioannis

Learning Scripts edited by:

George Fesakis, Stavroula Prantsoudi, Elisavet Mavroudi, Konstantinos Zervas, Ioannis Kefalas, Georgia Papamargariti, Alexandra Papamargariti, Evangelia Stamatarou, Manuel Toro Casaucao, Kristine Feness, Monica Langeland, Sabine Lauw, Borghild Marie Opdahl, & Trude Sætveit

Learning Scripts Evaluations and Reflections by: Anastasios Savas, Vasileios Kasapidis, Monica Langeland, Stavroula Prantsoudi,

August 2022

Computational Thinking Integration Guide for Secondary Education Teachers Copyright © 2022 by University of the Aegean – LTEE Lab

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/3.0/.

To cite this work:

Fesakis, G., Prantsoudi, S., Mavroudi, E., Volika, S., Kefalas, I. (2022). *Computational Thinking Integration Guide for Teachers* (5th ed.). Rhodes, Greece: University of the Aegean - LTEE Lab.

Disclaimer:

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Partners:

Directorate of Secondary Education in Dodecanese

University of the Aegean, Laboratory of Learning Technology and Educational Engineering (LTEE), Rhodes, Greece

2º Upper Secondary School of Rhodes, "Kazoulleio", Rhodes, Greece

Secondary School of Gennadi, Rhodes, Greece

Secondary School of Zipari, Kos, Greece

CEP La Laguna, Tenerife, Spain

IES EL SOBRADILLO, Tenerife, Spain

Fyllingsdalen videregående skole, Bergen, Norway

Agrupamento de Escolas de São João da Talha, Lisbon, Portugal

Table of Contents

1. Introduction	7
2. The concept of Computational Thinking	8
2.1. The CT dimensions	9
3. The scientific significance of CT	12
4. Integrating Computational Thinking in School Curriculum	14
5. International Initiatives for CT Integration in Education	17
5.1. Bebras Challenge	19
5.1.1. The Tasks	19
5.1.2. Bebras Tasks examples	21
6. Scenario resources	25
7. Learning Design of CT integration scenarios	27
7.1. Teaching as a design science	27
7.2. What teaching design involves	27
7.3. Pedagogical Scenario or Learning Script as the product of teaching design	29
7.3.1. Learning design representation methods	29
7.3.2. Representation of learning scenarios in the context of CompuT	31
7.4. Design patterns as a means of sharing learning design experience	31
7.5. Design methodology - A model for the process of learning design	32
7.6. Teaching techniques and practices of Computational Thinking	37
7.7. Some proposed action sequence patterns for the learning scenarios	40
7.7.1. Traditional instructional models	40
7.7.2. Student-centered learning activity models	40
7.7.3. Assessment	41
7.8. Thematic units of Computational Thinking Scenarios in CompuT	41
8. Some examples of scenarios	47
9. Conclusion/Discussion	49
References	50
Appendices	56
Appendix I. CT Dimensions, definitions, and examples.	56
Appendix II. CT integration in the national educational systems of the partners	60
Computational Thinking in Greece	60
Computational Thinking in Norway	61
Computational Thinking in Portugal	63
Computational Thinking in Spain	64

Appendix III. Learning Script Template	66
Appendix IV. Exemplar Learning Scenarios	74
Exemplar Scenario 01: The history of computation automation	74
Exemplar Scenario 02: Finding Needles in the World's Biggest Haystack	84
Exemplar Scenario 03: Cats and Dogs	96
Exemplar Scenario 04: Cryptography	. 114
Exemplar Scenario 05: CompuT Contest – "Be Computationally Intelligent	. 150
Exemplar Scenario 06: Studying the Skyros Archipelago Lizards	. 174
Exemplar Scenario 07: Studying Cam Carpets to learn mathematics and computation thinking	
Exemplar Scenario 08: Let's talk to the machines	. 220
Exemplar Scenario 09: <i>"Useless" robots</i>	. 228
Appendix V. Reflection on learning scripts implementation	. 236
Theoretical Evaluation of the Exemplar Scenario "Finding needles in the World's Big Haystack"	ggest 236
Theoretical Evaluation of the Exemplar Scenario "Studying the Skyros Archipelago Lizard"	. 237
Theoretical Evaluation of the Exemplar Scenario "Cryptography"	. 237
Reflection on the implementation of the Exemplar Scenario "Useless Robots"	. 238
Reflection on the implementation of the Exemplar Scenario "Cats and Dogs"	. 239

1. Introduction

The purpose of the present Teachers' Guide is to provide some key information concerning the concept of Computational Thinking (CT) and its integration in the education practice. The Guide has been developed within the framework of the "Computational Thinking at School" - "CompuT", Erasmus+ KA201 project [Project Code: 2019-1-EL01-KA201-062883] and will serve as a map to guide all teachers and stakeholders involved in the project to: a) get acquainted with the concept of Computational Thinking and its dimensions, b) understand and reflect on the role it can and should play both in modern education and science, and finally, c) get familiar with the methodology and develop techniques for integrating Computational Thinking in everyday teaching practice.

The guide also suggests several resources and existing repositories of educational scenarios that have been developed in the course of relative initiatives for the integration of CT in education. In addition, the guide provides an appendix that will be listing the scenarios that will have been developed by the participating partners in the context of the CompuT project.

The rest of the document is structured as follows; Section 2 provides an overview of the various definitions of CT as well as of the important milestones in the evolution of the concept. The various dimensions of the concept are described and briefly explained in the section. Section 3 describes the rationale on how CT interacts with Computational Science and how CT constitutes a basic method of producing science. Section 4 deals with the very important issue of the integration of CT into education; the clarification of the meaning of the term, the difficulties involved, the role of the teachers, the current situation in European countries as well as our approach within the framework of the project (in-service training with tests in field). Development of Computational Thinking Education has become an area of many initiatives in recent years, several of which are presented in Section 6.

2. The concept of Computational Thinking

Although Computational Thinking has gained popularity in recent years, the concept is not new and its history in Computer Science can be traced back to separate time points in the past. Known from the 1950s and 1960s as "Algorithmic Thinking", it can be argued that CT is a way of thinking through which problems are formulated as input-to-output conversions and algorithms are sought to implement these conversions. (Denning 2009).

Two great pioneers in computer education, Alan Perlis and Seymour Papert, have highlighted the value of computer programming knowledge since the discussions of the 1950-1990 period (Grover & Pea, 2013), also motivated by the 1980s computing sciences movements (Tedre & Denning, 2016). It is worth recalling here that personal computers appeared in the 1970s and spread in the 1980s. Back in 1962, Alan Perlis was the first to put forth the idea that all college students should understand computation theory and learn computer programming as a medium to study a wide variety of other topics, more effectively (Guzdial, 2008). A few years later, in 1967, Papert (1991) created LOGO programming language specially designed as an alternative approach to mathematics teaching and algorithmic thinking. In the years that followed, Papert, made popular the idea of programming as a means of developing algorithmic thinking, promoting his robotic turtle and LOGO programming language in the context of K–12 education (Papert, 1996).

In 2006, the publication of Jeanette Wing's homonymous article in Communications of the ACM (Wing, 2006) brought the concept of Computational Thinking back to the forefront. In that article it is stated that "Computational thinking involves solving problems, designing systems, and understanding human behavior, by drawing on the concepts fundamental to computer science" (Wing, 2006). Wing claimed that "CT represents a universally applicable attitude and skill set that everyone, not just computer scientists, would be eager to learn and use", thus generating a still ongoing international debate on the nature of CT and its role in education (Barr & Stephenson, 2011; Grover & Pea, 2013; Kalelioglu et al., 2016).

In related workshops organized by both the US National Research Council (NRC) and associations such as CSTA and ISTE (NRC, 2010; CSTA & ISTE, 2011) participants failed to agree on key definitions and expressed differing views on the purposes and nature of CT (NRC, 2011). To move the discussion forward, in 2011 Wing proposed a new definition of CT according to which "Computational thinking is the thought processes involved in formulating problems and their solutions so that the solutions are represented in a form that can be effectively carried out by an information-processing agent" (Wing, 2011). Wing's arguments about the importance of CT are developed along two axes: i) On the one hand, CT provides people with a set of skills, techniques, methods, and attitudes to solve a wide range of problems. ii) On the other hand, CT confronts us with the challenge of machine intelligence asking for what people can do better than machines and what machines are better than humans at.

As the debate on the scope of Computational Thinking broadened, other definitions also emerged. Aiming at creating an "operational definition", that is, a list of the key concepts and skills related to CT, along with examples of how these could be incorporated into different subjects, CSTE and ISTE, presented CT as a problemsolving process that includes characteristics, such as formulating problems in a way that enables people to use a computer and other tools to help solve them, organizing and analyzing data logically, representing data through abstractions, such as models and simulations, automating solutions through algorithmic thinking, etc. (ISTE & CSTA, 2011). Royal Society (2012) has proposed another definition, according to which Computational Thinking is not only a human construct but is also present in nature, which performs calculations in the sense of transforming information representations such as in the process of DNA transcription. According to this definition, "Computational thinking is the process of recognizing aspects of computation in the world that surrounds us and applying tools and techniques from Computer Science to understand and reason about both natural and artificial systems and processes" (Royal Society, 2012). Only as recently as 2016, CSTA issued the CSTA K-12 Computer Science Standards, which -among others- states that Computational Thinking "is a problem-solving methodology that extends the "kingdom" of computer science to all disciplines, offering the tools for analyzing and developing solutions to problems that can be solved through computation. With a focus on abstraction, automation and analysis, CT constitutes a key component of the broader IT field" (CSTA, 2016).

Despite the efforts of scientists and institutions, the scientific community has not yet come to a commonly accepted definition (Rose et al., 2017; Weintrop et al., 2016; Fessakis et al., 2018) and many issues, concerning both the concept and the related dimensions and practices (Lye & Koh, 2014; Fesakis, et al. 2018), as well as the human resources involved in its development and teaching, remain open (Barr & Stephenson, 2011). CT competence development is nowadays widely recognized as a central issue in education by the scientific community and the policy makers (Freeman et al., 2017; Parliamentary Standing Committee on Education, 2016) the proper approach of which requires systematic and multi-faceted research.

2.1. The CT dimensions

The structural dimensions that constitute Computational Thinking, as well as the skills that are associated with it, have not yet been fully elucidated and are being actively discussed, while large body of publications are still being produced on the field. In her homonymous article, which sparked a renewal of interest in the concept, Wing suggested that all aspects of Computational Thinking include abstraction, problem decomposition, pattern recognition, algorithmic thinking, and logical thinking (Wing, 2006). Isbell and Stein followed, arguing that CS curricula should be revised to include basic skills in modeling, scaling, simulation, abstraction, automation and data interpretation, a set of skills also known as the **computationalist mindset** (Isbell, et

al., 2009). CSTA and ISTE suggested that Computational Thinking consists of 9 basic dimensions and corresponding skill areas, such as data handling (collection, analysis, representation), problem decomposition, abstraction, algorithms and procedures, automation, parallelism, and simulation (CSTA & ISTE, 2011).

A reasonable question that arises, therefore, is whether CT is an umbrella concept describing the loose assembly of pedagogically significant dimensions of CS, a practice of CS, or a distinctive entity concerning a specific kind of thinking in the context of computation. The debate on the dimensions of the concept continues and several other sets of dimensions have been proposed from time to time, exacerbating the ambiguity still surrounding the conceptual framework (NRC, 2010; Barr & Stephenson, 2011; Grover & Pea, 2013; Selby, 2015).

In 5 popular papers published in the field, it is suggested that Computational Thinking consists of the dimensions presented in Table 1.

Barr & Stephenson, 2011	Lee, et al., 2011	Grover & Pea, 2013	Selby & Woollard, 2013	Angeli, et al., 2016
Abstraction	Abstraction	Abstraction and patterns generalization	Abstraction	Abstraction
Algorithms & Procedures		Algorithmic notions of flow control	Algorithmic Thinking	Algorithms (includes sequencing and flow control)
Automation	Automatization			
	Analysis			
		Conditional logic		
Problem Decomposition		Structured Problem Decomposition (Modularizing)	Decomposition	Decomposition
		Debugging and systematic error detection		Debugging
		Efficiency and performance constraints	Evaluation	
			Generalizations	Generalization
		Iterative, recursive, and parallel thinking		

 Table 1. Proposed Sets of Dimensions of Computational Thinking

Parallelization		
Simulation		
	Symbol systems & representation	
	Systematic processing of information	

Informal definitions for CT dimensions, based on what is stated in the specific publications, can be considered as follows (Table 2).

CT Dimension	Definition
Abstraction	The process of simplifying an object by ignoring the unnecessary details to make it easier to understand. Trying to hide details without altering the representation.
Algorithmic Thinking	Method of achieving a solution by clearly defining the steps.
Automation	Performing repetitive commands quickly and efficiently through a computer. Computer programs = "automation abstractions".
Decomposition	Breaking problems down into smaller parts that may be more easily solved. Understand, resolve, develop and evaluate the parts individually.
Debugging	Systematic application of analysis and evaluation using testing, tracing, and rational thinking to predict and verify results.
Generalization	Identify patterns, similarities and links and exploit these characteristics. Quickly solve problems based on previous solutions to similar problems.

Table 2. Basic CT Dimensions Definitions

Concerning the classroom curriculum level, and the design of learning activities, CT is perceived as a complex, multidimensional concept. Fessakis et. al. (2018) attempted to provide the union of the proposed sets of CT dimensions. Hence, the set of dimensions, which the various definitions seem to highlight, include: creative problem solving, algorithmic approach to problem-solving, problem solution transfer, logical reasoning, abstraction, generalization, representation and organization of data, systemic thinking, evaluation, social impact of computation. In the same publication, the dimensions of Computational Thinking included in various initiatives of CT in education already implemented worldwide (Teaching London Computing, Computing at School, CSTA & ISTE) were combined to form the set of dimensions which is shown in Table 3.

A short description of each dimension along with some resources and examples of scenarios are presented in Appendix I.

Algorithmic Thinking (AL)
Abstraction (AB)
Generalization (GE)
Logical reasoning (LR)
Pattern matching (PM)
Problem decomposition (PD)
Problem translation (PT)
Evaluation (EV)
Representation (RE)
Data collection (DC)
Data representation (DR)
Data analysis (DA)
Modeling (MO)
Simulation – (SIM)
Automation (AUT)
Sequencing (SE)
Testing (TE)
Understanding People – (UP) // Includes Artificial Intelligence (AI)

Table 3. Proposed set of CT dimensions

Concluding the discussion on the meaning of CT, one can deduce that, despite the numerous definitions proposed, CT remains an ambiguous term for most teachers. In the context of the CompuT project, CT is not considered a distinctive entity concerning a specific kind of thinking, like e.g., spatial thinking, logical thinking etc. CT is not either considered an umbrella concept describing the loose assembly of pedagogically significant dimensions of CS. In the context of CompuT, CT concerns the use of Computer Science concepts, methods, and techniques as part of the methodology of other disciplines. Computational Thinking in terms of cognitive science. Furthermore, epistemologically, CT is an interdisciplinarity mean. More specifically, CT is a Computer Science practice (Denning, 2009; Denning & Martell 2015), concerning the application of computation as a problem solving and epistemological mean in several disciplines. This approach also reflects the interaction of CT with Computing Science.

3. The scientific significance of CT

Back in 1982, the Nobel Prize in Physics was awarded to Ken Wilson for his work on the development of computational models that simulated the phase transitions in materials (https://www.nobelprize.org). Wilson worked with scientists in other fields and, by promoting computational simulation -previously unavailable mode of scienceidentified Computing as a key pillar of science, along with theory and experiment (Kadanoff, 2013). Earlier, in 1969, as the director of the Software Engineering Division of the MIT Instrumentation Laboratory, Margaret Hamilton contributed to the history of mankind, by leading the software team that landed astronauts on the moon. In the context of the development of NASA's Apollo spaceship navigation and guidance system, Hamilton and her team implemented a series of physical and digital simulations and developed appropriate algorithms for controlling cyber-ship systems (Cameron, 2018).

The course of Computing Science has continued to grow and its contribution to the sciences and engineering has become more significant. Most recently, in 2017, Rainer Weiss, Barry Barish and Kip Thorne were awarded a Nobel Prize in Physics "for decisive contributions to the LIGO detector and the observation of gravitational waves". The LIGO probe experimentally confirmed the scientific model of a natural phenomenon, gravitational waves (Abbott et al., 2016), formulated 100 years earlier by Einstein and led to the need for revision of the hitherto known models of the universe, since it detected more black hole collisions than those predicted by Einstein's gravitational wave model (Lee, 2018). Computational methods were also employed by Katie Bouman and her colleagues, astronomers, physicists, mathematicians, and engineers, who collected 5 Petabytes (5,242,880 Gigabytes) of data from a network of 8 telescopes installed on 4 different continents as part of the Event Horizon Telescope project (EHT) of MIT. These data were submitted for processing by algorithms created specifically for this purpose and resulted in the publication of the first photograph of a black hole in April 2019 (MIT News, 2019).

In the already existing collaboration of science with engineering to model natural or artificial phenomena, Computing Science has added the ability to control the machines made by engineers to mimic the models created by scientists as representations of natural phenomena (Lee, 2018). As early as the mid-1980s, universities began to establish new departments under the title of "Computing Science", independent of the existing "Computer Science" departments, reinforcing the distinction between the two disciplines. It is indicative that, nowadays, accepted scientific research can be carried out in fully controlled in vitro environments, through clinical studies in living organisms (in vivo), but also exclusively on a computer or through computer simulations (in silico). The term in silico was first used in public back in 1989, to characterize "experiments solely carried out by a computer", thus introducing a new way of producing science in the research world.

Computational Thinking, then, is not just a tool available to scientists, but a way of doing science and has gradually been recognized by other sciences, not as a concept derived from Computer Science, but as a concept derived from science itself, and is essential to the advancement of science (Denning, 2009). Computers are tools and not the subject of study and Computing, as "the process of recognizing the forms of computing around us and applying computing tools and techniques for understanding and reasoning about natural and artificial systems and processes" (Royal Society, 2012), constitutes a basic method of producing science.

This new, inevitable, way of producing science was not available until recently and its advent has allowed scientists to experiment, both in the virtual and in the real world, with new solutions and problem-solving strategies. By combining computers with

Computer Science concepts and practices, scientists of all disciplines have the appropriate epistemological tools to solve interdisciplinary problems in the context of other knowledge fields. This combination may also constitute the conceptual framework for the wider use of Computer Science in general education, given its view as the fourth major scientific field, together with the Natural Sciences, Social Sciences and Life Sciences (Rosenbloom, 2004), but also because of its central position within the interdisciplinary approach to education and training in the fields of STEAM (Science, Technology, Engineering, Arts & Mathematics) (Fesakis et al., 2018; Henderson, Cortina, Hazzan, & Wing, 2007).

It is beyond doubt that in any future society, the development of Computational Thinking will be a strategic asset for scientific and technological progress. The Center for Computational Thinking of Carnegie Mellon University in the US, has already set out its mission "... to advance computing research and advocate for the widespread use of computational thinking to improve people's lives" and, recognizing the revolutionary impact of Computer Science on scientific research and discovery, it characteristically states that "it is nearly impossible to do scholarly research in any scientific or engineering discipline without an ability to think computationally." (Center for Computational Thinking, Carnegie Mellon, 2019). Indicative of the importance of High-Performance Computing in scientific and technological progress is the awarding of scientists who are promoting the application of computational methods to sciences, by organizations such as Partnership for Advanced Computing in Europe (http://www.prace-ri.eu). Computational Thinking is unquestionably an important capability for the modern citizen, on which future scientific and technological progress could be based (CSTA & ISTE, 2011). The effort to integrate it into mainstream education is seen as a pressing issue for the education community and educational policy makers worldwide.

4. Integrating Computational Thinking in School Curriculum

The scientific implications of Computational Thinking and its interdisciplinary aspect have been supported by a large body of literature and researchers who have linked Computational Thinking skills to the teaching of various subjects. Mathematics and Science (Barcelos & Silveira, 2012; Weintrop et al., 2016), Biology and Physics (Sengupta et al., 2013), Language and History (Lee, Martin & Apone, 2014) and Informatics (Rodriguez et al., 2013, 2017), are some of the areas in which Computational Thinking concepts and practices find application, demonstrating and enhancing its interdisciplinary.

Despite the recognition of the importance of Computational Thinking, however, there is a lack of empirical research on its integration across the full range of K-12 education (Atmatzidou & Demetriadis, 2016). Questions related to this integration touch on issues such as:

• appropriate subjects

- educational approaches
- age levels
- software tools and hardware infrastructure
- appropriate assessment methods

Such questions still constitute a major concern for the research and educational community (Fessakis et al., 2018). In addition, the preparation and support of teachers for CT integration constitutes a critical challenge. Currently teachers need to confront with the ambiguity of the CT integration in education. The ambiguity is also intensified by the confusion among the teachers regarding the above factors, but also by the concept of CT, as such (Fesakis, Prantsoudi & Mavroudi, 2018; Fesakis & Prantsoudi, 2019; Yadav et al., 2011; 2014).

In several European and American countries, education systems have already set a strategic goal for the development of CT (EC-COM (2018) -24 & 22; Parliamentary Standing Committee on Education, 2016) and the concept already holds a place in existing curricula and educational practices in use, both in-school and out-of-school contexts (Mannila et al., 2014). A systematic review of the literature, however, highlights the fragmentation of CT research, both at the level of concepts, as well as at the level of teaching methodology and practice. Methods that have been explored and proposed for teaching the concept of Computational Thinking and its individual dimensions include the use of educational robotics activities (Atmatzidou & Demetriadis, 2016), the combination of educational robotics with digital games, (Leonard et al. 2016), CS unplugged activities (Rodriguez et al., 2017), or a combination of digital and traditional games (Wu & Richards, 2011; Lee et al., 2014). The interdisciplinary nature of the concept is proposed to be illustrated through modeling and simulation in the context of STEM education (Sengupta et al., 2013), while digital storytelling software (Storytelling Alice SA, Alice 2.2) and 3D game programming are also suggested (Werner et al., 2012).

Additional proposals include unplugged and kinesthetic activities, interdisciplinary projects, use of programming to implement dimensions of Computational Thinking, digital storytelling, educational robotics, interactive card and poster creation, experimentation, and simulation, as well as educational games (Mannila et al., 2014). Weintrop and his colleagues (2016) emphasize the interdisciplinary application of Computational Thinking, proposing a framework for integrating it into Mathematics and Science courses through appropriately designed activities. The contribution of unplugged activities in eliminating the misconception that CT is solely related to computer use, is also considered important (Rodriguez et al., 2017).

In terms of integrating Computational Thinking into compulsory education curricula in Europe, one can currently (2019) distinguish three trends:

1. Curriculum Renewal Process: United Kingdom, France, Finland, Poland, Italy, Turkey, Denmark, Portugal, Malta, Croatia, Scotland.

- **2. Design for CT inclusion:** Czech Republic, Ireland, Norway, Wales, Greece, the Netherlands, Sweden.
- **3. Investing in long-term tradition in computer science:** Austria, Cyprus, Israel, Lithuania, Hungary, Slovakia.

Introduction is mainly focused on Secondary Education, while efforts are also being done in Primary Education.

Yadav et al. (2011; 2014) highlight the significance of the role of teachers and their preparation in such an endeavor. This is where CompuT project focuses. Appropriate preparation of teachers through theoretical training along with design experiments in real classrooms conditions.

The comparative analysis of the current situation on CT integration in the national educational systems of the partner countries will be published as Appendix II of this guide in the second version of the document.

The systemic integration of CT in the educational system, at a national level, requires the establishment of corresponding policies, the development of CT curriculum (and/or the integration of CT in the curriculum of the existent subjects), the supply of appropriate educational resources (textbooks, learning scenarios, educational software, digital learning environments, educational materials (e.g. robotics kits, physical computing kits), as well as the professional development and constant support of teachers.

CompuT project contributes to the integration of CT in European education by comparatively analyzing the current situation regarding CT in the educational systems of the partner countries, along with the creation of educational resources and the training of teachers. To support the integration of CT in national educational systems, several other international initiatives have already been developed. Some of the most significant ones are presented in the next section, since they can lead teachers' CT pedagogical and content knowledge, while at the same time provide educational material, learning scenarios and training resources.

5. International Initiatives for CT Integration in Education

Several initiatives outside the context of formal education had initially sought to address the gap between the social needs for Computational Thinking skills and provided education. These initiatives - some of which spread internationally - were mainly developed in informal settings, are therefore not necessarily in line with the constraints of the national curricula and tend to enhance participatory technology culture. The following Tables outline some of the initiatives that have been implemented, both at European level (Table 4) and at a global level (Table 5).

Initiative	Description
CodeWeek.	http://codeweek.eu/: EU code week is run by volunteers, it was launched in 2013 and in 2018, 2.7 million people in more than 70 countries around the world took part in it.
all you need is C<3DE	http://www.allyouneediscode.eu/el: This European initiative brings together a number of various stakeholders to promote coding and computational thinking at all levels of education, as well as informal settings. The project was created in June 2014 under the auspices of the European Commission.
Barcessere Supported by BTO	http://barefootcas.org.uk/: Since 2014, the Barefoot project has been supporting primary school teachers across England prepare for the changing computing curriculum. The project content comprises educational scenarios, teacher resources and workshops. At the end of 2018, Barefoot had reached over 2 million children and over 70,000 teachers are part of the Barefoot community.
	https://www.computingatschool.org.uk/: The mission of this initiative is to provide leadership and strategic guidance to all those involved in Computing education in schools.
Computing at School	

Table 4. European Initiatives for the Integration of Computational Thinking

Initiative	Description
C O D E	https://code.org/: Code.org was launched in 2013 and is a nonprofit organization dedicated to expanding access to Computer Science in schools and increasing participation of women and underrepresented minorities. Tens of millions of students (Hour of Code) and 1 million teachers (Code Studio) have participated to date.
CoderDojo	https://coderdojo.com/: CoderDojo is a global movement of free, volunteer-led, community- based computer programming clubs for young people, 7-17 years old. 58,000 young people are being creative with technology in 1876 active "dojos" with the help of 12,000 volunteers in 108 countries.
Bebras	www.bebras.org/: Bebras is an international initiative aiming to promote Informatics (Computer Science, or Computing) and computational thinking among school students of all ages. More than 2,780,000 participants from 54 countries participated in the 2018 challenge.
	http://csunplugged.org/: CS Unplugged is a collection of free teaching material that teaches Computer Science through engaging games and puzzles which do not require the use of a computer.
<pre>{code club}</pre>	https://www.codeclub.org.uk/: A global community of volunteers, educators, and partners to run free coding clubs where 9 to 13-year-olds build and share their ideas. There are currently over 13,000 clubs in over 160 countries, supporting over 180,000 young people learning to code each week.
Made <mark>w/</mark> Code Google	https://www.madewithcode.com/: Google- funded initiative to attract girls to programming and reduce the gender gap in technology. Provides programming learning resources and material.

Table 5. Global Initiatives for the Integration of Computational Thinking

Recognizing, however, that the pedagogical value of any innovation cannot be proven in practice unless there are measurable results, the area of evaluating Computational Thinking becomes particularly relevant. As part of the search for appropriate assessment methods, the idea of creating a competition to evaluate students' knowledge on the fundamentals of Computing and Computational Thinking (Dagienė, 2005; 2006) prospered.

5.1. Bebras Challenge

Bebras International Challenge on Informatics and Computational Thinking, hereinafter referred to as Bebras, was born in 2004, in Lithuania, by Prof. Valentina Dagienė from the University of Vilnius, aiming to promote Informatics (Computer Science or Computing) and Computational Thinking among school students at all ages. Today, it constitutes the extracurricular Informatics activity with the world's largest audience. The challenge has been held annually since 2004 and is an international initiative of the homonymous international community (The Bebras Community, 2017). The name Bebras comes from the Lithuanian word for beaver, a clever, hard-working, and determined animal, whose features inspire both the creators and participants of the challenge.

The challenge is aimed at students of all levels of education, from preschool to high school, and its spread has been rapid. The first event was held in 2007, with the participation of 50,000 pupils from 6 countries, and since then a growing number of countries are organizing Bebras challenges. In 2017, Bebras took place in more than 45 different countries with approximately two million students participating (Bellettini et al., 2018), while for the 2018-2019 school year, the challenge was organized in 48 countries with a total of 2,634,974 students (https://www.bebras.org/).

The International Bebras Community is an association of organizations, from several countries, active in information technology and education. Community structure includes, at national and international level, the National Bebras Organizer (NBO), the International Bebras Committee (IBC) and the Bebras Board (Bebras Board-BB). The International Bebras Committee (IBC) is comprised of (i) full members (over 45 countries today) and (ii) Observers, including Greece and 20 other countries. The Bebras Board (BB) is elected through fully democratic processes and is the executive body of the community, world-wide experience and know-how have accumulated, leading Bebras to be a multi-productive challenge today. In addition to organizing challenges of different levels/categories, community members organize a variety of other activities such as open-ended discussions on Informatics and CT, task solving seminars, teacher training workshops and task creation workshops.

5.1.1. The Tasks

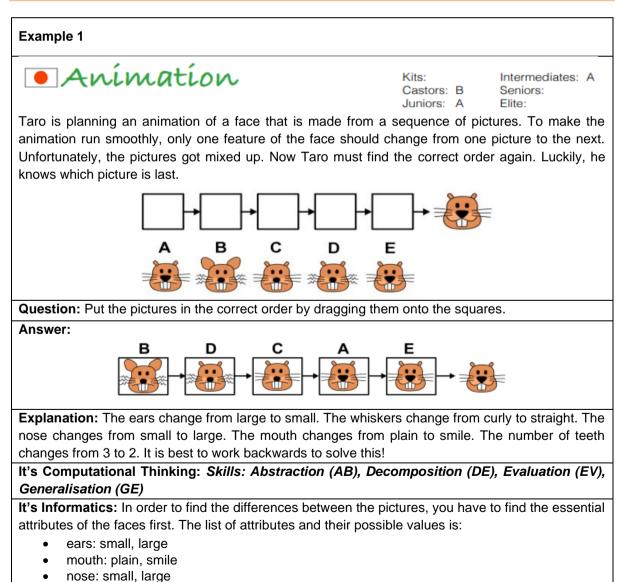
The purpose of Bebras Challenge is to raise awareness of pupils on Computer Science and Computational Thinking, through a set of inspirational tasks that are tailored and distributed across age groups. Bebras tasks are developed collaboratively, in a special workshop held annually for this purpose (International Bebras Tasks Workshop), with the participation of CS scientists and Educators from all over the world. Each countrymember of the Bebras community is represented by the National Organizer of Bebras (NBO), a non-profit organization responsible for organizing the Bebras competition at national level. Each country provides a set of task proposals, and the whole repository of task proposals is then discussed at the workshop. The national contest organisers create their national task set by selecting tasks from this repository. The tasks are independent of prerequisite knowledge and involve concepts that are central to Informatics. Bebras tasks' developers seek to motivate students to deal with Informatics and to think deeper about technology. Taking into consideration the lack of a joint Informatics curriculum, they would also like to cover as many topics on Informatics and computer literacy as possible.

A good Bebras task should be:

- representing informatics concepts
- easily understandable
- solved within 3 minutes
- short, e.g., presentable at a single screen page
- solvable on a computer without the use of other software or paper and pencil
- independent of specific systems
- interesting and/or funny

Bebras tasks are appropriately divided into age groups, depending on their level of difficulty. For the categorization of the tasks, a two dimensions scheme proposed by Dagienė et al. (2017), has prevailed. The dimensions evaluated according to this scheme are a) Computer Science Domain and (b) Computational Thinking Skills, developed through each task. Computer Science Domains can come from one of the following categories (Dagienė, Sentance, & Stupurienė, 2017):

- Algorithms and Programming
- Data, data structures and representations
- Computer processes and hardware
- Communication and networking
- Interaction systems and society

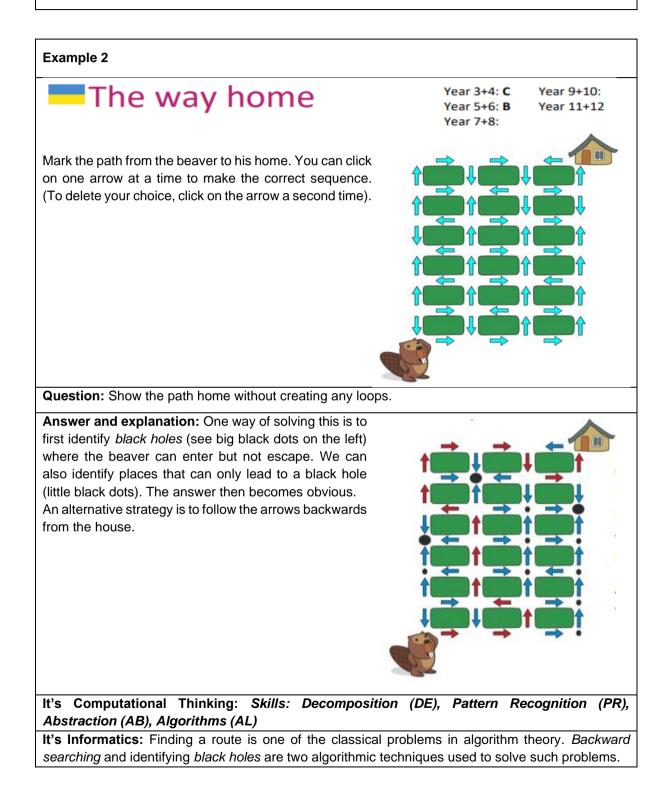

On the other hand, the Computational Thinking Skills that are used for the categorization are the Computational Thinking dimensions proposed by Computing at School (Dagienė, Sentance, & Stupurienė, 2017; Csizmadia et al., 2015; Selby & Woolard, 2013):

- Abstraction (AB)
- Algorithmic Thinking (AL)
- Decomposition (DE)
- Evaluation (EV)
- Generalization (GE)

The two above dimensions of categorization are embedded in an accompanying field, "It's Computational Thinking" that is added to the analysis of the solution of each task in a special booklet that is distributed after the completion of the contest. Each task is assigned one Computer Science Domain and up to 3 Computational Thinking Skills.

Bebras challenge is generally intended to be a fun, controlled learning experience with a relatively short duration for the participating students. The challenge is already proving to be a successful model of non-formal informatics education and at the same time an attractive and effective tool for promoting problem solving and CT. However, the need to encourage the participation of both the students and teachers should not be neglected.

What follows are three examples of Bebras Tasks, based on the official task template of the Bebras Community. The certain tasks have already been used in challenges around the world and were presented in the solutions booklets in Australia and the UK.



5.1.2. Bebras Tasks example

- number of teeth: 2, 3
- whiskers: curly, straight

Face A can now be described as: *(ears: small, mouth: plain, nose: large, number of teeth: 3, whiskers: straight).* In computing, it is very usual to model things from the real world as "objects" that have attributes and values.

Retrieved From: UK Bebras Computational Thinking Challenge Answers Booklet (2015), available at: http://www.bebras.uk/uploads/2/1/8/6/21861082/ukbebras2015-answers_1.pdf

Retrieved From: Bebras Australia Computational Thinking Challenge 2018 Solutions Guide (2018), available at: https://www.bebras.edu.au/wp-content/uploads/2019/02/Bebras-2018-Solution-Guide.pdf

Example 3 Soda shop Kits: Intermediates: Castors: Seniors: R Juniors: Elite: B Four friends are on a road trip and decide to stop to get a drink at a nearby soda shop. Each of the friends has a preference for which drink they want as shown in the table below. Anna The soda shop offers four drinks, however, they are running out of stock and only have one of each. The drink each person prefers most is listed below with a Bernard number of hearts in the column heading yo show how much they like the drink. Task: Christine Assign a drink to each person by clicking on the drink in his or her row. Make sure you get the maximum amount of hearts! Daniel Answer and explanation: The maximum amount of hearts is 14. Anna Bernard Christin Daniel It's Computational Thinking: Skills: Abstraction (AB), Algorithmic Thinking (AL), Evaluation(EV) It's Informatics: Optimisation is a very important part of Computer Science. In this situation, we are

trying to maximise the happiness of the group. Optimisation problems are ubiquitous in Computer Science.

This problem is a type of matching problem. Here, friends are trying to get matched to the best possible drink to make the group happy. These problems are extremely important in the real world.

Several constraints in many cases of the real-world problems make it harder to find a set of matches that will benefit everyone the most.

Retrieved From: UK Bebras Computational Thinking Challenge Answers Booklet (2017), available at: http://www.bebras.uk/uploads/2/1/8/6/21861082/uk-bebras-2017-answers.pdf

6. Scenario resources

This section presents an illustrative selection of learning scenarios to better attribute the concept of incorporating Computational Thinking in a classroom. The selected scenarios do not require special equipment, nor prior knowledge, to be implemented, and they are parts of the resources collections of some initiatives mentioned in the previous section. These indicative scenarios will serve as a basis on which to base the development of new scenarios within CompuT.

TITLE	DESCRIPTION	CURRICULUM LINKS	GRADE	LINK	CT DIMENSIONS	
Teaching London Computing – Computing at School (CAS) & CS4FN						
Pixel Puzzle Pictures and CT	Follow an algorithm to solve Color-by-number and logical thinking puzzles to understand image representation.	Computing, Maths, Art, History	РК-9	https://teachinglond oncomputing.org/pi xel-puzzles/	AL, AB, PD, RE, LR, GE	
Pixel Puzzle Pictures and CT	Solve word search puzzles and learn about computational thinking and search algorithms.	Language	6+	https://teachinglond oncomputing.org/w ord-searches/	AL, PM	
The tour guide activity	Devise a tour that gets a tourist from their hotel to all the city sights and back to their hotel.	Computing	8+	https://teachinglond oncomputing.org/th e-tour-guide- activity/	AB, RE, AL, SE, DE, EV	
Barefoot Cor	nputing - Computing at School	(CAS)				
World map logic	In this activity students look at sequences of commands to predict what they do. They use logical reasoning to explain their predictions before programming and testing their commands to see if their predictions are correct.	Geography	4-6	https://www.barefoo tcomputing.org/reso urces/world-map- logic-activity	AL, LR, RE, EV	
Solar System Simulation	In this activity pupils create a simulation of the Earth orbiting the Sun using Scratch.	Science	4-6	https://www.barefoo tcomputing.org/reso urces/solar-system- simulation	AB, AL, RE, MO, SIM, EV	
Tut, clap or jive	pupils create hand clapping, hand tutting or hand jive sequences of movements. Pupils break the sequence of actions down into parts and in	Physical education	4-6	https://www.barefoo tcomputing.org/reso urces/decompositio n-unplugged- activity-ks2	AL, PM, PD, DE, GE	

Table 6. CT Scenario resources

	so doing are decomposing. Pupils link this idea to breaking problems down when creating computer programs such as animations or games.				
Sudoku unplugged activity	Students work in pairs to complete sudoku puzzles, using logical reasoning.	Maths	5+	https://www.barefoo tcomputing.org/reso urces/logical- reasoning- unplugged-activity	AB, LR, PD
Bug in the Water Cycle	Students are challenged to detect and correct the error in a number of water cycle programs.	Computing, Science, Geography	5-6	https://www.barefoo tcomputing.org/reso urces/bug-in-the- water-cycle	AB, GE, LR, DE, EV
International	Society for Technology in Edu	cation (ISTE)			
Research Skills	Students will demonstrate the ability to expand or restrict a set of internet search results by changing the search terms or adding Boolean modifiers to the search terms.	Interdisciplinary	6-8	https://id.iste.org/do cs/ct-documents/ct- teacher- resources_2ed- pdf.pdf?sfvrsn=2f	LR, DA, DR, AB, DC, MO, SIM, AUT, AL, GE, EV
Alternatives to the Civil War	The students will construct the basic outline of an adventure game to show how the war might have been avoided or accelerated had different decisions or actions occurred earlier.	Interdisciplinary	9-12	https://id.iste.org/do cs/ct-documents/ct- teacher- resources_2ed- pdf.pdf?sfvrsn=2f	AB, SE, AL,
Traffic Jam	Students construct a conceptual model (computer- based or paper based) of the relationships between the variables affecting a traffic jam problem.	Interdisciplinary	8+	https://id.iste.org/do cs/ct-documents/ct- teacher- resources_2ed- pdf.pdf?sfvrsn=2f	AB, LR, PD, DR, DA, MO, SIM, RE, TE

The above scenarios are indicative and can be transformed and adapted to the needs of each teacher and classroom. The initiatives' collections include a large number of learning scenarios to help teachers integrate CT in their classrooms and the interested reader can refer to their websites. In the context of this guide, these scenarios serve as examples that will help members of the CompuT community create their own scenarios.

7. Learning Design of CT integration scenarios

7.1. Teaching as a design science

Adopting, in the context of CompuT, the modern view, so aptly put by Laurillard (2012), teaching is considered as the art and science aiming to create powerful experiences to learners with the formally defined goal of developing their personal knowledge and capabilities. Teaching is less a kind of a *theoretical science*, aiming to describe and explain some aspect of the natural or social world, but rather a *design science* aiming to improve the world. According to this view, teaching resembles engineering, architecture, and computer science more than history and physics. Design sciences are not only aiming to understand and explain how things are, but in addition, they are concerned on how things should be (Simon, 1996). As Laurillard (2012) states "A design science uses and contributes to theoretical science, but it builds design principles rather than theories, and the heuristics of practice rather than explanations, although like both the sciences and the arts, it uses what has gone before as a platform or inspiration for what it creates. Teaching is more like a design science because it uses what is known about teaching to attain the goal of student learning and uses the implementation of its designs to keep improving them." (p. 1).

Design of teaching and learning is a complex interdisciplinary problem requiring the control of several parameters and the coordination of many participating actors to shape proper human interactions, to support knowledge construction. For the thorough approach of the teaching design challenge, a more detailed model of its content is necessary. To support this purpose, we propose Goodyears' (2015) model of the teaching design.

7.2. What teaching design involves

Goodyear (2015) considers teaching as a form of design science "that uses a distinctive mode of thought and set of tools and methods" and further elaborates in the teaching design problem proposing a model which uses the learning task as the key building block of the pedagogical designs. In the Goodyear's approach there are three key learning design components: good *learning tasks*, supportive physical and digital *environments*, and modes of *social organization*. As depicted on Figure 1, this teaching as design conception brings the concept of "learning activity" into focus. The implementation of a learning task assignment outcomes a learning activity. In the context of CompuT, the terms activity and task are often used interchangeably, as the prescription of learning experiences, but in fact they slightly differ. A task is the specification of a work unit, with specific deliverables, that is assigned to students. To implement a task, students develop real activity which outcomes their learning experience. So, tasks are pretexts for learning experiences which are developed during the corresponding learning activities. These pre-specified learning activities

have to be designed as a roadmap which guides students through the learning process but does not predetermine what they will do in an overdetailed manner (Dillenbourg, 2002). Although they are given a *task* to complete, students are free to explore and re-shape their learning environment by using *the tools and resources* provided and choose how they will interact with *other people in groups or individually*.

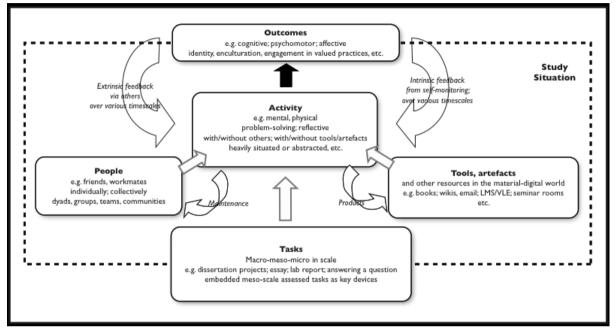


Figure 1. Teaching as design conception by Goodyear (2015).

This way, they actively participate in the learning process, leading to predetermined *learning outcomes* that have been caused by their own effort to make meaning in the context of the learning activity. In addition, students receive *feedback*, both extrinsic from others and intrinsic from their own self-monitoring, which makes it easier for them to repeat the techniques they followed and the actions they took when solving this activity, as well as to apply them to similar activities.

Consequently, a teaching designer should prescribe learning activities inventing and/or selecting sequences of learning tasks, which the learners implement interacting with others and using tools and artefacts in order to obtain pre-determined outcomes. This is the main challenge for the designer. In addition, the designs should be as much authentic, attractive, and engaging as possible, so as to be consistent with the modern pedagogical models and learning theory. Learning design is similar to some kind of entertainment design, except from the fact that the primary aim of a teacher is to obtain learning goals, not just fun.

In any case, teaching design produces a kind of prescription of action which is usually called teaching or learning plan, lesson plan, learning script or pedagogical scenario. Lesson plans are usually much simpler and are exclusively intended to teachers. On the contrary, scripts and scenarios are intended to both teachers and students and are often accompanied by learning material and/or implementation data and feedback

which are important for the improvement of the design implementation. Hereafter, we are focusing on scripts.

7.3. Pedagogical Scenario or Learning Script as the product of teaching design

The outcome of teaching design usually consists of a set of learning resources, the description of a learning environment and a set of steps-instructions which shape the learners' interactions to solve a problem or complete a sequence of tasks. This set of instructions, along with the description of everything needed for their implementation. is called a learning script or pedagogical scenario (Dillenburg, 2002). Often the learning scripts have also a kind of plot and roles that the learners will perform. This approach of teaching as storytelling (Egan, 1989) makes the learning tasks authentic and engaging, both, mentally and emotionally, for the learners. The efficient shaping of learners' interactions (learner-learner, learner-teacher. learnerresources/environment) to obtain the learning outcomes determines the effectiveness of the scenario. Learning scenarios should be detailed up to a level that learners will have no doubt on what they are asked to do, but also no overdetailed (overscripting) so that learners can always choose alternative ways to do thinks and trigger their thought instead of just executing simple commands. Some general forms of effective collaborative learning scenarios such as Jigsaw, ArgueGraph and the Grid, are described by Dillenburg (2002). To take advantage of the perspective of teaching as a design science and be able to share the teachers' expert knowledge, it is essential to use a mean to externalize the learning/teaching designs of the teachers. These external representations of the learning/teaching design could be shared and annotated with meaningful comments, results, notes, assessment, and other information concerning their implementation.

7.3.1. Learning design representation methods

Apparently, the next phase of the teaching design application, is the representation of the teacher's designs. The formalism of a learning design (e.g., the blueprints in terms of building design) is still in contention, partly because of the multiple origins of interest in design approaches (e.g., Education Science, Computer Science, etc.) (Dalziel et al, 2016). Since there is not a commonly acceptable standard formalism for the representation of teaching designs, we need to adapt a specific representation for the scopes of CompuT project, that is a *learning script template*. Before moving on with the presentation of the learning scenario template which will be used in the context of CompuT, we briefly present some common methods used in other cases.

According to Agostinho (2006), "Learning design is a representation of teaching and learning practice documented in some notational form so that it can serve as a model or template adaptable by a teacher to suit his/her context". For this reason, there are

many different learning design representations, which are presented in a wide variety of forms, for example plain text, case studies, or even flow-charts.

Designs as case studies: The simplest method to represent a learning design and/or a pedagogical pattern is to use textual description to document the design as a case study. This informal way, apart from having the advantage of expression freedom, also supports the detailed description of the design pattern and the understanding of its implementation in real classrooms. On the other hand, the lack of structure or diagrammatic means of simple textual descriptions may lead to difficulties in communication, comparison, and generalization of the solution in new contexts.

Design patterns as solution templates: Design patterns could be represented by using the "Teaching Method Template" (Laurillard, 2012, p. 212), which describes a teaching design in terms of: 1) general data, e.g. Summary, Rationale, Learning outcomes, Duration, Group size, Learner characteristics, and Setting; 2) detailed teaching information, e.g. Sequence of activities, Roles, Assessment method, Resources, References; and 3) comment sections, such as Teacher reflection, Student feedback, and Peer review. Such a form is commonly used mainly because of its similarity to the lesson plans that teachers are familiar with.

Diagrammatic representation of learning designs: Design patterns could be represented using diagrammatic techniques. There are several graphical grammars proposed for learning designs e.g., flow charts, Petri-nets, UML, LAMS etc. Some of the diagrammatic techniques are quite formal to be interpretable by computers software. In this section we briefly describe one of the first diagrammatic representations of learning designs proposed in the pioneering Learning Design project funded by the Australian Universities Teaching Committee (AUTC) (Oliver et al, 2002, 1999). The Learning Design Project considers a "graphical formalism" for the learning design, which assigns different symbols on each of the three learning design elements: *triangles* for **resources**, *rectangles* for **tasks**, and *circles* for **support**.

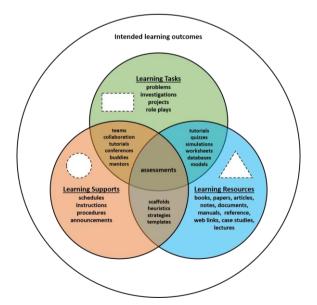


Figure 2. Components of a Learning Design

These elements, presented in the form of a flow chart, depict the chronological order and the interactions that occur between them. Students need to use and interact with the provided resources, to implement the tasks/learning activities that are assigned to them, getting support throughout these processes. Figure 3 below presents an example of a simple learning design sequence with concurrent activities.

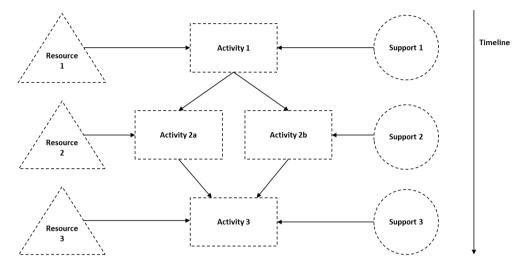


Figure 3. Example of a Learning Design sequence

The elements of the learning design process *"highlight the importance of planning specific roles for learners, the teacher and the technology in the learning environment"* (Oliver et al, 2002, 1999). In the rapidly changing learning environments of today, these roles need to be reconsidered.

7.3.2. Representation of learning scenarios in the context of CompuT

In the context of Comput we shall use the learning scenario template described in Appendix III. The proposed template is a synthesis of various good practices, such as Europeana1, Aesop's project2, CS Unplugged, CSTA/ISTE CT Resources for K-12 Educators project, adapted for the needs of CT and CompuT. For the clarification of the template some specific examples of use are presented in Section 8.

7.4. Design patterns as a means of sharing learning design experience

As teachers invent and implement in practice several learning scenarios, they gain *teaching experience*. This means that teachers discover which methods or techniques work more effectively through their interaction with students. It is crucial that all this experts' knowledge is communicated, that is, articulated and so that other teachers can build on it and continue the innovating, testing, improving, sharing cycle. Therefore, it is important to build a community of researchers and practitioners to help maintain a knowledge base concerning the teaching/learning designs, so that we can

¹ http://www.europeana.eu

² http://aesop.iep.edu.gr

improve education quality by studying the designs and their learning outcomes. Laurillard (2012) argued on that idea as follows: *"Ideally, teachers should be able to enact design science as part of their normal professional practice and have the means to act like design researchers themselves, i.e., documenting and sharing their designs."*, (p. 7).

In other words, what if after several implementations of similar learning scenarios, we could identify a generalized form of them, which could be applied in several similar situations that share some common features and conditions? This generalized form of scenario constitutes a compact knowledge representation for the solution of a group/family of learning problems and it is called learning design pattern e.g., the jigsaw script for the formulation of collaboration in several contexts is an example of a learning design pattern (Kobbe et al, 2007).

In general, "A design pattern is a semi-structured description of an expert's method for solving a recurrent problem, which includes a description of the problem itself and the context in which the method is applicable.... Design patterns have the explicit aim of externalizing knowledge to allow accumulation and generalization of solutions and to allow all members of a community or design group to participate in discussions relating to the design." (Mor & Winters, 2007). The key elements of a design pattern are the "problem", the "context", the semi-structured description of the "solution", and the fact that this is "externalized knowledge" (Goodyear, 2005). Design pattern is a key construct for design sciences and refers to techniques of representing generalized reusable solutions to significant problems, these compact knowledge representations could be e.g., general blueprints for specific types of bridges or the general design of an electronic amplifier etc. Design patterns are usually drafted, shared, reviewed, and refined through an extended process of collaborative conversation. Thus, design patterns have the potential to make a major contribution to the sharing of techniques and expert knowledge among developers of learning activities and teachers. In the context of CompuT we will be working on the pedagogical scenario level of abstraction and, if possible, we aspire to propose some pedagogical patterns generalizing the tested scenarios.

7.5. Design methodology - A model for the process of learning design

The methodology presented within the framework of this project -as a starting pointconstitutes an adaptation of an operational model for designing educational scenarios which incorporate ICT, proposed by Komis et al (2013). "This framework is based on a conceptualization where methodological and pedagogical issues are suitably integrated to facilitate the teaching and learning process, ... Moreover, a structured and systematic educational intervention should give emphasis on and carefully select the appropriate teaching approaches. Such issues refer to defining an objective and the goals which meet early childhood children's needs, to using additional teaching strategies, to comprising didactic transposition on programming concepts and to developing appropriate teaching material. These teaching practices are based on pedagogical principles such as project-based learning, child-centered learning, collaborative learning, and well-organized learning environments." (Missirli & Komis, 2014). The framework was invented for learning design in the preschool level but in fact it is independent of the students' age level.

An educational scenario refers to both teachers and students and describes a complete instructional intervention, that is, the specific objectives/goals, the potential learning difficulties, and the implementation process, which is usually structured as a series of appropriate activities, along with the proposed teaching strategies, assessment procedures, and so on.

The specific model draws from the TPACK framework proposed by Mishra and Koehler (2006). TPACK (Technological Pedagogical Content Knowledge) provides a theoretical model for effective teaching using ICT and as illustrated in Figure 4, it comprises three basic components presented as three intersecting circles and representing content knowledge, pedagogical knowledge, and technological knowledge.

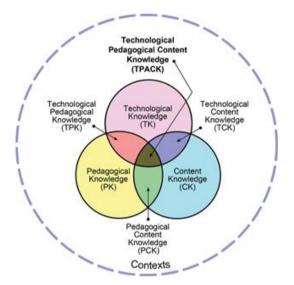


Figure 4. The TPACK Image (rights free - taken from http://tpack.org/).

The TPACK model addresses the fact that teaching with technology demands both, deep knowledge of subject matter contents and enhanced learning pedagogies.

The seven (7) phases of the methodology presented in this guide (Fig. 5), albeit distinct, are highly interdependent. Although some of them could be developed in parallel, they should be viewed as discrete steps of a logical progression.

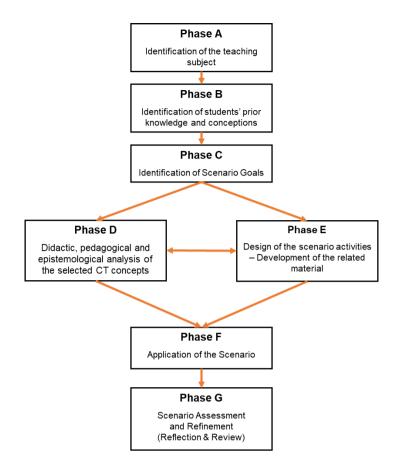


Figure 5. The learning scenario design process

The 7 phases of the proposed methodology are briefly presented below.

Phase A - Identification of the teaching subject: An educational scenario is usually designed aiming to address one or more main concepts in a curriculum subject area. It may also be interdisciplinary, targeting concepts from different subject areas while in some cases it may even address concepts beyond the curriculum. It should be noted at this point that, since one of the primary objectives of the scenarios to be developed within the CompuT project is the cultivation of CT, this parameter should be considered when selecting concepts. In addition to the subject area(s) involved, in this phase it is also necessary to specify information, such as:

- The title of the Educational Scenario
- The level of the target students' population
- The prerequisite cognitive skills
- The CT dimensions involved

Phase B - Identification of students' prior knowledge and conceptions: Issues that the designer/teacher has identified through his/her experience or difficulties/problems that have been documented in the literature and are related to the children's perceptions, representations, prior knowledge and potential errors, should be extensively discussed in this section.

Phase C - Identification of Scenario goals: The teaching objectives –often referred to as "learning outcomes"- of the educational scenario are clearly formulated and listed in this step. Furthermore, the learning outcomes are presented, grouped with respect to various criteria such as:

- Subject matter
- CT dimensions involved
- Use of ICT (digital literacy)
- Learning process (learn how to learn)

The learning outcomes describe what students will be able to do after having completed the educational scenario, actual behaviors that are both observable and measurable. The objective statements should, therefore, contain "active" verbs such as analyze, compare, describe, distinguish, locate, list, plan, etc. Verbs, such as know, realize, think, etc., that express feelings, thoughts or similar, should be avoided in the description of the knowledge outcomes.

Phase D - Didactic, pedagogical and epistemological analysis of the selected CT concepts: As Dagdidelis & Papadopoulos (2010) argue, "The importance of the concepts taught in school is tightly connected with the present opinion about the status of these concepts in the knowledge system that is "transmitted" by the school. The relative value of these concepts is determined by a rather complicated framework of didactic principles which in any case change very often. For example, some concepts or methods might be extremely important during a historical period of time and literally disappear in another... In other cases, the significance of the taught concepts depends on their conceptual connection with other ones and on their future usage...". Very often, the development of new methods or concepts and their evolution is a consequence of developments in the relevant discipline or social practices associated with them. All these evolution phases cannot be presented in class, of course. However, the aware teacher can organize his/her lesson in a way that highlights these concepts. Moreover, the teacher should take into consideration the possibility of similar concepts existing in other lessons or even everyday life. The existence of such interconnections can be very productive (from a teaching point of view). In the case of the educational scenarios on CT dimensions, it is important that the scenario designer provide the relation with the CS domains.

The didactic and pedagogical analysis refers to the body of knowledge related to issues such as the representation, description and transformation of scientific concepts and processes, misconceptions, pre-existing knowledge or cognitive difficulties of students, as well as in pedagogical strategies and techniques that are effective in practice, etc.

Phase E - Design of the scenario activities – Development of the related material: This, undoubtedly, constitutes the most crucial phase of the scenario development, since all the procedures that both students and teachers have to follow in order to meet the scenario goals, are defined here (Komis et al, 2013). There are at least four types of tasks-activities that an educational scenario should incorporate:

- Tasks-Activities for the cognitive and psychological preparation of the class, as well as for the detection of any prior knowledge.
- Tasks-Activities for the subject teaching
- Consolidation-Validation tasks-activities (activities for the comprehension and the integration of new knowledge)
- Assessment tasks-activities.

Scenario tasks-activities - to a large extent - determine the form and content of the accompanying worksheets that will be shared to the students for classroom implementation. Each activity implements one or more didactic strategies or teaching techniques.

In addition to the design and the development of a series of activities, the scenario designer should also provide clear information with regards to:

- The management of the process
- Classroom organization
- Both the theoretical and the teaching approaches of the scenario, that is, the underlying learning theories and the teaching strategies, involved.

Phase F - Application of the Scenario: Usually, the first application of the scenario in a real class setting should be considered a pilot one, performed with the objective of evaluating its effectiveness and making proper adjustments for its later implementation. The development of the scenario, thus, follows a spiral procedure. The first, pilot intervention is expected to highlight the weak points of the scenario, both in terms of process and content.

Phase G - Scenario Assessment and Refinement: The findings of the previous phase will provide information to help refine the educational scenario. The relevant documentation including comments, teachers' suggestions for potential extensions, etc. should also be included here.

Undoubtedly the learning design process is much more complex than any almost linearly described procedure of consecutive steps. The designers will have to repeatedly come back to previous steps of the design process; they can skip steps or implement them in a different sequence. Nevertheless, the 7-phase model presented above could be very useful at the beginning of the teaching design procedure, because it provides a way of beginning and reaching an end with a first draft of the scenario. It is also useful as a reminder of several important decisions which should be taken during the teaching design process.

7.6. Teaching techniques and practices of Computational Thinking

Teaching design differs according to the subject it concerns, as there are specific teaching methods and Didactics related to each field. Thus, the creation of learning scenarios for Computational Thinking should count on the existing techniques and practices. Such techniques are presented in the following chapter.

Even though CT is acknowledged for the central role it can possess in education (Freeman et al., 2017), still many issues concerning the teaching and learning of it remain open (Barr & Stephenson, 2011). Existing research has connected the learning/teaching of CT with modern and progressive learning/teaching methods and means, such as the use of educational robotics (Atmatzidou & Demetriadis, 2016), digital educational games (Mannila et al., 2014), modelling and simulation in STEM education (Sengupta et al., 2013), use of unplugged activities or interdisciplinary application of CT in the context of Mathematics and Science subjects (Weintrop et al., 2016). The selection of the teaching methods that will be used is probably one of the most important design decisions teachers have to make when planning the instruction process. There are several kinds of knowledge and ways to know e.g., analytical, experiential, and experimental, each of them valuable on its own way. Each kind of knowledge can be built more effectively using the appropriate teaching method, e.g., essay composition for analytical, role playing for experiential, and modelling/simulation for experimental knowledge. Teachers choose the appropriate teaching methods to employ according to the learning outcomes they aim to achieve for the learners, in the context of a specific curriculum. This section presents some of the existing teaching methods to be considered during the design of the learning scenarios.

Teaching technique or CT practice	Description
Tinkering	Tinkering is about hands-on experiences, trying something out to discover what it does and how it works. Children are natural tinkerers and creative learning experiences can result from their direct experience with materials, new tools, and skills, which are nowadays available following the recent technological and creative revolution (Martinez & Stager, 2019). Students often build up experiences of cause and effect ("if I do this, that will happen"), while trying ideas and experimenting. The freedom to explore things encourages their creativity and confidence (Bers, et al., 2014). When introducing any new digital device or software environment, tinkering is a great way to start. Teachers can foster imagination and creativity of their students by encouraging them to try out novel ideas, even those that do not seem applicable. Find out more examples and ideas about tinkering at: https://www.barefootcomputing.org/concepts-and-approaches/tinkering?lconltemUrl=tinkering

Table 7. Teaching techniques and practices of Computational Thinking

Learning by	Learning by Design (LBD) is an approach to learning science deeply based on project-based inquiry. LBD lays its roots in case-based reasoning and problem-
design	based learning and is used to help students get familiar with science concepts and skills fundamental to their future life and career. Students are intended to be able to tinker, learn and make decisions using the two major components of the LBD model: a) a design/redesign cycle, where they attempt to reach a solution based on their prior knowledge, working alone or in groups, comparing/contrasting ideas, addressing a design challenge and running an activity to examine that issue, and b) an investigation cycle, where students explore and experiment, reflect, apply, evaluate and generate a solution to the problem (Kolodner, et al., 2003). Students get involved in the concepts and learn them while completing the design challenge in front of them. For example, to learn about motion and forces they are asked to build miniature vehicles, or to learn about gravity, measuring and metric units they are asked to build a device for lifting heavy objects, or design a parachute made of coffee filters. Find out more about Learning by Design in Middle school at: https://www.cc.gatech.edu/projects/lbd/home.html
Collaborative problem solving	Collaboration is the process of two or more people or organizations working together to complete a task or achieve a goal (Marinez-Moyano, 2006). When people collaborate, better results can be achieved, and this also applies in the classroom. Students may collaborate on the solution of a problem or task and learn from each other's strengths and weaknesses, while working together and each one is contributing his/her specialism. Examples of collaborative work could be the creation of a shared document in Google Docs, the creation of a blog, or an entry in Wikipedia. Students could also collaborate on the schools' sports teams, or a school play or event. More ideas on collaborating at: https://www.barefootcomputing.org/concepts-and-approaches/collaborating
Collaborative	In collaborative inquiry students work in groups, supported by the teacher, and engage themselves in self-regulated activities. The aim is to create a new culture in classrooms, where motivation and interest in science fosters. Students use steps and methods similar with those that scientists use, trying to gain knowledge on scientific processes (Bell, et al., 2010). To solve a problem, students follow a 4 stages process: plan, act, observe and reflect.
inquiry	http://elearning.tki.org.nz/Professional-learning/Teacher-inquiry/Collaborative-inquiry
Learning by modelling/ simulation	Simulation technologies have applications in many industries nowadays, from healthcare to entertainment, and education could not be unaffected. A simulation is an approximate imitation of the operation, over time, of a process or system (Banks, et al., 2001). Modelling is the use of models (physical, mathematical, or logical representations of a system which contains key parameters of the physical model), as a basis for simulations in order to develop data that will help in making decisions (NSF, 2006). People create models in their minds (mental models), implicitly or explicitly, trying to make better sense of the world around them (Hanisch, et al., 1991). Thus, the use of modelling and simulation, both considered important tools of scientific reasoning, can help students understand science deeper and make better sense of the world that surrounds them (Penner, 2001). To introduce Computer Science into science classrooms within the context of modeling and simulation, code.org and Project GUTS (Growing Up Thinking Scientifically) partnered to

	deliver a middle school science program about life, physical and earth sciences, which you can find at: <u>https://code.org/curriculum/science</u> .
Learning by invention	The need to increase the number of innovators through the education system is critical. Piaget was one of the pioneers who supported the view that invention is the best way to understand (Piaget, 1973). Learning by Invention represents a situation where students identify the problem, experiment, collaborate, think critically, and engage themselves in hands-on experiences, to solve real world problems by creating inventions. Students become more creative and confident, while during the process some of them discover what it is, that they want to do for life. More information on Invention Education at: https://inventioneducation.org/
Learning by coding/ debugging	When facing a difficult problem or task, debugging, or troubleshooting, can be used to determine a suitable solution which may have not been reached on a first attempt. There are four steps in a debugging process: 1) the student must first identify that something is not working (for example, a robot programmed to do so, is not turning), 2) he/she must decide whether to keep the original goal or switch to an alternative (make a decision on whether he/she still wants the robot to turn, or simple moving is enough), 3) generate a hypothesis as to the cause of the problem (hypothesize that an instruction is missing) and 4) attempt to solve the problem (try to find the correct instruction and add it at the right place, so that the robot turns) (Bers, et al., 2014). According to previous research, children can acquire and transfer debugging skills on activities outside of the programming context (Salomon & Perkins, 1987). More information and resources about debugging can be found at: https://www.barefootcomputing.org/concepts-and-approaches/debugging
Pair programming	When it comes to programming, pair programming is a particularly effective way to write code. Two programmers share a workstation, with one of them, the 'driver', having control of the keyboard/mouse and actively implementing the program by dealing with the details of writing the code. The second programmer, called 'navigator' or 'observer', is looking at the bigger picture of the program, thinking strategically about the direction of the work, while instructing and guiding the 'driver'. The two persons frequently switch roles (Wiliams, 2001). In a class environment, two students can collaborate in such a way during any activity involving programming, thus enhancing creativity and collaboration. The two students regularly swap, so they both build up experience in each role. All the resources presented in previous sections that involve programming activities could be used in this case.

The selection of the proper learning method lies mainly upon the educator, who is expected to implement the method with his/her students. This selection depends on the certain circumstances and available material and largely affects the educational process and learning outcome. The methods described above are only a part of the existing ones and each teacher is free to select and adjust them properly to achieve his/her goals.

7.7. Some proposed action sequence patterns for the learning scenarios

The sequence of activities could follow traditional instructional models or more modern, progressive, and student-centered ones.

7.7.1. Traditional instructional models

Such as the nine events of instruction (Gagne, 1985; Gagne et al., 1992)3: Gain Attention, Inform Learners of the Objectives, Stimulate Recall of Prior Knowledge/Learning, Present the Stimulus (content or learning activity), Provide Guidance to the Learners, Elicit Performance from the Learners, Provide Feedback to the Learners, Assess the Performance of the Learners, Enhance the Retention & Transfer of the New Skills, Knowledge, and/or Attitudes. Or the use of similar simpler sequential models e.g., Students cognitive/emotional preparation activities - Teaching activities - Reinforcement Activities - Assessment Activities, or 1. Introduction/ warm-up, 2. Instruction/ presentation, 3. Practice (with feedback)/Application, 4. Review or Summary, 5. Evaluation/Testing etc.

7.7.2. Student-centered learning activity models

Alternatively, it is possible to develop the sequence of activities according to studentcentered models which are obviously consistent with the constructivist pedagogy and so support the production of corresponding pedagogy learning scenarios. Some wellknown such models, for example, are:

- **Inquiry learning models:** For example, the 5Es model for inquiry instruction: 5E=Engage, Explore, Explain, Elaborate, Evaluate or variations such as Engage, Explore, Reflect, Extend, Discussion etc.
- **Experiential models:** Using the Kolb's Experiential Learning Cycle: 1. Concrete Experience, 2. Reflective Observation of the New Experience, 3. Abstract Conceptualization, 4. Active Experimentation.
- **Experiment learning models:** Question, Background Research, Hypothesis, Test/Experiment, Analyze Data, Draw Conclusions, Communicate Results.
- **Collaborative Learning:** Using various CSCL-Scripts.
- Learning by design and/or making: Analysis, Design, Development, Implementation, Evaluation.
- The studio or the Future classroom model⁴: Organizing the learning activities in two or more of the six learning areas-zones of a Future classroom, namely: Interact, Exchange, Investigate, Create, Present, Develop.

³ Gagné, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design (4th ed.). Forth Worth, TX: Harcourt Brace Jovanovich College Publishers

Gagne, R. (1985). The Conditions of Learning (4th ed.). New York: Holt, Rinehart & Winston 4 http://fcl.eun.org

7.7.3. Assessment

In the beginning of the scenario, initial assessment could be helpful for diagnostical and awareness purposes. During the main sequence of the scenario some formative assessment activities should be included. At the end of the scenario, assessment activities along with structured feedback provision advance the opportunities for learning. To figure out the assessment method, the designer needs to answer questions like: *How will learning be identified? How will student learning and performance be detected?* According to the constructivist paradigm students should be assessed by applying the knowledge they have constructed in authentic situations.

7.8. Thematic units of Computational Thinking Scenarios in CompuT

In the context of the CompuT Project we have selected some thematic units to drive the development of the scenarios. It is quite often for teachers to start experimenting with CT through the implementation of ready learning scripts selected from online repositories. The design of a new CT learning script is a challenging and complex task. The proposed thematic units could facilitate the introduction of teachers in the design of CT learning scenarios. Interested teachers can take advantage of the suggested topics by combining them with key concepts and problems from his/her field of expertise. The designer should find common elements among the proposed thematic unit and the subject matter he/she wants to teach, to develop a CT learning script. Often, the underlying scientific relation among the related fields drives this effort e.g., Computational linguistics progress of automatic natural language understanding could be a starting point for language related learning scenarios.

A brief description of the thematic units proposed in the context of CompuT, as frameworks to start thinking from, for the design of CT learning scripts, follows.

• Educational Robotics and physical computing – STEAM scenarios

Use of educational Robotics kits in the context of interdisciplinary education to develop key competences such as mathematical literacy, scientific-technical and social competences. Educational Robotics tools enhance students' creative thinking and engage them with the STEAM field of education, to help them discover their talents and flairs and even possible future studies and careers. Students can program robots in science classes e.g., build a robot to work on problems related to motion, position, direction (mathematical education), or use graphical environments and program, virtual or real, robots to solve problems, or construct models of everyday objects (e.g., vehicles, machinery). It is recommended that students work in groups of 2-4 persons, to build social competence. Well known, widespread Educational Robotics kits include Lego Mindstorms or Wedo, Thymio, Cozmo, Parallax etc. Educational Robotics may concern the use and/or programming of ready-made devices, or the assembly of predefined building blocks, or the freer use of materials and design of a robotic synthesis. Some material parts of the Robots could be constructed using 3D printing.

The difficulty of the Educational Robotics learning scripts could be scaled in an analogous manner.

In a more flexible application of Educational Robotics, teachers could base the development of CT learning scripts on the use of Physical Computing and automation technology. The use of physical computing kits such as Arduino, Raspberry pi, micro:bit, makey-makey or other microcontrollers, empower STEAM education and help students develop skills that will allow them to become the scientists and artists of the future. Several educational resources are available for students from middle school to university. The physical computing device or the custom-made robotic synthesis could be build connecting the microcontroller to sensors and code. The sensors could be ready-made or build by the students. The design, construction, calibration, and code control of a sensor could drive the development of a rich learning scenario that combines science, CT, as well as the makers' movement values, thus providing the framework for meaningful learning that engages students into discovering knowledge by making things on their own5. You may encourage your students to create, or use sensors (even mobile phones have sensors) to measure things like changing weather, light, sound etc. An extension of the sensor building scenario would involve building a weather station (using sensors to collect weather data and analyzing them), programming automatic water systems (programming water flow controllers), etc. Students could also be required to build manipulatives such as programmable waving machines and music boxes, adder models (mechanical calculators), Goldberg machines, automatic piano players, autonomous cars etc., or even create digital art, music etc. and several other amazing artefacts as pretexts to approach various concepts and techniques.

• Computational science projects – Coding for learning Math and Science

Scientists use scientific calculation programming environments in their work. This is usual practice in modern scientific reality. Students could get familiar in the study for learning through coding with the same programming environments in the context of well-designed learning scenarios. Modelling and simulating phenomena, automating calculations, visualizing processes and/or data could be key scientific activities in such scripts. Such projects are more easily integrated in Math and Science curriculums. Such, well known and wide-spread scientific programming environments include: Octave, Julia, Python, Jupyter, MATLAB, R, Mathematica, Wolfram, Processing, NetLogo, InsightMaker, StarLogo TNG, Snap! etc. The learning scripts could refer to:

1) Math concepts e.g., microworlds or code explorations of math concepts e.g., probability, pi or phi calculation - visualization, discrete mathematics

⁵ For some more ideas for sensors see:

http://www.senseit.org/, https://tryengineering.org/teacher/making-sense-sensors/ https://assistcenter.org/education-overview/wearable-device/teacher-resources/ https://education.theiet.org/secondary/teaching-resources/sensors/ https://nextlab.golabz.eu

computations, math's and sound (Fourier analysis), fractal and recursion explorations, chaotic systems concept etc.

- 2) Modelling and Simulation of physical phenomena and systems. Science experiments can now be modeled in computers. Students can experiment and better understand physical phenomena through building models in code and exploring digital simulations, running their code, cultivating their CT skills. Abstract versions of the systems, represented in code, can be used to study their performance, if a real system is too difficult or too expensive to construct. They can even program their own COVID-19 Simulator with Scratch. Students could in this manner reinforce the scientific (experimental) method in silico and get familiar with the modern approach of scientific research.
- 3) Bifocal modelling6 is the modern approach of digital modeling/simulation in Science Education that combines coding and physical computing. Bifocal modeling offers the opportunity to combine physical and virtual experimentation by experiencing a scientific phenomenon through two lenses in parallel – a real experiment and a computer model. In the context of inquiry-driven learning, you can upgrade your students CT skills by guiding them to design and develop experiments, use sensors to collect data and then build a model to match the data they collected

• Data science projects – CT for Social Science and Statistics

Data analysis software is increasingly used on every science field and children should be prepared to handle big data in their future careers. Big data handling tends to be a crucial matter and future scientists7 should be able to manage big amounts of data, process them and extract useful and applicable conclusions, while improving their CT ability. Students could engage with data processing at an early age. In addition to the obvious Statistical projects, Social Science offer several opportunities to develop learning scripts concerning data collection and analysis. Biology and Science or engineering projects based on data analysis are also possible. In data analysis projects, both, general purpose software e.g., Excel or Calc, R, etc., as well as specially designed educational data analysis software8 such as CODAP, Fathom, TinkerPlots etc., could be used. The study of significant algorithms9 used by popular services such as Google search, recommendation systems etc., could trigger discussions on the implications of data analysis to everyday life and the society in general.

https://codap.concord.org/,

https://www.pathway.ai/home

⁶ See e.g. https://fablearn.org/bifocal-modeling/

⁷ See the article titled "The end of theory: The Data Deluge Makes the Scientific Method", https://www.wired.com/2008/06/pb-theory/

⁸ For more information visit:

https://learn.concord.org/dynamic-data-science,

⁹ https://algorithmstoliveby.com, Nine algorithms that changed the future http://www.di-srv.unisa.it/~uv/PA2019-20/Nine.pdf

• History of science and technology – epistemology projects

Science History and epistemology projects may prove a source of effective and engaging learning scripts ideas. Presented in the proper context, is it possible to approach any subject in an interdisciplinary way to combine history, science, engineering, math, etc. Students can research and discuss older scientific devices and instruments, e.g., Pascaline, Antikythera mechanism, sextant, thermometer, automata etc. The reconstruction or the building of digital and hardware models of these ancient scientific instruments is a means for learning about Science, Scientific methodology, History, Culture etc. In addition, discussion about their role and the way they operated, their modern substitutes, are also proposed tasks to develop learning scripts that combine CT with interdisciplinary and transdisciplinary learning.

• Digital games, software, or mobile apps development Projects

Mobile devices have conquered everyday life and students are familiar with their use since their early age. In addition, children are always fond of playing games and, as they grow, they use an increasing number of applications on their mobile phones or tablets. What about combining these two phenomena and using mobile devices in schools to help achieve educational goals? Students can be asked to program a game in a programming platform (e.g. Scratch, Snap!, Python, etc.) or create an application for their mobile phone (AppInventor, arisgames.org, taleblazer.org, etc.). The theme of the students' creation can relate to any subject of the curriculum for example students could code adventure games, scavenger hunts, treasure hunts, math, or logical puzzles, or even tourist guides. Sometimes all you need is to come up with a good idea for a software application e.g., to facilitate the local community of cat lovers; This could also serve as a starting point for coding for CT learning.

• Digital humanities projects

Using computing for studying and researching humanities issues could be also a fruitful source for the development of CT learning scripts. Digital humanities concern the use of computing tools for the creation and analysis of digital archives, textual mining, analysis and visualization, sentiment analysis, online publishing, digital and interactive fiction/storytelling, digital art and creativity, Natural Language Processing, and translation, etc. Digital humanities have significant applications since e.g.: scientists are trying to build algorithms to write poetry, "feeding" them with data and patterns, Google Translate offers written and oral translation in over 100 languages, Sentiment analysis tools use computational linguistics and text mining to identify the sentiment behind a text, ML models are trained to recognize feelings through face images and texts etc. The teachers could create learning scripts as adaptations of authentic digital humanities projects10 in the appropriate scale. Digital Humanities

¹⁰ For some examples visit: https://twinery.org, https://teachinglondoncomputing.org/poetry/, https://cognimate.me:2635/home

tools makes the CT integration in the theoretical subject matters possible and give prove examples that CT is not relevant only to Math and Science Education.

• Artificial Intelligence Projects – CT in computational cognition

Artificial Intelligence especially with the modern Machine Learning applications has also significant social and scientific impact. Children often interact with Artificial Intelligence every day unconsciously and their education on the subject should start as early as possible. They can program a computer to play games (e.g., tic-tac-toe, or rock-paper-scissors), recognize something in a photo or recognize voice, or sentiment. They can explore machine learning and its limitless potential using data from different scientific phenomena. They can program robots and experiment with techniques that mimic human senses and capabilities such as speech recognition and computer vision, Natural Language Processing. Students could try to answer questions such as could our mobile phones hear and understand what we are saying? Is this commercial related to the oral discussion I had previously with my colleagues. Students could play games against AI players (e.g., chess, go) to try to make sense of their capabilities and/or make their own versions of game player software. Students could also use symbolic computation applications such as photomath11 app or MS OneNote handwriting recognition and automatic math solving. The discussion on ethical issues and bias deriving from the possible bad training of an algorithm is also a good starting point for learning script scenarios (e.g., the deepfake use in social media). Modern software environments make possible the development of sophisticated AI projects for K1212.

• Studio approach projects – or projects for the future classroom

Some schools following the studio approach to interdisciplinary learning have formulated special classrooms organized with various learning zones. More particularly the Future Classroom Lab project13 promotes specific classroom configuration in schools all over Europe with six learning zones: Interact, Exchange, Investigate, Create, Present, and Develop (Figure 6).

Each of which has especially designed space and resources to facilitate different learning strategy (inquiry, experiment, presentation, discussion, design etc.).

¹¹ https://photomath.app

¹² For AI in K12 resources see for example:

https://github.com/touretzkyds/ai4k12/wiki

http://cognimates.me/projects/

https://machinelearningforkids.co.uk/

https://code.org/oceans

https://ai.google/education/

https://aieducation.mit.edu

¹³ https://fcl.eun.org, http://www.eun.org/el/professional-development/future-classroom-lab

According to FCL these spaces all together form a unique way to visualize a new, holistic view on teaching.

Figure 6. The Future Classroom sample design (source: http://www.eun.org/el/professionaldevelopment/future-classroom-lab)

The requirement to use the learning zones "forces" the designer to use the abovementioned modern learning methods and produce digital technologies enhanced learning. So, in schools where a future classroom or a space configured as a studio with various learning zones may be available, it is likely that the teachers may develop CT learning scripts to utilize these facilities. Some ideas for CT learning scripts in future classroom facility include:

- ✓ Digital storytelling for our school or city
- Development of mobile game for orientation to our school or city using Augmented Reality authoring (e.g., TaleBlazer, Aris, Blippar, ActionBound)
- Building of a 3D model of an area and enhancing it with the use of Augmented Reality for tourists or visitors
- Augmented Reality enhanced Interactive Posters for local flora/fauna or historical people
- ✓ Building devices or robotic syntheses using parts produced by 3D printing

• Unplugged experiential projects

Unplugged activities can help students (and teachers) disconnect CT from the use of computers, using games, puzzles, tricks, etc. Various CT dimensions can be approached through properly selected activities, from different subject fields, varying from Mathematics and Literacy to Arts and Music. The main resource of examples for unplugged CT learning scripts is the website of the homonymous project: https://csunplugged.org/en/topics/curriculum-integrations/. Another possible starting point for the development of unplugged CT learning scenarios is the development of manipulatives that integrate CT concepts, e.g., build a programmable music box14.

¹⁴ See an example: https://www.instructables.com/id/Build-a-Programmable-Mechanical-Music-Box/

8. Some examples of scenarios

Some examples proposed by the LTEE group will be described briefly in this section. Detailed descriptions according to the template will be provided in Appendix IV. Exemplar Learning Scenarios.

No	Title	Description
1	The History of	The scenario focuses on Pascal's mechanical calculator, the
	Computation	famous Pascaline. Students learn about the history of
	Automation	computation automation and the first machines used to make
		simple calculations. They discuss their utilities and the way
		they function. They are then asked to construct a simplified
		version of a Pascaline and then use their model to perform a
		few calculations. This is a scenario that unites History, Arts
		and Computer Science in a creative, educational way.
2	Search engines -	The scenario deals with some of the core algorithms of the
	Finding Needles	Web search. Through the various activities, students are led
	in the World's	to a step-by-step discovery of some of the aspects that the
	Biggest	indexing and ranking techniques of the search engines,
	Haystack	employ. Additionally, a first approach to the description of the
		structure of a web page through HTML, is attempted.
3	Machine	The purpose of this scenario is to introduce students to the
	Learning - The	basic concepts of Machine Learning. Students are asked to
	feelings detector	program the computer so that it recognizes feelings, based on
	machine	the text that a user enters. To do so, they train a machine
		learning model and use it to build an algorithm in Scratch, so
		that the algorithm recognizes the user's feelings based on the
		text he/she types.
4	Cryptography	This learning scenario is an introduction to security issues and
		cryptography methods. Morse code, Braille code, and Caesar
		cipher method are used to introduce students to the ways they
		can encrypt or decrypt a message. The scenario intends to
		teach in a simple, unplugged way, methods, and practices of
		encrypting and decrypting messages, so that students gain
		understanding and knowledge of the concept of cryptography
		and learn how they can protect their communications from
		third parties.
5	CompuT Contest	Students are going to use mobile learning and the Internet of
	– "Be	things to organize a school contest. The purpose of the
	Computationally	contest is to find the most qualified student in computational
	Intelligent"	thinking concepts in their school. A pool of Computational
		Thinking questions will be used, students will create the
		questions and assign QR codes to them, run the contest,

		collect evolution and process the data and find the winner
		collect, evaluate, and process the data and find the winner.
		Working in a collaborative way, they are asked to structure a
		school event based on Computational Thinking.
6	Studying the	This scenario involves students in an authentic data analysis
	Skyros	project with the aim of generating scientific knowledge, since
	Archipelago	it is based on a large set of data which comes from real
	Lizards	research. The scenario also falls within the field of CT
		because it employs several CS practices in solving problems
		in the field of biology. Students will summarize data sets,
		interpret them based on simple knowledge in the field of
		Biology, construct chart graphs, practice spatial reasoning,
		compare subsets of data based on the values of mean and
		variance, filter outliers, test hypotheses, and finally, they will
		suggest the collection of further data to answer questions.
		The scenario constitutes an adaption of (Tally, 2019)
7	Studying Cam	The students experiment with Cam Carpet idea first using
	Carpets to learn	everyday material and light sources and progressively more
	mathematics and	formal tools to mathematise and make sense of the optic
	computational	phenomena involved. First, students try a simple projection
	thinking	
	umiking	using light source and, pen and pencil to experiment with the
		optic illusion behind Cam Carpets. Then, they use Geogebra
		for the geometric analysis of simple cases of cam carpet
		phenomena (e.g. they will compute the cam carpet for simple
		letters) progressively they are introduced to the analytical
		model behind the cam carpets using equation systems for key
		point coordinates and finally, they model the optics using
		matrices. Finally, they can apply the new knowledge in an
		optional outdoor activity in which they represent the name of
		their school three-dimensionally as a Cam Carpet in the
		school yard. Thus, through the sequence of the various
		learning tasks, they better comprehend the maths related to
		the use of computing technology and improve their
		Computational Thinking skills. During this project, students
		will use their knowledge in Maths, Science and Arts.
8	Let's talk to the	In this scenario, students will learn how to decompose simple
	machines	algorithms sequentially and how to express and communicate
		them through flowcharts.
9	"Useless" robots	In short terms this project is about building a "useless robot"
		to inspire teachers and students to further their knowledge of
		electronic design and programming. A useless robot solves a
		problem you didn't know that you had. For example, "do you
		need someone that can wave to you?" Make a waving robot.
L		

One possible solution to this can be done with the ARM-
based microcomputer called Microbit. The Microbit is easily
programmable with their own block-based programming
language (Makecode) so little to none programming
experience is required. In addition to programming the
microbit, the students must design a robot using cardboard
and whatever decorations they want. In this way, the task is
twofold and appeals to several students. The students work
together in groups to solve the task, both in relation to design
and programming.

9. Conclusion/Discussion

This edition of the guide contains all the information that will be communicated during the "Computational Thinking at School" - "CompuT" Erasmus+ KA201 project [Project Code: 2019-1-EL01-KA201-062883] participants' inaugural meeting at the University of the Aegean, in Rhodes. As stated in the introductory section of the guide, the aim at the start of the project is for the participating teachers to get to know and gain some familiarity with the concept and the dimensions of Computational Thinking, as well as to understand and reflect on the role it can and should play in modern education and science. Additional topics discussed in the guide include (a) integrating computational thinking into formal education; the challenges and difficulties that such an endeavor entails, (b) getting the picture of various relevant initiatives that have been and are being developed internationally, with special focus on the Bebras Computing Challenge (c) the study of educational scenarios that have been developed within the framework of the aforementioned initiatives, designed to cultivate Computational Thinking and finally (d) bringing the participants in contact with the scenario design methodology for integrating Computational Thinking, which will provide them with the tools, models and techniques to develop their own scenarios in order to integrate CT. This guide has been arranged to make it easy for the participants to guickly get to the information they need.

Through the knowledge, skills, and experience that the participating teachers are expected to develop during the project implementation, new scenarios and ideas will emerge that will gradually enrich the guide. Furthermore, another very interesting perspective can be found in the feedback observations that are expected to be drawn from the implementation of the proposed scenarios in real-world classroom conditions. It can, at a first level, help improve the scenarios while at a second level lead to new practices, techniques, and methodologies.

References

Abbott, B. P. (et al. LIGO Scientific Collaboration and Virgo Collaboration) (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. *Physical Review Letters, 116*(6). American Physical Society. <u>https://doi.org/10.1103/PhysRevLett.116.061102</u>

Agostinho, S. (2006). The use of a visual learning design representation to document and communicate teaching ideas. In L. Markauskaite, P. Goodyear & P. Reimann (Eds.), *Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education* (pp. 3-7). Sydney, Australia: Sydney University Press.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 Computational Thinking Curriculum Framework - Implications for Teacher Knowledge. *Educational Technology & Society, 19*(3), 47–57.

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students' computational thinking skills through educational robotics: A study on age and gender relevant differences. *Robotics and Autonomous Systems*, *75*, *Part B*, 661–670. https://doi.org/10.1016/j.robot.2015.10.008

Banks, J., Carson, J., Nelson, B., & Nicol, D. (2001). Discrete-Event System Simulation. Prentice Hall. p.3.

Barcelos, T. S., & Silveira, I. F. (2012). Teaching Computational Thinking in initial series: An analysis of the confluence among mathematics and Computer Sciences in elementary education and its implications for higher education. In *2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI)*, pp. 1–8. <u>https://doi.org/10.1109/CLEI.2012.6427135</u>

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? *ACM Inroads*, *2*(1), 48-54. <u>https://doi.org/10.1145/1929887.1929905</u>

Bebras Board (2015). Bebras Community Statutes, RC 3, May 21, 2015.

Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative Inquiry Learning: Models, Tools and Challenges. International Journal of Science Education, 32(3), 349-377.

Bellettini, C., Carimati, F., Lonati, V., Macoratti, R., Malchiodi, D., Monga, M., & Morpurgo, A. (2018). *A Platform for the Italian Bebras*. In *CSEDU* (1), 350-357.

Bers, M. U., Flannery, L., Kazakoff, E. R., Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. *Computers & Education* (72), 145-157. Elsevier

Cameron L., (2018). What to Know About the Scientist Who Invented the Term "Software Engineering". IEEE Computer Society. Available at https://www.computer.org/publications/tech-news/events/what-to-know-about-the-scientistwho-invented-the-term-software-engineering

Carnegie Mellon University Center for Computational Thinking <u>http://www.cs.cmu.edu/~CompThink/index.html</u>.

Computer Science Teachers Association (CSTA), & International Society for Technology in Education (ISTE) (2011). *Computational Thinking: Leadership Toolkit (1st ed.)*. Retrieved in January 2020, from http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4

Csizmadia, A., Curzon P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). *Computational thinking: a guide for teachers*. Retrieved January 15, 2020, from <u>https://community.computingatschool.org.uk</u>

CSTA. (2016). A Model Curriculum for K-12 Computer Science: Final Report of the ACM K-12 Task Force Curriculum Committee. Retrieved in January 2020, from http://csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf

Dagdidelis, V., & I. Papadopoulos (2010). Didactic Scenarios and ICT: A Good Practice Guide. In M. D. Lytras, et al. (Eds.), Technology Enhanced Learning. Quality of Teaching and Educational Reform. First International Conference, TECH EDUCATION 2010. Athens, Greece, May 19-21, 117-123. Berlin Heidelberg: Springer.

Dagienė, V. (2005). Competition in information technology: an informal learning. *Digital Tools for Lifelong Learning*, Warsaw, Poland, 28-31 August, pp. 228-234.

Dagienė, V. (2006). Information technology contests – introduction to computer science in an attractive way. *Informatics in Education, 5*(1), 37-46.

Dagienė, V., Sentance, S. & Stupurienė G. (2017). Developing a two-dimensional categorization system for educational tasks in informatics. *Informatica, 28* (1), 23-44.

Dalziel, J., Conole, G., Wills, S., Walker, S., Bennett, S., Dobozy, E., Cameron, L., Badilescu-Buga, E. and Bower, M., (2016). The Larnaca Declaration on Learning Design. *Journal of Interactive Media in Education*, 2016 (1), p.7. DOI: http://doi.org/10.5334/jime.407

Denning, P. (2009). The Profession of IT Beyond Computational Thinking. *Communications of the ACM, 52* (6), 28-30.

Denning, P. J., & Martell, C. H. (2015). *Great principles of computing*. Cambridge, Massachusetts: The MIT Press.

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner. *Three worlds of CSCL. Can we support CSCL?*, Heerlen, Open Universiteit Nederland, pp.61-91, 2002.

EC-COM (2018) 22: On the Digital Education Action Plan.

EC-COM (2018) 24: Proposal for a Council Recommendation on Key Competences for Lifelong Learning.

Egan, K. (1989). Teaching as storytelling: An alternative approach to teaching and curriculum in the elementary school. *University of Chicago Press*.

Fesakis, G. (2018). Introduction to the applications of digital technologies in education: From Information and Communication Technologies (ICTs) to Digital Ability and Computational Thinking. Gutenberg. (In Greek)

Fessakis, G. & Prantsoudi, S. (2019). Computer Science Teachers' Perceptions, Beliefs and Attitudes on Computational Thinking in Greece. *Informatics in Education* (in press).

Fessakis, G., Komis, V., Mavroudi, E., & Prantsoudi, S. (2018). Exploring the scope and the conceptualization of Computational Thinking at the K-12 classroom level curriculum, In M. S. Khine (Ed.) (2018). *Computational Thinking in the STEM Disciplines: Foundations and Research Highlights*. Switzerland: Springer.

Freeman, A., Adams Becker, S., Cummins, M., Davis, A., & Hall Giesinger, C. (2017). *NMC/CoSN Horizon Report: 2017 K–12 Edition*. Austin, Texas: The New Media Consortium.

Goodyear, P. (2005). Educational design and networked learning: Patterns, pattern languages and design practice. *Australasian Journal of Educational Technology*, 21(1), 82–101.

Goodyear, P. (2015). Teaching as design. HERDSA Review of Higher Education, 2, 27-50.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12 A Review of the State of the Field. *Educational Researcher, 42*(1), 38–43.

Gudzial, M. (2008). Paving the way for computational thinking. *Communications of the ACM*, *51*(8), 25-27.

Hanisch, K. A., Kramer, A. F., Hulin, C. L. (1991). Cognitive representations, control, and understanding of complex systems: a field study focusing on components of users' mental models and expert/novice differences. *Ergonomics*, *34*(8), 1129–1145.

Henderson, P. B., Cortina, T. J., Hazzan, O., & Wing, J. M. (2007). Computational thinking. In *Proceedings of the 38th ACM SIGCSE Technical Symposium on Computer Science Education* (*SIGCSE '07*), pp. 195–196. New York: ACM Press.

International Society for Technology in Education (ISTE) & Computer Science Teachers Association (CSTA) (2011). *Computational Thinking: Teacher Resources. Second Edition.* Retrieved in January 2020, from <u>http://www.iste.org/docs/ct-documents/ct-teacher-resources_2ed-pdf.pdf?sfvrsn=2</u>

Isbell, C., Stein, L., et al. (2009). (Re)Defining Computing Curricula by (Re)Defining Computing. *ACM SIGCSE Bulletin 41*(4), 195-207. <u>https://doi.org/10.1145/1709424.1709462</u>

Kadanoff, L. P. (2013). Kenneth Geddes Wilson (1936–2013) Nobel-prizewinning physicist who revolutionized theoretical science. *Nature International Journal of Science, 500* (30).

Kalelioglu, F., Gulbahar, Y. & Kukul, V. (2016). A Framework for Computational Thinking Based on a Systematic Research Review. *Baltic Journal of Modern Computing, 4*(3), 583–596.

Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., Häkkinen, P., & Fischer, F. (2007). Specifying Computer-Supported Collaboration Scripts. *International Journal of Computer-Supported Collaborative Learning*, 2, 211–224.

Kolodner, J. L., Crismond, D., Gray, J., Holbrook, J., Puntambekar, S. (1998). Learning by Design from Theory to Practice. EduTech Institute and College of Computing, Georgia Institute of Technology, Atlanta. Retrieved from: https://www.cc.gatech.edu/projects/lbd/htmlpubs/lbdtheorytoprac.html

Komis, V., Tzavara, A., Karsenti, T., Collin, S., & Simard, S. (2013). Educational scenarios with ICT: An operational design and implementation framework. In R. McBride & M. Searson (Eds.), *Proceedings of society for information technology & teacher education international conference 2013* (pp. 3244–3251). Chesapeake, VA: AACE

Laurillard, D. (2012). *Teaching as a design science: Building pedagogical patterns for leaning and technology*. New York: Routledge.

Lee, E. A. (2018). Modeling in engineering and science. *Communications of the ACM, 62*(1), 35–36.

Lee, I., Martin, F., & Apone, K. (2014). Integrating Computational Thinking Across the K–8 Curriculum. *ACM Inroads*, *5*(4), 64–71. <u>https://doi.org/10.1145/2684721.2684736</u>

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., & Werner, L. (2011). Computational thinking for youth in practice. *ACM Inroads, 2*(1), 32–37.

Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., & Almughyirah, S. (2016). Using Robotics and Game Design to Enhance Children's Self-Efficacy, STEM Attitudes, and Computational Thinking Skills. *Journal of Science Education and Technology*, *25*(6), 860–876. <u>https://doi.org/10.1007/s10956-016-9628-2</u>

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: what is next for K-12? *Computers in Human Behavior, 41*, 51-61.

Mannila, L., Dagienė, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014). Computational Thinking in K-9 Education. In *Proceedings of the Working Group Reports of the 2014 on Innovation & Technology in Computer Science Education Conference* (pp. 1–29). New York, NY, USA: ACM. <u>https://doi.org/10.1145/2713609.2713610</u>

Marinez-Moyano, I. J (2006). *Exploring the Dynamics of Collaboration in Interorganizational Settings*, Ch. 4, p. 83, in Schuman (Ed.). *Creating a Culture of* Collaboration. Jossey-bass.

Martinez, S. L. & Stager, G. S. (2019). Invent to Learn: Making, Tinkering, and Engineering in the Classroom, 2nd edition. Constructing Modern Knowledge Press.

Misirli, A., & Komis, V. (2014). Robotics and programming concepts in early childhood education: A conceptual framework for designing educational scenarios. In Research on e-Learning and ICT in Education (pp. 99-118). Springer, New York, NY.

MIT News (2019). Astronomers capture first image of a black hole. http://news.mit.edu/2019/eht-astronomers-direct-image-black-hole-0410

Mor, Y., & Winters, N. (2007). Design approaches in technology-enhanced learning. *Interactive Learning Environments*, 15(1), 61–75.

Mor, Y., Mellar, H., Warburton, S., & Winters, N. (Eds.). (2014). *Practical design patterns for teaching and learning with technology*. Springer.

National Research Council (2010). *Committee for the Workshops on Computational Thinking: Report of a workshop on the scope and nature of computational thinking.* Washington, DC: National Academies Press.

National Science Foundation (NSF), (2006). Report on Simulation-Based Engineering Science . Blue Ribbon Panel. 2006-05-01. Retrieved from: <u>https://www.nsf.gov/pubs/reports/sbes_final_report.pdf</u>

Papert, S. (1991). *Mental storms: Children, Computers and Powerful Ideas*. Translation: Stamatiou E. Athens: Odysseas.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers for Mathematical Learning, *1*(1): 95-123. Retrieved January 10, 2019, from http://www.papert.org/articles/AnExplorationintheSpaceofMathematicsEducations.html

Parliamentary Standing Committee on Education (2016). *National and social dialogue. Findings, proposals and implementation timetable* (in Greek). Available at https://www.minedu.gov.gr/publications/docs2016/morfotikwn_porisma.pdf

Penner, D. E., (2001). Cognition, Computers and Synthetic Science: building knowledge and meaning through modeling. Review of Research in Education, 25, pp. 1-36.

Piaget, J. (1973). To understand is to invent. New York: Grossman

Prantsoudi, S., Fesakis, G., & Mavroudi E. (2018). Computer Science Teachers' Perceptions, Beliefs and Attitudes. (In Greek). In St. Dimitriades, V. Dagdilelis. T. Tsiatsos, I. Magnisalis, D. Tzimas (eds.) Proceedings of the 9th panhellenic Conference "Didactics of Informatics" (pp. 86-93), Thessaloniki, 19-21 October 2018.

Retalis, S.; Georgiakakis, P., & Dimitriadis, Y. (2006). Eliciting design patterns for e-learning systems. *Computer Science Education*, 16(2), 105-118.

Rodriguez, B., Kennicutt, S., Rader, C., & Camp, T. (2017[U1]). Assessing Computational Thinking in CS Unplugged Activities. In *Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education* (pp. 501–506). New York, NY, USA: CM. https://doi.org/10.1145/3017680.3017779

Oliver, R., Harper, B., Hedberg, J., Wills, S. & Agostinho, S. (2002). *Formalising the descriptions of learning designs 2002,* 496-504. https://ro.uow.edu.au/edupapers/193

Oliver R. (1999) Exploring strategies for online teaching and learning, *Distance Education*, 20:2, 240-254, DOI: 10.1080/0158791990200205

Rose, S., Habgood, J., & Jay, T. (2017). An exploration of the role of visual programming tools in the development of young children's computational thinking. *El. Journal of e-learning*, *15*(4), 297-309.

Rosenbloom, P. (2004). A new framework for computer science and engineering. *Computer, 37*(11), 31-36. <u>https://doi.org/10.1109/MC.2004.186</u>

Royal Society (2012). *Shut down or restart: The way forward for computing in UK schools.* Retrieved January 10, 2020, from <u>http://royalsociety.org/uploadedFiles/Royal Society Content/education/policy/computing-in-schools/2012-01-12-Computing-in-Schools.pdf</u>

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: when and how? Journal of Educational Computing Research, 3, 149–169.

Selby, C. C. (2015). Relationships: Computational thinking, pedagogy of programming, and bloom's taxonomy. In *Proceedings of the workshop in primary and secondary computing education* (pp. 80-87). New York: ACM.

Selby, C. C., & Woollard, J. (2013). *Computational Thinking: The Developing Definition*. University of Southampton (E-prints).

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. *Education and Information Technologies*, *18*(2), 351–380. <u>https://doi.org/10.1007/s10639-012-9240-x</u>

Simon, H. A. (1996). The sciences of the artificial, 3rd ed. Cambridge, Mass: The MIT Press.

Tedre, M., & Denning, P. J. (2016). The Long Quest for Computational Thinking. In Proceedings of the 16th Koli Calling International Conference on Computing Education

Research (pp. 120–129). New York, NY, USA: ACM. https://doi.org/10.1145/2999541.2999542

The Bebras Community (2017). *The Bebras international challenge on informatics and computational thinking*. <u>https://bebras.org</u>

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. *Journal of Science Education and Technology*, *25*(1), 127–147.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The Fairy Performance Assessment: Measuring Computational Thinking in Middle School. In *Proceedings of the 43rd ACM Technical Symposium on Computer Science Education* (pp. 215–220). New York, NY, USA: ACM. <u>https://doi.org/10.1145/2157136.2157200</u>

Williams, L. (2001). Integrating pair programming into a software development process. 14th Conference on Software Engineering Education and Training. Charlotte. pp. 27–36. doi:10.1109/CSEE.2001.913816. ISBN 0-7695-1059-0.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-36.

Wing, J. (2011). Research notebook: Computational thinking –What and why? *The Link Magazine of Carnegie Mellon University's School of Computer Science*. Retrieved, January 18 2019, from <u>http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why</u>.

Wu, M. L., & Richards, K. (2011). Facilitating Computational Thinking Through Game Design. In *Proceedings of the 6th International Conference on E-learning and Games, Edutainment Technologies* (pp. 220–227). Berlin, Heidelberg: Springer-Verlag.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational Thinking in Elementary and Secondary Teacher Education. *ACM Transactions on Computing Education*, *14*(1), 1–16. <u>https://doi.org/10.1145/2576872</u>

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing Computational Thinking in Education Courses. In *Proceedings of the 42nd ACM Technical Symposium on Computer Science Education* (pp. 465–470). NewYork, NY, USA: ACM. https://doi.org/10.1145/1953163.1953297

Appendices

Appendix I. CT Dimensions, definitions, and examples.

CT DIMENSION	DEFINITION & EXAMPLES
ALGORITHMIC THINKING	Algorithmic thinking is a way of getting to a solution through the clear definition of the steps needed. For example, we all learn algorithms for doing multiplication at school. If we (or a computer) follow the rules we were taught precisely we can get the answer to any multiplication problem. <u>https://teachinglondoncomputing.org/resources/developing-computational-thinking/algorithmic-thinking/</u> <u>https://www.barefootcomputing.org/concepts-and-approaches/algorithms</u>
ABSTRACTION	Abstraction is a way to make problems or systems easier to think about. It simply involves hiding detail – removing unnecessary complexity. The skill is in choosing the right detail to hide so that the problem becomes easier without losing anything that is important. A school timetable is an abstraction of what happens in a typical week. It shows key information about classes, teachers, rooms and times but ignores further layers of detail such as learning objectives and activities. <u>https://teachinglondoncomputing.org/resources/developing- computational-thinking/abstraction/</u> <u>https://www.barefootcomputing.org/concepts-and- approaches/abstraction</u>
GENERALISATION	Generalisation is a way of quickly solving new problems based on previous problems we have solved. We can take an algorithm that solves some specific problem and adapt it so that it solves a whole class of similar problems. Then whenever we have to solve a new problem of that kind we just apply this general solution. For example, a pupil writes a computer program to draw a series of shapes, such as a square and a triangle. If he/she then wants to draw an octagon or a 10-sided shape, he/she can adjust the algorithm and use it to draw any regular polygon. <u>https://teachinglondoncomputing.org/resources/developing- computational-thinking/generalisation/</u>
LOGICAL REASONING	Logical reasoning helps us explain why something happens. At its heart, logical reasoning is about being able to explain why something is the way it is. There are many ways that children draw on logical reasoning across the curriculum. In science, pupils should be able to explain how they've arrived at certain conclusions from the results of experiments. In history, pupils should understand how our knowledge is constructed from a variety of sources, and they should be able to discuss the logical connections between cause and effect. They'll also use logical reasoning to analyse philosophical arguments. https://www.barefootcomputing.org/concepts-and-approaches/logic https://csunplugged.org/en/computational-thinking/

PATTERN MATCHING	Pattern recognition in problem solving is key to determining appropriate solutions to problems and knowing how to solve certain types of problems. Recognizing a pattern, or similar characteristics helps break down the problem and also build a construct as a path for the solution. Ever find yourself saying, 'where have I seen this before', could be a significant step in computational thinking. Patterns exist between different problems and within a single problem. https://sites.google.com/isabc.ca/computationalthinking/pattern-recognition https://www.barefootcomputing.org/concepts-and-approaches/patterns https://teachinglondoncomputing.org/pattern-matching-puzzles/ https://csunplugged.org/en/computational-thinking/
PROBLEM DECOMPOSITION	Decomposition is a way of thinking about problems, algorithms, artefacts, processes and systems in terms of their parts. The separate parts can then be understood, solved, developed and evaluated separately. This makes complex problems easier to solve and large systems easier to design. As a simple example, making breakfast can be decomposed into a number of smaller tasks. Or if we are developing a game, different people can design and create the different levels independently provided key aspects are agreed in advance. https://teachinglondoncomputing.org/resources/developing-computational-thinking/decomposition/ https://www.barefootcomputing.org/concepts-and-approaches/decomposition
PROBLEM TRANSLATION	You can use Computational Thinking to think about how to translate real- world processes for a computer to understand. An example might be making a sandwich or traveling a path. Furthermore. one of the most important standards of Computational Thinking is the need for a translation process from a higher-level language to machine executable code. <u>https://teachinglondoncomputing.org/resources/</u>
EVALUATION	Evaluation is about making judgements, where possible in an objective and systematic way. Every day, we make judgements about what to do and what we think, based on a range of factors. Evaluation is about judging the quality, effectiveness and efficiency of products, solutions, processes and systems. We ascertain whether they're fit for purpose. One approach could be to consider specific criteria, e.g. a design goal or specification, or user needs. Evaluation is something that occurs daily across schools. Pupils evaluate their work; teachers evaluate lessons, learning and progress. Self- and peer-assessment can help to develop children's evaluation skills, as they make judgements using success criteria and consider potential improvements. <u>https://www.barefootcomputing.org/concepts-and-approaches/evaluation https://teachinglondoncomputing.org/resources/developing- computational-thinking/evaluation/ https://csunplugged.org/en/computational-thinking/</u>

REPRESENTATION	The representation of a problem has a significant impact to the problem- solving difficulty (Rich & Knight, 1991); Solaz-Portolés & Lopez, 2007), e.g. see the mutilated chessboard problem (Rich & Knight, 1991; MCP, 2019). The familiarization to several problem representation methodologies constitutes a strategic goal for problem solving competency development. Computer Science enhances the applicability of well-known problem representation systems such as geometry, algebra, calculus. In addition, CS offers new representation systems such as finite state automata, semantic networks, predicate logic, neural networks, interactive stories, code etc. CT Representation Dimension concerns the use of computational implementations of representation systems in problem solving of several disciplines. Examples of learning scenarios related to representation follows: THE KNIGHT'S TOUR ACTIVITY https://teachinglondoncomputing.org/resources/inspiring-unplugged- classroom-activities/the-knights-tour-activity/ THE BRAIN-IN-A-BAG ACTIVITY https://classic.csunplugged.org/error-detection/ FINITE STATE AUTOMATA https://classic.csunplugged.org/finite-state-automata/#Treasure_Hunt THE MUDDY CITY https://classic.csunplugged.org/minimal-spanning-trees/ References MCP (2019). Mutilated chessboard problem. In Wikipedia, The Free Encyclopedia. Retrieved 17:32, January 11, 2020, from https://classic.csunplugged.org/windex.php?title=Mutilated_chessboard_proble m Rich, E., & Knight, K. (1991) Artificial intelligence. McGraw-Hill. Solaz-Portolés, J. J., & Lopez, V. S. (2007, December). Representations in problem solving in science: Directions for practice. In Asia-Pacific Forum on Science Learning and Teaching (Vol. 8, No. 2, pp. 1-17). The Education University of Hong Kong, Department of Science and Environmental Studies.
DATA	All sorts of data practices involve computational thinking. Collecting data, analyzing data, and representing data in different ways all help you think about a problem. Data collection is the process of gathering appropriate information. For example, students develop a survey and collect both qualitative and quantitative data to answer the question: "Haw global warming changed the quality of life?".
COLLECTION	https://id.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4
DATA	All sorts of data practices involve computational thinking. Collecting data, analyzing data, and representing data in different ways all help you think about a problem. Data Representation is the process of depicting and organizing data in appropriate graphs, charts, words, or images. For example, groups of students represent the same data in different ways based on a position relating to the question: "Has global warming changed the quality of life?" Different representations may result in varying conclusions.
REPRESENTATION	https://id.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4

DATA ANALYSIS	All sorts of data practices involve computational thinking. Collecting data, analyzing data, and representing data in different ways all help you think about a problem. Data Analysis is the process of making sense of data, finding patterns, and drawing conclusions. For example, the use of appropriate statistical methods that will best test the hypothesis: "Global warning has not changed the quality of life". https://id.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4
MODELING	A model is an abstract representation of a real system. Models often use mathematical and computational ideas to express relationships between entities of interest. A model is an example of abstraction. <u>https://ctpdonline.org/computational-thinking/</u>
SIMULATION	Simulation is the process of having computers or machines do repetitive or tedious tasks. For example, create an animation to demonstrate the understanding of a process, or use a model of a simple ecosystem to conduct experiments that answer what happens to the ecosystem if some percentage of the producers die. <u>https://id.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4</u>
AUTOMATION	Automation is the process of having computers or machines do repetitive or tedious tasks. Real-world examples of automation include barcodes, teller machines and library bar codes. An example of automation could be to program a sensor to collect pollution data and then use a computer program to sort the readings from maximum to minimum CO2 levels. <u>https://id.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4</u>
SEQUENCING	Programmers 'sequence' instructions: putting them in the right order. Sequences are often placed in to 'loops', doing the same sequences of instructions over and over. Sequences and loops occur in nature too. Lifecycles, for example, are sequences of events happening in a loop. <u>https://teachinglondoncomputing.org/sequencing-and-looping-puzzles/</u>
TESTING	Thorough testing, double checking, and attention to detail, are concepts of great importance while solving problems. <u>https://teachinglondoncomputing.org/resources/computational-thinking-magical-book-magic/</u>
UNDERSTANDING PEOPLE	Computing is not just about technology; it is about understanding people too. When we solve computing problems, we are solving them for people. Computational thinking is the general group of problem-solving skills that students learn because of studying computing. However, it just as important to make programs usable by people – or they will not be used. <u>https://teachinglondoncomputing.org/free-workshops/4-computational- thinking-its-about-people-too/</u>

Appendix II. CT integration in the national educational systems of the partners

Computational Thinking in Greece

In Greece, education is mandatory for K-6 grades (primary education, ages 5-12) and 6-9 grades (Gymnasium - mandatory secondary education, ages 13-15). The Greek National Curriculum was developed in 2011 and is valid since then. The Curriculum is common for all public schools of the country and it consists a mix of Information and Communication Technologies (ICT) and Computer Science (CS). The Curriculum provides for 1 hour/week of ICT lessons for each grade of **primary school** (grades 1-6) and is structured around 4 basic strands.

- 1. **ICT as a learning cognitive tool** running through all the Curriculum subjects: I know, create and express myself with ICT (I know the computer and how to use it, I create and express myself using digital painting, multimedia and presentations, I create using text editing).
- ICT as a problem-solving methodology, for the cultivation of methodological skills and high-level skills (research, critical and analytical thinking, synthetic ability, communication skills and collaboration skills): I inquire-explore, discover, and solve problems using ICT (I create concept map models of problems, I solve problems using spreadsheets, I create computer programs, I implement research/work projects).
- 3. **ICT as a technological tool** for the adequacy of handling modern environments: I get to know the Internet, I communicate and collaborate.
- 4. **ICT as a social phenomenon**, for the acquisition of wider digital educations and understanding of the new social and cultural environment: I develop digital literacy and citizenship.

The Curriculum is Computational Thinking (CT) compatible. Under the strand "I implement research/work projects", teachers are free to implement educational projects with their students concerning any CS concepts and/or practice (e.g. robotics, STEM technology etc.).

In lower **secondary school** (mandatory, grades 7-9, ages 13-15), there also is a Computer Science class for 1 hour/week. The Curriculum in this case is constructed around 4 basic strands.

- 1. Computer Science in the modern world: basic concepts
- 2. Use and create: create with text editors
- 3. **Search, communicate and collaborate**: get to know the Internet and communicate, create and express using multimedia and presentations, search and collaborate through the Internet
- 4. **Explore, discover and solve problems**: program computer devices and robotic systems, solve problems using spreadsheets

The Curriculum highlights that Code writing and computer programming are directly related to Computational Thinking and aim to cultivate and develop Computational Thinking skills, such as problem solving and system design. Therefore, the cultivation and development of computer skills and attitudes through the teaching of programming arises as a natural result. The teacher is free to use any logo-like programming environment or tile-based visual programming environment to achieve learning goals related to Computational Thinking, such as problem understanding, analysis, abstraction, algorithms, error detection etc.

National Curriculum for primary and secondary education are currently reviewed and are expected to change during 2023. Computational Thinking is plays a central role in the new Greek CS education Curriculum.

Computational Thinking in Norway

School and education in Norway:

Education is compulsory and free for children and adolescents aged 6-16. All youth between the ages of 16 and 19 are legally entitled to three years of upper secondary education. In 2020, it was carried out a comprehensive renewal of the curricula in the Norwegian school, called LK20. In LK20, clear guidelines are given that computational thinking and programming are important skills that students must have in their future and it is emphasized that it is important that students acquire basic skills in this so that they can develop good skills in problem solving and develop the ability to think critically about the use of technology and programming (Andersen 2020).

The Norwegian Directorate of Education uses the following definition of Computational thinking as the basis for the renewed curricula :

"To think algorithmically is to assess which steps are needed to solve a problem, and to be able to use one's technological competence to get a computer to solve (parts of) the problem. This also includes an understanding of what kind of problems/tasks can be solved with technology and what should be left to people" (Directorate of Education, 2019)

Furthermore, the Directorate of Education writes:

"Computational thinking involves breaking down complex problems into smaller, more manageable sub-problems that can be solved. It includes organizing and analyzing information in a logical way and creating methods (algorithms) to arrive at the desired solution. It is also about creating abstractions and models of the real world by removing unnecessary details and focusing on what is relevant to the problem and solution in question. A solution to a specific problem can often be generalized so that it can be used to solve similar problems, and solutions to several subproblems can be combined to solve more complex problems. The computational thinker must be systematic and analytical in his work, but it is at least as important to be creative, experimental and open to alternative solutions. It requires a curious and exploratory approach to formulating and solving problems. Making mistakes along the way is an important part of the process, and the algorithmic thinker must have strategies to detect that something is wrong and correct the mistakes. This requires a "cognitive fitness" to not give up, and it is important to train this by working on continuous improvement during the process. Good solutions do not arise in a vacuum, and collaboration and sharing are therefore central working methods for the algorithmic thinker" (Directorate of Education, 2019)

The Norwegian curriculum LK20 consists of an overarching part, the distribution of subjects and hours and curricula in the various subjects. The curriculum defines five basic skills: reading, writing, arithmetic, oral skills and digital skills. These skills are part of the professional competence and necessary tools for learning and professional understanding.

In addition, the curriculum in each individual subject contains so-called core elements. The core elements consist of central concepts, methods, ways of thinking, areas of knowledge and forms of expression. The core elements characterize the content and progression of the curricula and should contribute to the students developing an understanding of the content

and connections in the subject over time (Directorate of Education 2019). Examples of core elements included in computational thinking are:

- **Abstraction** : Being able to reduce unnecessary details and focus on elements that are significant. Being able to abstract the essence and ignore irrelevant information
- **Algorithms** : Being able to create instructions by sequencing, selecting, repeating. Being able to follow and explain step-by-step instructions
- Logic : Being able to analyze situations, check facts, verify hypotheses, make decisions and draw conclusions
- **Collaboration** : Being able to distribute tasks, roles, build on each other's projects
- Creativity : Being able to "think outside the box"
- Efficiency : Being able to design something that is easy to use, without unnecessary steps
- Logic : Being able to analyze situations, check facts, verify hypotheses, make decisions and draw conclusions
- **Patterns and generalizations** : Being able to identify repetitive patterns based on similarities and differences, assess transfer value. To recognize patterns and relationships and be able to formulate general rules

Programming and coding are subjects that are closely linked to computational thinking, and in LK20 there are examples of competence targets that include both coding and programming. In particular, the subjects mathematics and science have been assigned to take care of teaching students programming and coding.

In the Curriculum LK20, we find computational thinking in various competence targets at the stages in the following ways:

2nd grade:

• create and follow rules and step-by-step instructions in play and games

3rd grade:

• create and follow rules and step-by-step instructions in play and games related to The coordinate system

4th grade:

- explore and describe structures and patterns in play and games
- create algorithms and express them using variables, conditions and loops

5th grade:

- create and program algorithms using variables, conditions and loops 6th grade:
- use variables, loops, conditions and functions in programming to explore geometric figures and patterns

7th grade:

• use programming to explore data in tables and datasets

8th grade:

• explore how algorithms can be created, tested and improved using programming

9th grade:

• simulate outcomes in random experiments and calculate the probability that something will occur, using programming

10th grade:

• model situations related to real data sets, present the results and argue that the models are valid

• explore mathematical properties and relationships using programming (Ministry of Education 2019a)

Upper Secondary school, grade 11, Mathematics 1T:

• formulate and solve problems using algorithmic thinking, various problem-solving strategies, digital tools and programming

(Ministry of Education (2019b).)

Different ways of implementing algorithmic thinking are often linked to programming and coding. You can work with programming and algorithmic thinking at many levels and grade levels, both with and without a computer. Without a computer, one can e.g. work with sorting algorithms (Gjøvik, Ø & Torkildsen, HA, 2019). With a computer, Scratch, which is a form of block coding, is often used at lower grades since Scratch is considered a digital learning tool that can promote computational thinking and increase students' competence in this area (Gjøvik, Ø & Torkildsen, HA (2019)). At higher grade levels, it is most common to work with problem-solving tasks using coding in Python.

Reference list

- Andersen, R (2022). *Algorithmic thinking in LK20 the Norwegian context*. Digital learning resource. Obtained from: <u>https://kunnskapsfilm.no/wp-content/uploads/2021/11/Algoritmisk-tenkning.pdf</u>
- Gjøvik, Ø & Torkildsen, HA (2019). Algorithmic thinking. Tangenten . journal for mathematics education, 30(3). 31-37.
- Ministry of Education (2019a). *Curriculum in mathematics* (MAT01-05). Established as a regulation. The Curriculum Agency for the Knowledge Promotion 2020
- Ministry of Education (2019b). *Curriculum in mathematics joint subject VG1 theoretical mathematics* (MAT01-05). Established as a regulation. The Curriculum Agency for the Knowledge Promotion 2020. Retrieved from: <u>https://www.udir.no/lk20/mat09-01/kompetansemaal-og-vurdering/kv42</u>
- Directorate of Education. (2019, 27 March) *Algorithmic thinking*. Obtained from: <u>https://www.udir.no/kvalitet-og-kompetanse/profesjonsfaglig-digital-kompetanse/algoritmisk-tenkning/</u>
- Directorate of Education. (2019, 18 November). Obtained from: <u>https://www.udir.no/laring-og-</u> trivsel/lareplanverket/stotte/hva-er-kjerneelementer/

Computational Thinking in Portugal

Portugal, like many other countries, accepted the incentive from the European Commission, through the Digital Education Action Plan 2021-2027 that considers Computer Education a key element in learning at school. Schools and Universities become aware of the importance of developing virtual cognitive processes in students and how computational thinking allows students to approach problems in a different way. In this sense integrating computational thinking from primary school (programming and robotics) is a good starting point to develop from a very young age abstraction and deductive thinking.

The Digital Training of Schools (Capacitação Digital das Escolas), included in the Action Plan for Digital Transition (Resolution of the Council of Ministers nº 30/2020 of 21 April) foresees, among others, a strong commitment to the digital training of teachers, the digital development of schools and the availability of digital educational resources.

Having in mind the importance of Computational Thinking as a pedagogical practice, this Action Plan aims to provide teachers with teaching tools and strategies that facilitate their work while preparing pedagogical content, to incorporate computational thinking in all years of schooling in order to promote scientific and technological literacy, concepts that are useful in all areas of learning.

In Portugal, the Action Plan for Digital transition aims to promote the development of innovative strategies that can have an impact on improving learning environments and teaching quality.

Computational Thinking in Spain

Computational thinking is not specifically treated in the national curriculum nor in its specification through the Canarian curriculum (as you probably know in Spain we all have a basic national curriculum and those from each Autonomous Community which are based on the previous national curriculum mentioned).

So the treatment of the computational thinking is done through the development of the Digital competence as defined by "Orden ECD/65/2025. relaciones entre las competencias, los contenidos y los criterios de evaluación de la educación primaria, la educación secundaria obligatoria y el bachillerato" (attached file page 6995). The Digital Competence implies a creative, critic and safe use of information and communication technologies to reach aims related with work and employability, learning, the use of spare time, inclusiveness and social participation.

Once the whole competence is analyzed the computational thinking development can be integrated in the Digital Competence dimensions framed by the already mentioned educative standard. These dimensions that can be integrated to are information (analysis, interpretation, evaluation, transformation...), communication, content creation and problem solving.

Here are the links of the proposal through the Educative technology area in the Canary islands where different proposals are shown to the educative community to be shared and developed:

- http://www3.gobiernodecanarias.org/medusa/ecoescuela/ate/2017/06/20/pensamient o-computacional
- http://www3.gobiernodecanarias.org/medusa/ecoescuela/educarobot

From the beginning of the project up to this moment the situation has not changed very much in terms of how the computational thinking is developed through the curriculum even with a change of educational law the treatment still remains as cross curricular t, within the Digital competence although it might also be included in different compulsory subjects like Mathematics in Primary and Secondary Education, Technology in Secondary Education (year 1, 2 and 3) or Informatics in Bachelor's degree.

In the law currently in vigour in our country, computational thinking is not reflected as such in the curriculum. Only in the subjects of Information Technology is the resolution of algorithms sequentially treated. This does not mean that teachers are not including it transversally in compulsory content, especially in Computer Science and Technology subjects. This year a new law comes into force, and with it a new curriculum, which gives hope that it will be included in the future.

Appendix III. Learning Script Template

Part A. General Data		
A.1 Title:	The title of the learning script, e.g. The enigma machine	
A.2 Author(s):	Name, Surname, Affiliation	
A.3 Abstract/ Summary:	Short but informal summary of the scenario. May include the concepts/skills/attitudes it concerns. Some elements of the plot-pretext for the students. The main CT technology it may use (e.g. Python, Arduino etc.). The teaching methods employed and the outcomes-products that the students are expected to obtain or build (e.g. a mobile app, a robotic device). The interdisciplinary subjects it concerns, the educational problem it solves, etc.	
A.4 Keywords:	Some key concepts or descriptors for indexing purposes	
A.5 Version:	E.g. 12 and/or draft, and/or revised, and/or final	
A.6 Date:	The issue date of the version, e.g. 3/7/2020	
A.7 Copyright license:	Use the creative-commons license scheme (https://creativecommons.org/licenses/?lang=en) e.g.: Attribution ShareAlike CC BY-SA	
	Part B. Learning Data	
B.1 Grade(s):	K-12 e.g.: Grades 6-7 or Age(s): e.g.: 12-13 years old	
B.2 Subject(s):	Since CompuT learning scenarios aim at the integration of CT in the existing curriculum, several subjects could be mentioned here in addition to CT, e.g., Computer Science, Physics, Language.	
B.3 Topic(s):	E.g. Data analysis	

B.4 Computational	Check or note the dimensions which the scenario involves:	
Thinking		
Dimensions:	Algorithmic Thinking (AL)	
Dimensiono.	Abstraction (AB)	
	Generalization (GE)	
	Logical reasoning (LR)	
	Pattern matching (PM)	
	Problem decomposition (PD)	
	Problem translation (PT)	
	Evaluation (EV)	
	Representation (RE)	
	Data collection (DC)	
	Data representation (DR)	
	Data analysis (DA)	
	Modeling (MO)	
	Simulation – (SIM)	
	Automation (AUT)	
	Sequencing (SE)	
	Testing (TE)	
	Understanding People – (UP) /Artificial	
	Intelligence (AI)	
B.5 Computational	Check or note the CT approaches which the scenario employs	
Thinking		
Approaches:	Tinkering experimenting & playing	
, pp. cacilicol	Creating, designing, and making	
	Debugging, finding, and fixing errors	
	Persevering, keeping going	
	Collaborating, working together	

B.6 Thematic in the	In the context of the C	-	•	me thematic units
context of the	to drive the development of the scenario:			
CompuT Project:	Educational Robotics Physical Computing	s or		
	Computational Scien		Modeling/Simulation	
	project	C C	Bifocal modelling	
	project		Sensors use or making	
			Maths and CS	
			Other:	
	Data science project			
	History of science an	d		
	technology			
	Digital game, softwar	e, or		
	mobile app			
	Digital humanities pr	ojects	Digital Storytelling	
			Interactive Fiction	
			Text mining	
			Algorithms in	
			everyday life	
			Other:	
	Artificial Intelligence Projects			
	Studio approach – Fu	uture		
	Classroom projects			
	Unplugged experient	ial or		
	using manipulatives			
	Other:			
B.7 Purpose/Aim of the learning scenario:	What we are trying to scenario in the long ru		th the implementation	n of the learning
B.8 Learning	Specify observable ac	tions and	d evaluable performa	nce criteria in
outcomes/goals15:	Specify observable actions and evaluable performance criteria in terms of students' knowledge, skills, and attitudes-affective domains.			
	B.8.1 Knowledge			
	B.8.2 Skills			
	B.8.3 Attitudes- affective			
B.9 Horizontal	Note how the scenario	night si	upport the developme	ent of general
competences - 21 st	competences and var	ious of th	e so-called 21 st centu	ıry skills.
century skills:	B.9.1 Learning and innovation skills:		ollaboration, Communic , Creativity	ation, Critical

¹⁵ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

		Inform	nation literacy. Madia literacy, Information
	B.9.2 Digital literacy skills:	and (nation literacy, Media literacy, Information Communication technologies (ICT) literacy, al citizenship
	B.9.3 Career and life skills:	direc prodi	bility and adaptability, initiative and self- tion, social and cross-cultural interaction, uctivity and accountability, leadership and onsibility
B.10 Modern teaching methods:	Note how you are making use of modern teaching methods. This field guides the designer to consider and prefer making use of modern effective teaching methods in a balanced manner. Such methods include: Collaborative Learning e.g. group work according to a collaborative inquiry script, Game Based Learning, Gamification e.g. students play an escape game, Project-Based Learning, STEM Learning, Tinkering, Learning by design, Authentic learning in studio or future classroom, Bifocal modeling, Learning by coding, Storytelling.		
B.11 Integration of CT into the curriculum:	Explain/analyze the interdisciplinary activities/approach of the scenario that document the CT learning integration in the current curriculum.		
B.12 Relation to curriculum and/or standards:	Which specific National or International standards and/or curriculum goals are accomplished through the use of the scenario. E.g. ISTE Standards or your local curriculum sections covered by the scenario.		
	e.g. Greek National Curriculum, Grade 7, Geometry Curriculum e.g. ISTE, CSTA CT Standards for Data Collection, Grades 6-8: Design survey questions to collect appropriate information to answer questions (e.g. asking fellow students if they were absent from school in the past month and whether they were suffering from the flu).		
B.13. Prerequisite knowledge:	Assumed prior knowledge needed to successfully implement the current scenario, e.g. students need to have basic knowledge of python, and wiring, or how to use a compass.		
B.14. Difficulty Level of the Scenario:	Easy, intermediate, hard, extra-hard		
B.15. Social setting of the scenario:	E.g. individual, pair, small group (3-4 students), large group, whole class		
B.16 Place of implementation:	E.g. Classroom, Future classroom, Computer Lab, School yard, other		
B.17 Teaching time – Duration:	E.g. 4 x 45' sessions		
B.18 Educational	B.18.1 Software:		E.g. Scratch
material, resources,	B.18.2 Hardware:		E.g. Micro:bit controller, video cam, drone
	B.18.3 Online resource	s:	E.g. Youtube video, online tutorials, etc.

instruments, tools, and media:	B.18.4 Conventional educational material:	post-it, notebooks, textbool pens, flip paper, blue tac	k, Whiteboard	
	Part C. Learning	Experience Design		
C.1. Activities- Action-Plot-	Phase 1.	Phase title (e.g. Introduction)		
			Duration	
Storyboard	Activity/Task A1.1 Descriptive	Description/Procedure Describe the actions of	The time	
sequence table:	name for the	teachers and students.	needed to	
	activity/task.	Describe their products and	complete the	
	e.g. plan a maze,	their goal. Mention the	activity	
	solve a puzzle,	resources/materials/instrume		
	play a role game to	nts/media teachers and		
	feel like the victim	students use and/or may		
	etc.	produce.		
	A1.2			
	A1.3			
	Phase 2.	Phase title (e.g. Explore the		
		microbit:cc)		
	Activity/Task	Description/Procedure	Duration	
	A2.1			
	A2.2			
	 Hints-comments for the table specification Hint 1. Organize the scenario activities into phases. If the scenario consists of a big number of activities/tasks, then it is possible to organize them into groups, called phases. E.g. Phase 1. Introduction activities, Phase 2. Exploration activities, Phase 3. Solution design activities, Phase 4. Development and Phase 5. Evaluation and reflection activities. For each such phase a table of activities as the above one should be defined. 			
	Hint 2. Use of models to structure the scenario The sequence of activities could follow traditional instructional models or more modern, progressive, and student-centered ones:		ructional models	
	a) Traditional i	instructional models		
	1992)16: Gain Attention Recall of Prior Knowled learning activity), Prov Performance from the Assess the Performan Transfer of the New S	nts of instruction (Gagne, 1985; on, Inform Learners of the Object edge/Learning, Present the Stim vide Guidance to the Learners, E Learners, Provide Feedback to nce of the Learners, Enhance the Skills, Knowledge, and/or Attitude ntial models e.g. Students cognit	etives, Stimulate ulus (content or Elicit the Learners, e Retention & es. Or the use of	

¹⁶ Gagné, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design (4th ed.). Forth Worth, TX: Harcourt Brace Jovanovich College Publishers Gagne, R. (1985). The Conditions of Learning (4th ed.). New York: Holt, Rinehart & Winston

	preparation activities - Teaching activities - Reinforcement Activities - Assessment Activities, or 1. Introduction/ warm-up, 2. Instruction/ presentation, 3. Practice (with feedback)/Application, 4. Review or Summary, 5. Evaluation/Testing etc.		
	b) Student-centered learning activity models		
	Alternatively, it is possible to develop the sequence of activities according to student-centered models which are obviously consistent with the constructivist pedagogy and so support the production of corresponding pedagogy learning scenarios. Some well-known such models, for example, are:		
	• Inquiry learning models: For example, the 5Es model for inquiry instruction: <i>5E=Engage, Explore, Explain, Elaborate, Evaluate</i> or variations such as <i>Engage, Explore, Reflect, Extend, Discussion etc.</i>		
	• Experiential models: L	Jsing the Kolb's Experiential Learning Cycle:	
	-	. Reflective Observation of the New Conceptualization, 4. Active Experimentation.	
	 Experiment learning models: Question, Background Research, Hypothesis, Test/Experiment, Analyze Data, Draw Conclusions, Communicate Results Collaborative Learning: Using various CSCL-Scripts Learning by design and/or making: Analysis, Design, Development, Implementation, Evaluation 		
	learning activities in two	re classroom model17: Organizing the or more of the six learning areas-zones of a ely: <i>Interact, Exchange, Investigate, Create,</i>	
C.2 Assessment	How will learning be identified? Provide suggestions and strategies for detecting student learning and performance.		
	C.2.1 Students feedback and reflection	How will students get informed about their performance and how is reflection structured	
C.3 Homework/ Work with parents- family	Possible homework assignments or proposals for the extension of the activity at home		
	Part D. Information for	r the Teachers	
D.1 Adaptation - Differentiation for inclusion of all students			
D.2 Extension			

¹⁷ http://fcl.eun.org

D.3 Resources			
D.4 Experience			
deriving from the			
implementation of			
the scenario			
D.5 Relations to			
other scenarios			
D.6 Reviews by			
teachers			
D.7 Assessment of	[1=Very Bad – 5=Very Good]		
the scenario			
D.8 References			
Part E. Annexes			
	Annexes may include complementary material of the learning		
	scenario such as: Worksheets, Information Sheets, Questionnaires,		
	Presentations, Code, students' products samples etc. which are		
	essential for the implementation or the understanding of the scenario.		

Appendix IV. Exemplar Learning Scenarios

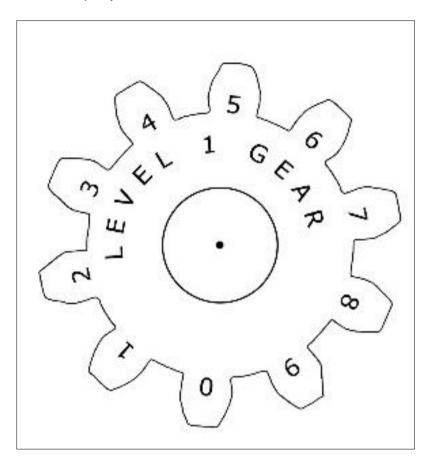
Exemplar Scenario 01: The history of computation automation

	Part A. General Data		
A.1 Title:	The history of computation automation		
A.2 Author(s):	Kefalas Ioannis, University of the Aegean		
A.3 Abstract/ Summary:	In this scenario, students are traveling in the history of computation automation. During this journey, they are expected to learn about the first machines used to make simple calculations, and the antiquity of them, with a special focus on Pascal's mechanical calculator, the famous Pascaline. They will construct a simplified version of a Pascaline and will then use their model to perform a few calculations. This is a scenario that unites History, Arts and Computer Science in a creative, educational way.		
A.4 Keywords:	Pascaline, Computation automation, Science H	History	
A.5 Version:	Draft		
A.6 Date:	29/10/2020		
A.7 Copyright license:	Attribution ShareAlike CC BY-SA		
	Part B. Learning Data		
B.1 Grade(s):	Grades 7-8, Ages 12-13 years		
B.2 Subject(s):	Computer Science, History, Arts.		
B.3 Topic(s):	History of computation automation		
B.4 Computational Thinking Dimensions:	Algorithmic Thinking (AL) ✓ Abstraction (AB) ✓ Generalization (GE) ✓ Logical reasoning (LR) ✓ Pattern matching (PM) ✓ Problem decomposition (PD) ✓ Problem translation (PT) ✓ Evaluation (EV) ✓ Representation (RE) ✓ Data collection (DC) ✓ Data representation (DR) ✓ Data analysis (DA) ✓ Modeling (MO) ✓ Simulation – (SIM) ✓ Automation (AUT) ✓ Sequencing (SE) ✓ Testing (TE) ✓ Understanding People – (UP) /Artificial Intelligence (AI) ✓		

B.5 Computational				
Thinking	Tinkering experiment	ng & plaving	\checkmark	
•	Creating, designing, a		 	
Approaches:	Debugging, finding, a		•	
	Persevering, keeping		\checkmark	
	Collaborating, working	g together	v	
B.6 Thematic in the				
context of the				
CompuT Project:	Educational Robotics or			
compar Project.	Physical Computing			
	Computational Science	Modeling/Simulation	on 🗸	
	project	Bifocal modelling		
		Sensors use or ma		
		Maths and CS	√	
		Other:		
	Data science project			
	History of science and technology		\checkmark	
	Digital game, software, or mobile app			
	Digital humanities projects	Digital Storytelling		
		Interactive Fiction		
		Text mining		
		Algorithms in		
		everyday life		
		Other:		
	Artificial Intelligence Projects			
	Studio approach – Future Classroom projects			
	Unplugged experiential or vising manipulatives			
	Other:			
B.7 Purpose/Aim	By completing this scenario,		•	
of the learning	knowledge about the historica	al evolution of com	putation automation	
scenario:	and have become more famil	iar with the basic r	nechanisms of simple	
			•	
	computation machines. Thus, the main purpose of the scenario is for			
	them to understand the function of a computing machine, like the			
	Pascaline and build their own	machine so that t	hey become	
	engineers and scientists.			
B.8 Learning	Note how the scenario might	support the develo	opment of general	
outcomes/goals ¹⁸ :	Note how the scenario might support the development of general competences and various of the so-called 21 st century skills.			
	B.8.1 Knowledge •	Recognize some o	f the mechanisms	
		connected with the		
	<u> </u>			

¹⁸ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

B.9 Horizontal competences - 21 st	•	 computation automation, such as the Pascaline. Describe how a calculating machine (such as Pascaline) works. Develop Construction skills, by assembling their own Pascaline. Acknowledge the importance of the machines to solve everyday life problems. Reflect on the evolution that occurred in science and lead to the modern computers we use nowadays. creates the right conditions in order to develop ch as critical thinking, problem solving,
century skills:	perseverance, adapta	-
	B.9.1 Learning and innovation skills:	4C's: Collaboration, Communication, Critical Thinking, Creativity
		Students will have to collaborate to build their machine, communicating, thinking critically and being creative.
	B.9.2 Digital literacy skills:	Information literacy: students will gain knowledge on the first steps of the information revolution.
	B.9.3 Career and life skills:	Flexibility and adaptability, social and cross- cultural interaction, productivity and accountability, leadership and responsibility:
		Students will adapt their model to their needs and resources, interacting with their classmates, being productive and responsible on the result.
B.10 Modern	The scenario includes	modern teaching methods such as:
teaching methods:	Tinkering, as the stud Pascaline.	ents will have to assemble a cardboard
	Collaborative Learning tasks.	g, as they must work on teams to complete the
B.11 Integration of CT into the curriculum:	This scenario includes a variety of disciplines such as history, art and CS, blended with many CT dimensions.	
B.12 Relation to curriculum and/or standards:	Greek National Curriculum, Grades 7-8, Computer Science Curriculum	
B.13. Prerequisite knowledge:	No prerequisite knowl	edge required.
B.14. Difficulty Level of the Scenario:	Intermediate	


B.15. Social setting			ork in small groups to com	plete some of
of the scenario:	the activities of this scenario.			
B.16 Place of implementation:	Classroom, or Computer Lab			
B.17 Teaching time – Duration:	3 x 45' sessions			
B.18 Educational	B.18.1 Software:			
material,	B.18.2 Hardware:			
resources, instruments, tools,	B.18.3 Online resource	es:	YouTube videos, Search er	ngines
and media:	B.18.4 Conventional educational material:		Cardboard pieces of Pasca or (Round head) fasteners	line, Glue, nails
	Part C. Learning	Expe	rience Design	
C.1. Activities-				
Action-Plot-	Phase 1.		History of Computation hines	
Storyboard sequence table:	Activity/Task		cription/Procedure	Duration
sequence table.	A1.1 Gain attention	The	teacher discusses the	20'
	– History of computation	-	v steps of computation projects a relative video	
	automation		e students	
		https:// kjZ_G	/www.youtube.com/watch?v=O5ns ol	
		Students are asked to try to		
			ime what the utility of t they see is.	
	A1.2 The	The	teacher focuses on the	20'
	Pascaline	Pase	caline and informs the	
	introduction		ents that this is a model mechanism created in	
			2-44 by Pascal which	
		-	ates some simple	
			tions and subtractions, as 98+6 and 22-5.	
		He/s	he then projects a video	
			explains how the caline works:	
		https:/	/www.youtube.com/watch?v=Sey	
			YKqg&t=151s t out that this was an	
		atter	mpt that people made to	
	A12 Summery and		mate computations.	5'
	A1.3 Summary and next phase.		teacher sums ups and ms the class that in the	5
	,	next	phase, split in groups,	
		-	are going to build their cardboard Pascaline and	
			use it to perform a few	
		-	tions and subtractions.	

Phase 2.	Building a Pascaline Model	
Activity/Task	Description/Procedure	Duration
A2.1 Build your Pascaline	The teacher projects the following video and discusses with the students how they will build their own Pascaline: • Pascaline DIY: https://youtu.be/KgPsTBwn0eM Slides from the following presentation could also be exploited. For example, slide #19. https://www.cs.cmu.edu/afs/cs/academic /class/15294- f14/lectures/pascaline/pascaline.pdf Students are given Worksheet 1, paper, cardboard, nails and are asked to follow the steps in the Worksheet to build their Pascaline in groups.	45'
Phase 3.	Phase title (Performing calculations with our Pascaline Model)	
A3.1 Compare the groups' Pascaline models	The groups compare their Pascaline cardboard models to see whether they are all identical. Possible construction errors are identified and corrected	5'
A3.2 Perform calculations with the Pascaline model	The teacher shares Worksheet 2 and asks students to answer the questions on it. Students will have to do some operations to see if their Pascaline functions correctly and then answer general questions to deepen on the subject. If there is time left, extra numbers can be given to the students to test their model by performing additions and subtractions with them.	35'
A3.3 Summary and discussion	The teacher asks the students to evaluate the time it takes to do an operation using Pascal's calculator. Through a relevant discussion he/she tries to point out that the value of	5'

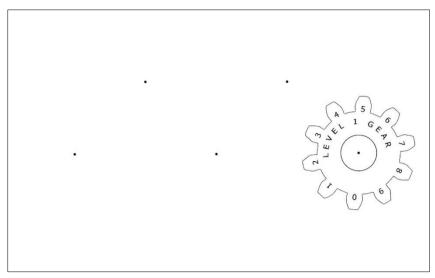
			ention is related to its	
	time of occurrence.			
C.2 Assessment				
	C.2.1 Students feedback	St	udents will try to add and	subtract different
	and reflection		mbers and evaluate their	
C.3 Homework/				
	No homework needed.			
Work with parents-				
family				
	Part D. Information	for th	a Teachars	
D.1 Adaptation -	All students could imple	ment th	ne scenario	
Differentiation for				
inclusion of all				
students				
D.0. Fastanaian	One stieve of a Dessertion			
D.2 Extension	Creation of a Pascaline	using L	.ego: https://youtu.be/olfNFXJ	EZOA
D.3 Resources	YouTube videos, Searc	h engin	es, Cardboard pieces o	of Pascaline,
	Glue, nails or (Round h	ead) fas	steners	
D 4 Experience	· · · · /			
D.4 Experience				
deriving from the				
implementation of				
the scenario				
D.5 Relations to				
other scenarios				
D.6 Reviews by				
teachers				
D.7 Assessment of	[1=Very Bad – 5=Very (Goodl		
the scenario				
D.8 References				
Part E. Annexes				
	Worksheet 1 – Pascaline Assemblage			
	Worksheet 2 – The Pascaline in action			

Worksheet 1 - Pascaline Assemblage

You are going to build a machine to do calculations, named Pascaline. Use the model given below, copy and cut 5 gears and follow the steps to build your own Pascaline! Ask your teacher for help if you need so. Good luck!

Following these steps, the Pascaline is built from right to left:

Make a level 1 gear:


- 1. Connect a circle with a gear using the nail, to make a level 1 gear.
- 2. Glue the level 1 gear to the lower rightmost predefined spot of the board (Figure 1).
- 3. Make a second level 1 gear and glue it to the upper rightmost spot (Figure 2).

Make a level 2 gear:

- 4. First make a level 1 gear and then glue it to a second circle.
- 5. Glue the level 2 gear to the lower middle spot (Figure 3).
- 6. Make a second level 2 gear and glue it to the upper left spot (Figure 4).

Make a level 3 gear:

- 7. First make a level 2 gear and then, glue it to a third circle.
- 8. Glue the level 3 gear to the lower leftmost spot (Figure 5).
- 9. Draw three pointers at the bottom of the Pascaline showing to the lower gears (Figure 6).

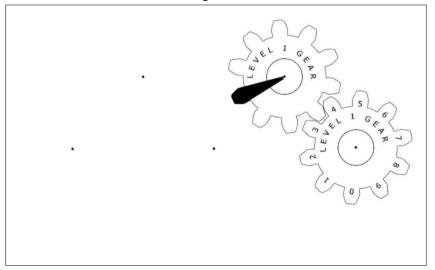
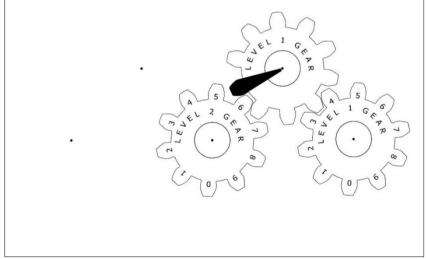



Figure 2

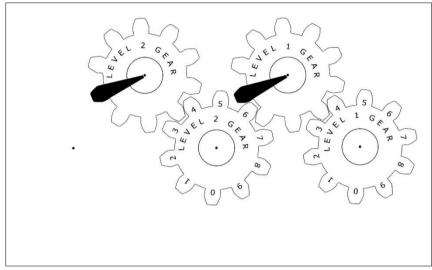


Figure 4

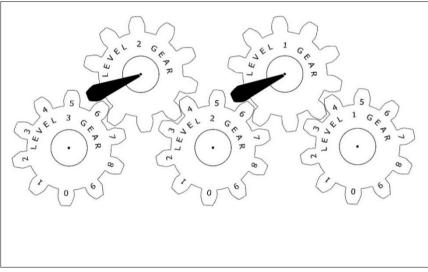
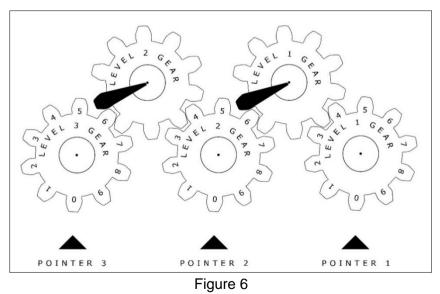



Figure 5

Worksheet 2 – The Pascaline in action

Name(s): _____

Date:

You have built a machine to do calculations, called Pascaline. Congratulations! Now, let' s see if your machine functions properly.

- 1. Use the Pascaline you built and try to add **87+5**. Is the result correct?
- 2. Now try to calculate 62-4. Is your result correct?

Try to answer the following questions:

- 3. Pascaline's front panel is divided in two distinct areas, an input, and an output. Can you locate these areas?
- 4. What is the maximum number that Pascaline can output?
- 5. What kind of arithmetic operations can one perform with Pascaline?
- 6. Is it possible to add non-integer numbers with Pascaline?
- 7. How can we inscribe a digit in Pascaline?
- 8. After the completion of an operation, Pascaline should be reset. How could this be done?
- 9. What is nines' complement of a number and how is this concept related to Pascaline?
- 10. What kind of device was Pascaline, analog or digital?

You are now a creator of a computing machine!

Well done!

Exemplar Scenario 02: Finding Needles in the World's Biggest Haystack

Part A. General Data			
A.1 Title:	Finding Needles in the World's Biggest Haystack		
A.2 Author(s):	Elisavet Mavroudi, University of the Aegean		
A.3 Abstract/ Summary:	The present scenario deals with some of the core algorithms of the Web search and it is based on the homonymous (second) chapter of the book "The nine algorithms that changed the future" (J. MacCormick, 2012). Through the various activities of the scenario, students are led to a step-by-step discovery of some of the aspects that the indexing and ranking techniques of the search engines, employ. Finally, a first approach to the description of the structure of a web page through HTML, is attempted.		
A.4 Keywords:	search engines, matching, indexing, nearness, metawords, HTML		
A.5 Version:	V02		
A.6 Date:	30/09/2021		
A.7 Copyright license:	Attribution ShareAlike CC BY-SA		
	Part B. Learning Data		
B.1 Grade(s):	K-12: Grades 6-9 or Age(s): 12-14 years old		
B.2 Subject(s):	Computer Science		
B.3 Topic(s):	Algorithms, Search Engines		
B.4 Computational Thinking Dimensions:	Check or note the dimensions which the scenario involves: Algorithmic Thinking (AL) ✓ Abstraction (AB) ✓ Generalization (GE) ✓ Logical reasoning (LR) ✓ Pattern matching (PM) ✓ Problem decomposition (PD) ✓ Problem translation (PT) ✓ Evaluation (EV) ✓ Representation (RE) ✓ Data collection (DC) ✓ Data representation (DR) ✓ Data analysis (DA) ✓ Modeling (MO) ✓ Simulation – (SIM) ✓ Automation (AUT) ✓ Sequencing (SE) ✓ Testing (TE) ✓ Understanding People – (UP) /Artificial Intelligence (AI) ✓		

B.5 Computational	Check or note the CT approac	hes which the scenari	o employs
Thinking	Tinkering experimentin	a & plaving	\checkmark
Approaches:	Creating, designing, ar		\checkmark
	Debugging, finding, an	Ū.	
	Persevering, keeping g	3	
	Collaborating, working		\checkmark
B.6 Thematic in the context of the CompuT Project:	In the context of the CompuT I to drive the development of the Educational Robotics or		ne thematic units
	Physical Computing		
	Computational Science	Modeling/Simulation	
	project	Bifocal modelling	
		Sensors use or making	
		Maths and CS	
		Other:	
	Data science project		
	History of science and		
	technology		
	Digital game, software, or mobile app		
	Digital humanities projects	Digital Storytelling	
	Digital numanities projects	Interactive Fiction	
		Text mining	
		Algorithms in	\checkmark
		everyday life	
		Other:	
	Artificial Intelligence		
	Projects Studio approach Euture		
	Studio approach – Future Classroom projects		
	Unplugged experiential or		
	using manipulatives		
	Other:		
B.7 Purpose/Aim	The long-term goal of this scer	nario is for students to	be able to
of the learning	explain in simple terms the bas		
scenario:	become aware of some "smart		-
Scenario.			-
	perform daily on their digital de appreciate the contribution of a	•	
B.8 Learning	After the completion of the sce	nario. students are ex	pected to be able
outcomes/goals ¹⁹ :	to:		

¹⁹ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

	B.8.1 Knowledge	• distinguish between the two phases of a web search: (a) matching and, (b) ranking.
		• explain the word location trick and demonstrate its contribution in the efficient performance of phrase queries by the search engines.
		 explain how the "nearness" criterion may contribute to the improvement in the ranking of pages
		recognize html tags
	B.8.2 Skills	Use search engines more efficiently
	B.8.3 Attitudes- affective	 gain a deeper appreciation of the ideas behind the actions they daily perform on their digital devices
		 appreciate the contribution of algorithms to everyday life
B.9 Horizontal competences - 21 st	This learning scenarion development of varion	o creates the appropriate conditions for the us 21st century skills.
century skills:	B.9.1 Learning and innovation skills:	4C's: Collaboration, Communication, Critical Thinking, Creativity
		Throughout this learning scenario, students work in small groups. They are asked, with the help of properly designed questions, to process some data to draw conclusions, which they then present to the plenary. Through this way of working, they can develop and / or improve their Collaboration, Communication and Critical Thinking skills. Finally, their creative potential could be enriched by the very subject of the script, which involves the introduction of some tricks, that is, some clever techniques for accomplishing goals.
	B.9.2 Digital literacy skills:	Information literacy, Media literacy, Information and Communication technologies (ICT) literacy, Digital citizenship
		Web searching has become an extremely popular internet activity, an integral part of modern life. The present scenario aims to help internet users use search engines more efficiently, by understanding some aspects of their searching techniques. Pupils are also expected to have a much deeper appreciation of the ideas behind the actions they daily take on their digital devices.
	B.9.3 Career and life skills:	Flexibility and adaptability, initiative and self- direction, social and cross-cultural interaction, productivity and accountability, leadership, and responsibility

B.10 Modern teaching methods:	-	llowing a discovery learning technique and ds such as work in small groups, a role- g.
B.11 Integration of CT into the curriculum:		ary scenario. It, however, involves a vithin the context of CS discipline.
B.12 Relation to	Greek National Curriculum	
curriculum and/or standards:	Grade 7 ICT Curriculum (Se	earch Engines)
	Grade 9 ICT Curriculum (Al	gorithms)
B.13. Prerequisite	Students need to have basi	ic knowledge of web searching.
knowledge:	Basic knowledge of Excel w	vould also be desirable.
B.14. Difficulty Level of the Scenario:	Intermediate	
B.15. Social setting of the scenario:	small group (3-4 students),	whole class
B.16 Place of implementation:	Computer Lab	
B.17 Teaching time – Duration:	4 x 45' sessions	
B.18 Educational	B.18.1 Software:	web browsers, Excel
material, resources,	B.18.2 Hardware:	Pcs
instruments, tools, and media:	B.18.3 Online resources:	YouTube video, Search Engines, https://www.w3schools.com/html/
	B.18.4 Conventional educational material:	copies of book pages, books

Part C. Learning Experience Design

C.1. Activities-			
Action-Plot-	Phase 1.	Introduction to the concept	
Storyboard		of indexing	
sequence table:	Activity/Task	Description/Procedure	Duration
	A1.1 Warming up, engaging the students	 The class is divided in groups of 3-4 students. The teacher poses the following questions to the class: Do you know how many websites there are online nowadays? How do search engines get results back to us so quickly? 	10'

 Do you know what a book index is? If gave you 4-5 pages from a book and asked you to locate a specific word in them, what method would you in them what method would you would need for this task? 5' for the groups to reflect on the guestions and a follow – up plenary discussion. If the teacher finds it necessary, he/she can proceed with the role game, that is, he/she can distribute a few pages from a book to the groups and ask them to locate a specific word. A1.2 A1.2 A1.2 A1.2 A1.4 A1.5 Searching with the help of an index In groups and ask them to locate a specific word. A1.4 A1.5 Searching with the help of an index In groups and asks the groups and asks the groups to study the index and answer the following questions: I. What do the numbers next to the word reference? I. What do the numbers next to the word reference? I. What do the numbers next to the words of a book and asks the groups to study the index and answer the following questions: I. What do the numbers next to the words of a book appear in the index? Why is that? Can you think of any other frameworks in which indexing is used for search purposes? (e) glibraine; the words of a book appear in the index? Why is that? The groups participate through a representative in the discussion that to lows to highlight the value or indexing in the search for information as well as the basic characteristics that an index constructed? 			
	Searching with the	 book index is? If I gave you 4-5 pages from a book and asked you to locate a specific word in them, what method would you follow? How much time do you think you would need for this task? 5' for the groups to reflect on the questions and a follow – up plenary discussion. If the teacher finds it necessary, he/she can proceed with the role game, that is, he/she can distribute a few pages from a book to the groups and ask them to locate a specific word. As the previous step will have highlighted the difficulty of searching when the information is not organized in some way, the teacher then gives each group an indexed book and asks the groups to study the index and answer the following questions: What do the numbers next to the word refer to? What do the numbers next to the word refer to? Do all the words of a book appear in the index? Why is that? Can you think of any other frameworks in which indexing is used for search purposes? (eg libraries, the web etc) The groups participate through a representative in the discussion that follows to highlight the value of indexing in the search for information as well as the basic characteristics that an index must have to be useful. But 	15'

A1.3 Try to construct the index for three very short pages (Assessment activity).	 Each group will be given a copy of three "pages" (Annex 1), each one containing one sentence. 1. Try to build an index containing all the words that appear in the pages. 2. Build your index in EXCEL which provides for easy sorting of the entries. 3. Exchange your index with another group. Are the two indices identical? 4. Try to perform 1-2 search(es) with the use of your index. Does it work? 	20'
Phase 2.	How do search engines use	
	the indexing - What other	
	techniques do they use?	
Activity/Task	Description/Procedure	Duration
A2.1	Let's move to the web search	10'
Warm up searches	 and try to understand how the search engines work The groups are asked to perform the following searches and reflect on the results. 1. Search by the keyword "hospital" - which hospital appears first in the results and why? 2. Search by the key- phrase "travel to Mars", first without and then with the use of quotation marks. Compare the number of the results in each case. What do the results have to do with, the planet, or the mythical god? How does the search engine undestand the subject? 3. Do you believe that an index, as the one discussed in the previous step, would be useful in the cases of phrase queries? 	
A2.2 Watch a video and try to understand the basic	The students are going to watch a video titled: "The Internet: How Search Works"	35'

techniques that search engines use, with the guidance of a worksheet.	 (linked provided in Worksheet I- Annex 3). 1. Before that, they are prompted to study the questions from Worksheet 1. 2. Each group tries to discuss / answer the questions in the Worksheet, referring to the video if needed. 3. All the points of the worksheet will then be discussed in the class. 	
Phase 3.	Connecting nearness and metaword tricks with ranking	
		Duration
Activity/Task	Description/Procedure	Duration
A3.1 Introducing the nearness trick	After reminding that the simple index is not effective for phrase-queries search, the groups are given an enriched version of the index, as in the Annex 2, and are asked to study it to answer the following question: "What is the role of the new information in the enriched index? How could it be used in answering phrase questions?" Note: It has been observed that pages in which the query words appear the one near to the other are more likely to be relevant.	15'
A3.2 Introducing HTML and the meta words trick	As it has been highlighted in phase 2, one of the criteria that make a page relevant is for a search term to appear on the title of the page. But how can a search engine know which words of the webpage are part of the title? • open the https://www.w3schools.com/ht ml/ and try to identify the Title of this page. • Now, turn on the source page view. (right-click → View Page source, in Chrome) and try to locate the same title again.	

	 The teacher makes a brief reference to HTML highlighting the use of tags and metawords. Try to use the "Try it yourself" editor, just to experiment a little with HTML (By pressing the "Start learning HTML now"). Provided that these metawords become part of the index (the enriched version), what would be the criterion by which the search engine would decide whether a search term is included in the title of the page? 	
Phase 4.	Assessment activity and investigation of ranking algorithms	
Activity/Task	-	Duration
Activity/Task A4.1 A brief assessment activity	Description/Procedure The teacher has just added a new entry (page or post) in the class blog. She/he has deliberately put some unusual words in this entry. Students are then asked to: • predict whether a keyword search by one of these unusual words would bring this specific page in the results • carry out the search to confirm or reject their prediction • interpret, based on what they have learned from the current teaching scenario, why the page does not appear in the results	20'
A4.2 Further experimentation of the ranking algorithms	In this step, the groups are invited to experiment with the suggestions provided in Worksheet 2 and make a brief report with their findings. The purpose of this activity is to raise awareness about the problem of search results ranking and to acquaint students with the basic ideas (hyperlink trick, random surfer trick, adaptation through Machine Learning)	25'

	hobind the Dess Dents
	behind the PageRank algorithm.
	The teacher guides the
	process and the final
	discussion on the basic
	PageRank ideas as
	described in MacCormick J.
	(2011; 2016) and adaptation
	through Machine Learning. Explains the principles with
	simple schematic examples
	of linked web pages and
	hypothetical cases of simple
	searches.
C.2 Assessment	Informal teacher assessment of pupils during the tasks.
	Also, two short tasks are provided for the assessment purposes
	C.2.1 Student's feedback Students will get immediate feedback and reflection
C.3 Homework/	The last phase of the script could alternatively be assigned as
Work with parents-	homework. In this case, the report with the students' observations /
family	conclusions could be written in a collaborative document, per group
	of students.
	Part D. Information for the Teachers
D.1 Adaptation -	Part D. Information for the Teachers
D.1 Adaptation - Differentiation for	Part D. Information for the Teachers
	Part D. Information for the Teachers
Differentiation for	Part D. Information for the Teachers
Differentiation for inclusion of all	Part D. Information for the Teachers Students can also be assigned homework based on the questions:
Differentiation for inclusion of all students	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm
Differentiation for inclusion of all students	Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm and search engine evolution and give a brief overview.
Differentiation for inclusion of all students	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm
Differentiation for inclusion of all students	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm and search engine evolution and give a brief overview. Is it possible to search exhaustively for something on the internet? How can we search the dark internet? Some websites have been archived
Differentiation for inclusion of all students	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm and search engine evolution and give a brief overview. Is it possible to search exhaustively for something on the internet? How can we search the dark internet? Some websites have been archived over the years. How can we search for the information they contained? How is alphanumeric data compared? Make a program that looks for
Differentiation for inclusion of all students D.2 Extension	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm and search engine evolution and give a brief overview. Is it possible to search exhaustively for something on the internet? How can we search the dark internet? Some websites have been archived over the years. How can we search for the information they contained? How is alphanumeric data compared? Make a program that looks for words in texts. MacCormick, J. (2011). Nine Algorithms That Changed the Future.
Differentiation for inclusion of all students D.2 Extension	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm and search engine evolution and give a brief overview. Is it possible to search exhaustively for something on the internet? How can we search the dark internet? Some websites have been archived over the years. How can we search for the information they contained? How is alphanumeric data compared? Make a program that looks for words in texts. MacCormick, J. (2011). Nine Algorithms That Changed the Future. Princeton University Press. MacCormick J. (2016). Οι εννέα αλγόριθμοι που άλλαξαν το μέλλον,
Differentiation for inclusion of all students D.2 Extension	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm and search engine evolution and give a brief overview. Is it possible to search exhaustively for something on the internet? How can we search the dark internet? Some websites have been archived over the years. How can we search for the information they contained? How is alphanumeric data compared? Make a program that looks for words in texts. MacCormick, J. (2011). Nine Algorithms That Changed the Future. Princeton University Press. MacCormick J. (2016). Οι εννέα αλγόριθμοι που άλλαξαν το μέλλον, Πανεπιστημιακές Εκδόσεις Κρήτης
Differentiation for inclusion of all students D.2 Extension	 Students can also be assigned homework based on the questions: Find information about the relationship between PageRank algorithm and search engine evolution and give a brief overview. Is it possible to search exhaustively for something on the internet? How can we search the dark internet? Some websites have been archived over the years. How can we search for the information they contained? How is alphanumeric data compared? Make a program that looks for words in texts. MacCormick, J. (2011). Nine Algorithms That Changed the Future. Princeton University Press. MacCormick J. (2016). Οι εννέα αλγόριθμοι που άλλαξαν το μέλλον, Πανεπιστημιακές Εκδόσεις Κρήτης https://www.semrush.com/blog/pagerank/

implementation of the scenario									
D.5 Relations to other scenarios									
D.6 Reviews by teachers									
D.7 Assessment of the scenario	[1=	Very Bad	– 5=Very	Good]					
D.8 References									
			Part E. /	Annexes					
Annex 1		Page	1		Page 2		Page	ə 3	
The three "pages"					he cat is		-		
sheets for the A1.3	1	The dog is p	playing		ne cat is ping on th	e	The do sleeping		
task		in the ya	ard.		couch.			a cat is playing	
							outsid	le.	
Annex 2		А	В	С	D	E	F		
Index that includes	1	а	3>6						
both page	2	cat	2>2	3>7					
numbers and in-	3	couch	2>7						
page word location	4	dog	1>2	3>2					
To be used in the	5	in	1>5						
A3.1 task	6	is	1>3	2>3	3>3	3>8			
	7	on outside	2>5 3>10						
	8 9		3>10	3>9					
		playing sleeping	2>4	3>4					
	11		1>1	1>6	2>1	2>6	3>1		
		while	3>5						
	13	yard	1>7						
	14								
Annex 3	14/2	orksheet 1							
	000	I NOTEEL I							
Worksheet 1									
To be used in the A2.2 task									

Finding Needles in the World's Biggest Haystack Worksheet 1

Name(s): _____

Date: ____

The web is a huge repository of information. Search engines have been a major factor in making the web a widely used information source. You just type one or more words and immediately get back a list of pages that contain your search keyword(s).

The video that you are about to watch will help you understand *how a search engine turns your request into a result*.

Before watching the video, have a look at the questions you are asked to answer.

- 1. I guess that you all know what Google is. Do you also know what Bing is?
- 2. How many websites are there on the internet?
- 3. When a user performs a search, where does the search engine look for the answer? Why is that?
- 4. What does the spider in the video represent?
- 5. What helps the spider locate new websites?
- 6. What is the output of the spider's journey through the web?

- 7. What is the use of a **ranking** algorithm?
- 8. What are some basic criteria that the search engines use to rank pages?
- 9. Which search engine has become very popular because of its ranking algorithm?
- 10. Could you provide an example to prove that during a search, a search engine may **make use of data that have not been explicitly provided by the user**?
- 11. In the video (minute 2:50) we hear that "*The search engine's algorithm might check if all the words show up next to each other*"

Do you think that an index as the one you have seen so far could be useful to such an algorithm?

Watch the video here: https://www.youtube.com/watch?v=CirQMh7VHc0

Finding Needles in the World's Biggest Haystack Worksheet 2

Name(s):	
Date:	

Carry out the following searches, record your observations of the results and then - after discussing with each other – write down your conclusions.

- 1. Carry out a search by deliberately making a mistake (eg wrong spelling, anagram, wrong keyboard language)
- 2. Do the same search on each of the following search engines, Google, Bing and DuckDuckGo. Make sure to use the same keywords in all three cases.
- 3. If anyone in the group has a Google account, let him/her sign in and then perform a search. Try the exact same search after s/he's signed out of his/her account.
- 4. Do another Google search. Then clear your browsing data (history, cookies, etc. ask your instructor for help with this step, if needed). Repeat the search.

Don't forget to observe the results, at every step. Both in terms of number and the order in which they appear.

Exemplar Scenario 03: Cats and Dogs

	Part A. General Data
A.1 Title:	Cats and dogs
A.2 Author(s):	Stavroula Prantsoudi, University of the Aegean
A.3 Abstract/ Summary:	Smart devices, that is, devices which show intelligence, are increasingly surrounding students, who should thus be prepared to use such technology in their future social and professional life. These devices use algorithms which automatically improve through experience they build based on sample data. The algorithms can make decisions or predictions without being explicitly programmed to do so and this is called Machine Learning (ML), a subset of Artificial Intelligence (AI). The purpose of this scenario is to introduce students to the basic concepts of ML and AI. After an introduction to AI and basic AI concepts, students are asked to build, train, and test a Machine Learning model. They then discuss the AI bias problem and try to find reasons and propose solutions. To extend the scenario, the creation of an application using a ML model is proposed. Students are expected to become familiar with basic concepts of AI, learn to create and use ML models and raise their awareness on AI ethics matters, concerning the use of AI applications in everyday life, such as Algorithmic bias. They will be guided to work in a constructive, collaborative way, in groups of 2, while also interacting with the whole class and their teacher. The scenario introduces the machine learning concept and could be used in many scientific fields and different subjects, after being properly modified.
A.4 Keywords:	Machine learning, Artificial Intelligence, image recognition, AI bias, programming, Scratch
A.5 Version:	Version 1
A.6 Date:	20/10/2021
A.7 Copyright license:	Attribution ShareAlike CC BY-SA
	Part B. Learning Data
B.1 Grade(s):	Grades 9-10 or Age(s): 14-15 years old
B.2 Subject(s):	Computer Science
B.3 Topic(s):	Programming, Machine Learning, Image recognition, Artificial Intelligence, Algorithmic bias

B.4 Computational			
-	Algorithmic Thicking (\checkmark
Thinking	Algorithmic Thinking (A	AL)	✓ ✓
Dimensions:	Abstraction (AB)		✓ ✓
	Generalization (GE)		•
	Logical reasoning (LR)		
	Pattern matching (PM)		✓ ✓
	Problem decompositio		v
	Problem translation (P	1)	
	Evaluation (EV)		
	Representation (RE)		✓
	Data collection (DC)		\checkmark
	Data representation (D	PR)	\checkmark
	Data analysis (DA)		\checkmark
	Modeling (MO)		
	Simulation – (SIM)		
	Automation (AUT)		
	Sequencing (SE)		
	Testing (TE)		\checkmark
	Understanding People	– (UP) /Artificial	\checkmark
	Intelligence (AI)		
B.5 Computational			
	Tinkering ever		\checkmark
Thinking	Tinkering experimentin		✓ ✓
Approaches:	Creating, designing, au		✓ ✓
	Debugging, finding, an		↓
	Persevering, keeping g		✓ ✓
	Collaborating, working	together	v
B.6 Thematic in the			
context of the	Educational Robotics or		
CompuT Project:	Physical Computing		
compart roject.			
	Computational Science	Modeling/Simulatio	n
	Computational Science	Modeling/Simulatio	n
	Computational Science project	Bifocal modelling	
		Bifocal modelling Sensors use or ma	
		Bifocal modelling Sensors use or ma Maths and CS	
	project	Bifocal modelling Sensors use or ma	king
	project Data science project	Bifocal modelling Sensors use or ma Maths and CS	
	project Data science project History of science and	Bifocal modelling Sensors use or ma Maths and CS	king
	project Data science project History of science and technology	Bifocal modelling Sensors use or ma Maths and CS	king
	project Data science project History of science and technology Digital game, software, or	Bifocal modelling Sensors use or ma Maths and CS	king ✓
	project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other:	king ✓
	project Data science project History of science and technology Digital game, software, or	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling	king ✓
	project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction	king ✓
	project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining	king ✓
	project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction	king
	project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in	king
	project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or using manipulatives	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or using manipulatives	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king
	project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or using manipulatives	Bifocal modelling Sensors use or ma Maths and CS Other: Digital Storytelling Interactive Fiction Text mining Algorithms in everyday life	king

B.7 Purpose/Aim of the learning scenario: B.8 Learning outcomes/goals ²⁰ :	The purpose of the learning scenario is to familiarize students with the concept of Machine Learning and Artificial Intelligence in general. Students are surrounded by devices that use machine learning (chatbots, digital platforms, social media platforms, decision making algorithms, prediction algorithms etc.) and educating them in the way that these devices work is a major issue for future citizenship. After completing the scenario, students will have gained understanding on the way that algorithms use the data provided to them to make decisions and predictions, and the intelligence that machines show will be explained and revealed. They will also be aware of the several societal and ethical issues raised due to algorithmic bias.The following goals are expected to have been achieved after the completion of the scenario:B.8.1• Students know how artificial intelligence is incorporated in		
	B.8.1 Knowledge B.8.2 Skills	 Students know how artificial intelligence is incorporated in systems. Students know how machine learning models are built and used to define the behavior of machines and systems. Students know about the importance of their own decisions on the training of the models which the algorithms use. Students can train a machine learning model (make decisions on the groups of data and categorize data in the proper group). Students can test/evaluate a machine learning model. Students can build an algorithm (which makes use of a machine learning model) to make decisions. Students can modify an algorithm (which makes use of a machine learning model) to make decisions. 	
	B.8.3 Attitudes- affective	 Students have developed collaboration skills. Students have gained knowledge on machine learning concepts. Students have gained understanding on the way that machines and algorithms of everyday life use data to act intelligently (show artificial intelligence). Students have gained knowledge on the way that he/she can affect the behavior of an algorithm by providing it with certain data. Students have raised awareness on algorithmic bias issues and methods of preventing it. 	

²⁰ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

	B.9.1	Collaboration : students work in groups of 2 and collaborate				
	Learning	Communication : students will communicate with other				
	and innovation	groups to test their results				
	skills:	Critical Thinking : students need to critically think to make decisions on the images and classes they will use to train their models				
		Creativity : students are expected to improve their algorithm by changing costumes, sounds and expressions				
	B.9.2 Digital literacy skills:	<i>Information literacy</i> : students evaluate information to properly train their machine learning model				
B.9 Horizontal competences - 21 st		Information and Communication technologies (ICT) Iiteracy: students will be able to train a machine learning model and build an algorithm in a popular programming platform (Scratch)				
century skills:		Digital citizenship : students are aware of the concept of machine learning and the way it is used in various fields of everyday life. They are also aware of the AI bias issue.				
	B.9.3 Career and	<i>Flexibility and adaptability</i> : students can be flexible and adapt their data to train their model to react in new cases				
	life skills:	<i>Initiative and self-direction</i> : students should make decisions by themselves but also contribute to the group to come up with a result				
		Social and cross-cultural interaction : students should interact with other groups and test their results				
		Productivity and accountability : students should try to produce the best result in the time given and make their algorithm work for the maximum number of cases.				
B.10 Modern teaching methods:		ork in groups of 2 based on a Collaborative inquiry script. pected to Learn by coding, in a Project-Based way.				
B.11 Integration of CT into the curriculum:	The scenario, depending on the machine learning model used, can be combined with many fields of science in terms of interdisciplinarity. The present implementation is categorizing images, so it could be used to categorize animals, books, recycling material, vehicles, machines etc. to combine with Science, Sociology, Environmental education, History etc.					
	A different model could categorize text to combine with Language and Psychology (e.g., categorization of feelings according to the words used). Also, a model categorizing audio could be used to combine with Music, Arts, Dancing, or any other subject.					
B.12 Relation to	Greek National Curriculum, Grades 9-10, Informatics.					
curriculum and/or standards:	Any other a	ge and/or subject in interdisciplinary implementation.				
B.13. Prerequisite knowledge:	Students need to have basic knowledge of web searching and file management. Scratch programming will be needed for the implementation of the extension.					
B.14. Difficulty Level of the Scenario:	Medium					

B.15. Social setting of the scenario:	Pair (2 students), or ir	ndividu	Jal	
B.16 Place of implementation:	Computer Lab			
B.17 Teaching time – Duration:	3 x 45' sessions (or 1x45' + 1x90')			
B.18 Educational material, resources, instruments, tools,	B.18.1 Software:		Scratch, Web browser <u>https://teachablemachine.w</u> <u>https://dancingwithai.media</u> https://machinelearningfork	.mit.edu/
and media:	B.18.2 Hardware:			
	B.18.3 Online resource	s:	https://teachablemachine.w	vithaooale.com/
			https://dancingwithai.media	
			https://machinelearningfork	
			Payne, B.H. & Breazeal, C. of Artificial Intelligence Curr School Students. MIT Medi	(2019). An Ethics riculum for Middle
	B.18.4 Conventional educational material:			
	Part C. Learning	Expe	rience Design	
C.1. Activities-				
Action-Plot- Storyboard	Phase 1.		se title: Introduction Exploration	
sequence table:	Activity/Task		cription/Procedure	Duration
	A1.1 Warming up – Introduction to AI – the AI definition	The Wor guid class They intel intel in ev Stud ques They <u>https</u> <u>?v=n</u> artifi	teacher shares ksheet 1 and follows the elines on it with the s. / discuss the concept of ligence in general, the nition of Artificial ligence and its presence veryday life. lents answer the stions on the worksheet. / watch the video <u>://www.youtube.com/watch</u> <u>ASDYRkbQIY</u> (What is cial intelligence? The al Society) and discuss	15 min.
	A1.2 Applications of AI	stud AI ai he/s som	teacher guides the ents to list applications of nd their everyday use, he guides them to use e of them and propose rs, categorize them	30 min

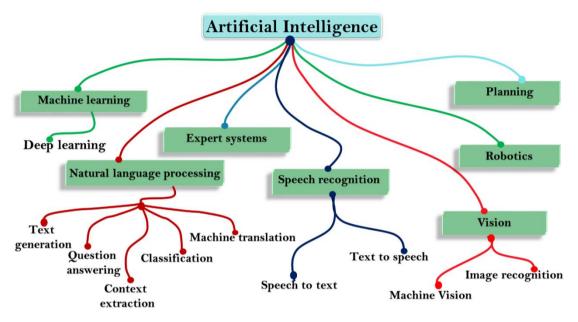
	based on a conceptual map	
	and search for additional	
	examples of each category.	
	Students also watch a video	
	https://www.youtube.com/watch	
	<u>?v=3wLqsRLvV-c</u> (The Turing	
	test: Can a computer pass for	
	a human?) and discuss on	
	the famous Turing test.	
Phase 2.	Phase title: Development	
	and Evaluation	
Activity/Task	Description/Procedure	Duration
A2.1 AI concepts -	The teacher shares	10 min
machine learning	Worksheet 2.	
and data collection	He /She urges students to	
	wonder if there is a way to	
	-	
	teach a machine to recognize	
	any photo and distinguish	
	between Cats and Dogs	
	(Discussion).	
	Based on the Worksheet,	
	students collect the data they	
	need to build a model for that	
	reason.	
A2.2 Build, train,	Following the guidelines,	30 min
and evaluate a	students build a machine	
machine learning	learning model in the	
model	suggested platform	
	https://teachablemachine.withgo	
	ogle.com/.	
	They train, test, and evaluate	
	their model and add new	
	examples/data if necessary.	
A2.3 Assessment	The teacher shares the	5 min
	Assessment Worksheet 2.1	•
	and asks students to answer	
	the questions to reflect on the	
	building of ML models	
Phase 3.	Phase title: Al ethical	
1 11030 0.	issues	
Activity/Task	Description/Procedure	Duration
		45 min
A3.1 Raising	The teacher guides a discussion on the ethical and	4 0 mm
awareness on Al		
ethical issues and	societal issues raising from	
fighting against	the use of AI.	
them	Worksheet 3 contains some	
	questions and proposed	
	videos to launch such a	
	discussion. The teacher can	
	adapt the content of the	
	worksheet (videos and	
	questions) to each class,	
	alwavs aiming to raise	
	always aiming to raise students' awareness on the	

		critical issues of AI ethics and	
		safety.	
		The duration of the session	
		and length of the discussion	
		can also be adapted	
		according to the teachers'	
	will.		
C.2 Assessment			
	C.2.1 Student's feedback Students will test and evaluate their ML		
	and reflection	model and compare results in real time. They will also fill the assessment worksheet.	
		Their models will be evaluated by their classmates and vice-versa.	
C.3 Homework/ Work with parents- family	Students can build their ML models at home and test them with real data (like their own pets). They could also discuss with their parents and family to find AI applications they already use and propose new ones.		
	The teacher could select and assign an extension to each team as homework.		
	Part D. Information	on for the Teachers	
D.1 Adaptation - Differentiation for inclusion of all students	The construct can be adapted on the teaching time available. 3 sessions of 45min are proposed. In case this is not possible, it is proposed that teachers implement the scenario in 1 session of 45min, and 1 session of 90min.		
	All students in general education could implement the scenario without restrictions.		
D.2 Extension	An extension of the scenario could be the building of an application Scratch which makes use of a ML model. Worksheet 4 can be used for this reason, while not restrictively.		
	Phase Extension.	Phase title: Using intelligence to	
		build something useful	
	AE.1 Build an applica (an algorithm to act intelligently) (35 min) AE.2 Evaluate your algorithm (test your	students follow the guidelines.Students build an algorithm to embeda ML model they have previouslycreated.They use thehttps://machinelearningforkids.co.uk/platform and the Scratch programmingenvironment. They are asked to studythe examples and try to build a modeland an algorithm to play Rock, paper,scissors with the computer.After they build their applicationstudents are asked to test it and make	
	application) (10 min)	possible modifications. They also help to test, evaluate, and modify their classmates' applications.	

D.3 Resources	https://teachablemachine.withgoogle.com/		
	https://dancingwithai.media.mit.edu/		
	https://machinelearningforkids.co.uk/		
D.4 Experience deriving from the implementation of the scenario			
D.5 Relations to other scenarios	Payne, B.H. & Breazeal, C. (2019). <i>An Ethics of Artificial Intelligence Curriculum for Middle School Students</i> . MIT Media Lab.		
D.6 Reviews by teachers			
D.7 Assessment of the scenario	[1=Very Bad – 5=Very Good]		
D.8 References	Payne, B.H. & Breazeal, C. (2019). <i>An Ethics of Artificial Intelligence Curriculum for Middle School Students</i> . MIT Media Lab.		
Part E. Annexes			
	Worksheet 1, Worksheet 2, Worksheet 2.1, Worksheet 3, Worksheet 4		

Machine Learning _ Worksheet 1 Introduction to AI - AI Concepts Students' name(s): ______ Group name: ______ Date: _____

Today you will learn about Artificial Intelligence and its' presence in our everyday lives.


A. Definition of AI

- **A.** Shortly answer the following questions. Then, discuss your answers with your classmates and your teacher:
- 1. What is intelligence?
- 2. When is a human considered to be intelligent?
- 3. Can other creatures be intelligent? How do you know when that happens?
- 4. Can machines act intelligently? Which machines can do that?
- 5. How do you think any intelligent behavior can be achieved by machines?
- 6. What is Artificial Intelligence?
- 7. Watch the video on the following link <u>https://www.youtube.com/watch?v=nASDYRkbQIY</u> (*What is artificial intelligence?* | *The Royal Society*). Go back to the answer you gave on Question 6 and discuss it with your classmates and teacher.

B. Applications of Al

- a. Discuss the extent to which the following applications are making use of AI.A chat bot
- b. Search engines
- c. Autonomous vehicles
- d. Robots
- e. Social media
- f. A translation system

- g. Online advertisements
- h. Virtual assistants (Siri, Alexa)
- 1. Use the following applications and discuss their features with your classmates:
 - a. Google Chrome's Speech to Text
 - b. The WHO Health Alert chat bot, https://www.who.int/
 - c. The Photomath application, https://photomath.com
- 2. Using the following conceptual map, search the Web to find an example of an application in everyday life, for each category (branch) on the map. Discuss the examples you found with your classmates and your teacher.

3. Watch the video on the following link

<u>https://www.youtube.com/watch?v=3wLqsRLvV-c</u> (The Turing test: Can a computer pass for a human?). Discuss the Turing test with your classmates and your teacher.

- 4. Are there any risks caused by using AI? Which can they be?
- **5.** Suggest ways to eliminate possible dangers (if any) caused by using AI. Discuss your suggestion with your classmates and your teacher.

Good job!

So far, you have learned about the definition of Artificial Intelligence and its' use in everyday life.

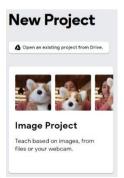
Next you will learn about basic AI concepts and focus on Machine Learning.

	Machine Learning _ Worksheet 2	<u> </u>
	Build an Al model	
Students' name(s):		
Group name:		
Date:		

Today you will teach a computer to decide whether an image shows a cat or a dog.

Answer the following questions to warm-up:

- A. Can a computer recognize animals (YES or NO)? _____
- B. If YES, how does that happen?
- C. If NO, can we teach a computer to recognize animals?


Computers make decisions using **algorithms** and **data** which people have provided them with. This is called <u>Machine Learning</u>.

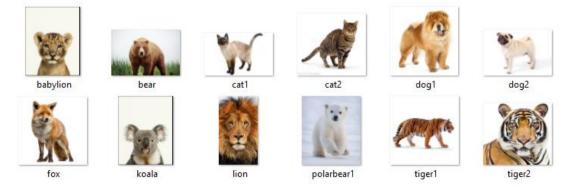
You will now teach a computer to classify cats and dogs, by creating a model.

A. Build your model

- Create two folders on your computer and name them Cats and another named Dogs. Search the web and collect images from cats and dogs (at least 10-15 of each category) and save them in the appropriate folder. Make sure there is variety and diversity on the images you selected.
- 2. Open a web browser and visit https://teachablemachine.withgoogle.com/
- **3.** Click on "**Get started**". You will create a new Image project so Click on it and select **Standard image model** on the popup window.

4. Name the two classes **Cat** and **Dog** and upload the images you collected in the appropriate class.

B. Train your model


 Click on Train your model and wait. The computer might need a few minutes to train your model. Be patient! After the training is completed, your model should look like the one below:

= Teachable Machine				
			Preview 🏹 Export Model	
Cat 🧷	:		Input 🔲 ON 🛛 File 🗸	
15 Image Samples				
Upload	n 🕅 🥂 🤺 		Choose images from your files, or drag & drop here	
	Training			
Dog 0	:	Model Trained	Import images from Google Drive	
15 Image Samples	15 Image Samples			
Upload 🎊 🎥 🚮	M 🛏 🔪 🖌		Ψ.	
Webcam Upload	C II 7 200 🕬		Output	
	>		Cat	
⊞ Add a class			Dog 100%	

- 2. To **Preview** the results of your model, use the available options on the right (the webcam or a new file).
 - a. On the Cats dataset, which differences and similarities are there between the cats?
 - b. On the Dogs dataset, which differences and similarities are there between the dogs?
- **3.** Think of cases of animals you may have not included in your model. You can always go back to your model, add examples and train it again.

B. Test your model

 Create a new folder and collect some **Test Data**, like images of cats and dogs that you have not included in the examples you used to train the model. Also collect images of other animals (like lion, bear, fox, koala etc.). Create a set of test data similar the one below:

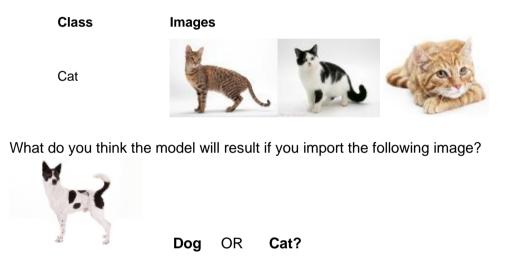
- 2. Test the images you collected on your model (import or drag & drop each image). The machine will tell you what it recognizes, as well as how confident it is. (You can also turn the webcam on and test the model with printed images). Is the **Output** correct?
- **3.** For each image of your Test Data set write down the results as on the table below. Can you explain each result? For example, why does the model think that the lion is a cat?

Image	Class	Confidence	Result
Lion	Cat	82%	Wrong

- **4.** Ask some of your classmates to help you test your model. Exchange your Test Data set with your classmates' and test their data on your model and vice versa. Are the results similar? Why/Why not?
- **5.** Are you happy with the responses? If not, do not forget that you can go back to the model and add some more examples. Always train your model again, after you have added examples.
- **6.** What do you think should happen so that the model recognizes animals other than dogs and cats? Do you think you can create a model that recognizes any animal on the planet?
- 7. Click on Download project as file and save your project.

Good job!

So far, you have trained your computer to recognize images as Cats or Dogs, thus, you have trained a **machine learning model** by feeding it with examples.

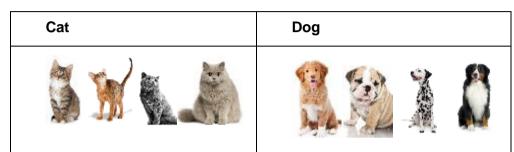

You can now go on to create something more fun and useful, by embedding your model in an application.

	Machine Learning _ Worksheet 2.1 Assessment	
Students' name(s): _		
Group name:		
Date:		

Since you have learnt how to build a Machine Learning model, you should now be able to predict the behavior of a model based on the data sets used for its' training. Look at the images and data sets below and try to answer the following questions:

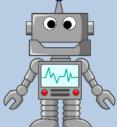
1. A Machine Learning model has been trained with the following training data:

2. A Machine Learning model has been trained with the following training data sets:


Which of the following sentence(s) is/are correct, regarding the results of the model:

- i. The results will be more precise for the Dogs
- ii. The results will be more precise for the Cats
- iii. The results will be equally precise for the Dogs and the Cats

3. Which of the following training data sets will give more precise results? Why?


	Cat	Dog
Α.		

B.

Machine Learning _ Worksheet 3 Al ethics/safety Students' name(s): Group name:

Artificial Intelligence (AI) has conquered human life and its' use is almost inevitable. Along with its' numerous benefits, voices of concern become louder every day. Today you will learn about the societal and ethical issues arising from the use of AI, the potential dangers, and suggestions for always being aware of them.

TIP: Before watching each of the following videos, look at the questions that follow 🥲

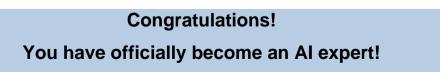
Ethics and AI

Discuss the following questions with your classmate and your teacher:

- 1. Is there an Artificial Intelligence system which would work properly in every case?
- Do you believe ML systems are always right/fair?

Date:

Watch the following video: https://www.youtube.com/watch?v=tJQSyzBUAew (Ethics & AI: Equal Access and Algorithmic Bias)

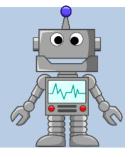

- 3. What are the potential dangers of using AI? How can they affect people and society?
- 4. What should people and/or the industry do to avoid such problems?

Watch the following video: https://www.youtube.com/watch?v=BtgcuhQ0cks (Bias in AI is a Problem)

- 5. Which are the reasons that cause biases on algorithms?
- 6. Can you give some examples of algorithms who may have been biased?
- 7. How can such malfunctions be prevented?

Visit https://www.ajl.org/, the website of the Algorithmic Justice League initiation, an effort towards an equitable and accountable AI. Browse the site to:

- 8. List two examples where AI bias affected real people lives.
- 9. Propose actions for better AI.



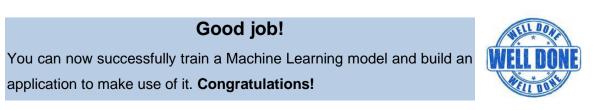
Machine Learning _ Worksheet 4

AI applications

Students' name(s):		
Group name:	 	
Date:	 	

After you have finished **training your model**, it is time that you use it to do something more fun and user friendly. You can think of and create any application which might be useful in your everyday life or modify and use some of the existing ones.

Build an application


 Visit <u>https://machinelearningforkids.co.uk/</u>, another website where you can build and train a machine learning model. Click on the Worksheets menu and browse the various Machine Learning Projects. Aren't they fantastic?

Ŵ	About	Worksheets	Pretrained	Book	News	Help	Log In

2. After browsing on the various projects select the **Rock**, **Paper**, **Scissors** one and download the worksheets. You will be guided to create a program in Scratch to play the game with the computer.

- **3.** Follow the steps on the Worksheet to train a model to recognize your hand as being rock, paper, or scissors. Then use the model and program an application in Scratch to play the game with the computer.
- ✓ You can always come back to your model to add more examples.
- ✓ You can use any project example you wish and modify it to create your own application.
 Above all, look at the fun side of AI.

Exemplar Scenario 04: Cryptography

	Part A. General Data					
A.1 Title:	Cryptography					
A.2 Author(s):	Zervas Konstantinos, Fesakis Georgios - University of the Aegean					
A.3 Abstract/ Summary:	Zervas Konstantinos, Fesakis Georgios - University of the Aegean The study of techniques used to secure communication, a major necessity these days, is called cryptography. Since ancient times, many cryptography methods have been used to protect communication. Students should be aware of these methods and techniques and be able to use them accordingly, when needed. This scenario is an introduction to the so-called symmetric cryptography methods such as Morse, Braille, and Caesar Cipher. It also introduces students to asymmetric cryptography based on the Public Key Encryption concept. Additionally, through various extensions, students may be given the chance to explore the enigma machine, the RSA algorithm, as well as the various applications of PKE. It intends to teach methods and practices of encrypting and decrypting messages, in both an unplugged and a simulated way through educational software, so that students may gain understanding and knowledge of the concept of cryptography.					
A.4 Keywords:	Cryptography, encryption, decryption, symmetric/asymmetric cryptography, Caesar cipher, Morse, Braille, Enigma machine, (Public Key Encryption (PKE), RSA, Digital Signature, Certificate Authorities)					
A.5 Version:	Version 1					
A.6 Date:	05/11/2021					
A.7 Copyright license:	Attribution ShareAlike CC BY-SA					
	Part B. Learning Data					
B.1 Grade(s):	Grades 8-10, or Age(s): 13-15 years old					
B.2 Subject(s):	Computer Science					
B.3 Topic(s):	Cryptography, security, encryption, decryption					
B.4 Computational Thinking Dimensions:	Algorithmic Thinking (AL) Abstraction (AB) Generalization (GE) Logical reasoning (LR) Pattern matching (PM) Problem decomposition (PD) Problem translation (PT) Evaluation (EV) Representation (RE)					

	Data collection (DC)			
		Data collection (DC)		
		Data representation (DR)		
	Data analysis (DA)			
	Modeling (MO)			
	Simulation – (SIM)			
	Automation (AUT)			
	Sequencing (SE)			
	Testing (TE)			
	Understanding People	– (UP) /Artificial	\checkmark	
	Intelligence (AI)			
B.5 Computational				
Thinking	Tinkering experimenting	a & plaving	\checkmark	
-	Creating, designing, an			
Approaches:	Debugging, finding, and	-	\checkmark	
		-		
	Persevering, keeping g	-		
	Collaborating, working	together	v	
B.6 Thematic in the				
context of the				
CompuT Project:	Educational Robotics or			
Comput Project:	Physical Computing			
	Computational Science	Modeling/Simulation	on	
	project	Bifocal modelling		
		Sensors use or ma	aking	
		Maths and CS		
		Other:		
	Data science project		\checkmark	
	History of science and		/	
	technology		\checkmark	
	Digital game, software, or			
	mobile app			
	Digital humanities projects	Digital Storytelling		
		Interactive Fiction		
		Text mining		
		Algorithms in		
		everyday life	\checkmark	
		Other:		
	Artificial Intelligence			
	Projects			
	Studio approach – Future			
	Classroom projects			
	Unplugged experiential or		,	
	using manipulatives		\checkmark	
	Other:			
P.7. Durness (Aim			booomo familiar with	
B.7 Purpose/Aim	The purpose of the scenario is	•		
of the learning	the concept of cryptography ar	nd various metho	ds of encrypting and	
		nd various metho	ds of encrypting and	

	hy using various o	privatographic methods to sond and receive		
	by using various cryptographic methods to send and receive messages in the ever-evolving age of technology.			
	incosayes in the c			
B.8 Learning				
outcomes/goals ²¹ :	B.8.1 Knowledge	Students demonstrate understanding about cryptography.		
		Students explain the need to encrypt and decrypt messages in this ever-evolving technological era.		
		Students illustrate examples of online threats while conducting communication.		
		Students compare some basic, widely used cryptography methods.		
	B.8.2 Skills	Students can apply Morse signals to encrypt/decrypt a message.		
		Students can make use of Braille signs to encrypt/decrypt a message.		
		Students can apply the Caesar cipher key to encrypt/decrypt a message.		
		Students can experiment encrypting /decrypting a message using a simulation of Enigma machine.		
		(If the extensions are implemented:		
		Students can apply asymmetric methods for encrypting/decrypting messages (RSA, digital signatures).		
		Students can create a new method to encrypt/decrypt a message to securely communicate with a friend.)		
	B.8.3 Attitudes- affective	Students identify the need of protecting messages by encrypting them.		
		Students have become conscious on security matters.		
		Students can collaborate to find ways to securely communicate with their friends.		
B.9 Horizontal				
competences - 21 st century skills:	B.9.1 Learning and innovation	Collaboration : students work in groups of 2 and collaborate		
	skills:	Communication : students will communicate with other groups to test their encrypted messages		

²¹ For effective formulation of learning-instructional goals Mager's work regarding the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could be in accordance to Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

		Critical T	hinking: students need to think critically to	
			isions on the ways they will encrypt their	
		-	<i>y</i> : students are expected to think of new to encrypt/decrypt their messages	
	B.9.2 Digital literacy skills:	order to s	on literacy : students evaluate information in elect the appropriate method for their n/decryption method	
		-	tizenship : students are aware of the concept traphy and the various ways it is used in fields ay life	
	B.9.3 Career and life skills:	flexible ar	/ and adaptability : students should be nd adapt their encryption/decryption method to the data given	
		decisions	and self-direction : students should make by themselves but also contribute to the come up with the result	
			d cross-cultural interaction: students eract with other groups and test their results	
B.10 Modern teaching methods:	Collaborative lear	ning		
B.11 Integration of CT into the curriculum:	Informatics has ca implications for all method is clearly	aused a ra l citizens. seen in the	e of art combined with science, where dical transformation, with social The computational problem-solving e case of cryptanalysis. The with many subjects depending on the	
	message to be ha	ndled eac	h time.	
B.12 Relation to curriculum and/or standards:	Greek National Cl Curriculum	urriculum,	Grades 8-10, Computer Science	
B.13. Prerequisite knowledge:	No prior knowledg scenario.	ge needed	to successfully implement the current	
B.14. Difficulty Level of the Scenario:	Intermediate			
B.15. Social setting of the scenario:	Individual or pair (2 students)			
B.16 Place of implementation:	Classroom or Cor	mputer Lat)	
B.17 Teaching time – Duration:	4 x 45' sessions			
	B.18.1 Software:		For the extensions' purposes:	

B.18 Educational material, resources, instruments, tools, and media:	B.18.2 Hardware: B.18.3 Online resource B.18.4 Conventional educational material:	es:	https://travistidwell.com/jsencrypt/c https://www.devglan.com/onlinetoc decryption https://8gwifi.org/rsafunctions.jsp https://www.cryptool.org/en/ Youtube videos	
	Part C. Learning	Expe	rience Design	
C.1. Activities-				
Action-Plot- Storyboard sequence table:	Phase 1.	expl	oration: Morse code,	
	Activity/Task A1.1 The need of cryptography – Warm up	Introduction and exploration: Morse code, steganographyDescription/ProcedureofThe teacher discusses the need of protecting personal data from others in various instances of everyday life (e.g. transfer of private data like usernames and passwords, credit card credentials etc.) The danger of unauthorised access to this data is discussed with the students and they are asked to propose methods to protect their data from third parties.•Which personal data would you like to protect?•Which personal data would want to steal your data?•Can you think of a way to protect your communication from third parties?They come up with the idea of cryptography. They discuss its use since ancient times.		Duration 10 minutes
	A1.2 Cryptography methods: The Morse code and steganography	grou They code Wor them discu aske using	ents are divided in ps of 2. v are introduced to Morse and steganography. ksheet 1 is shared to n, and the Morse code is ussed. Students are to to encrypt a message g the Morse code and ypt one using the same	35 minutes

	tochnique. They are also	
	technique. They are also	
	asked to decrypt a message	
	from a picture	
Phase 2.	(steganography).	
	Exploration: Braille code	Duration
Activity/Task	Description/Procedure	Duration
A2.1 Warm up –	Teacher and students	10 minutes
linking to earlier	deepen the discussion on	
discussed	encryption and decryption	
	and the teacher asks them if	
	they can think of other ways	
	to encrypt their messages.	
	Then he/she proposes the	
	Braille code and discusses	
	whether it could be used as a	
	cryptography method	
A2.2 Exploration –	Teacher shares Worksheet 2	35 minutes
Braille code	and asks students to	
	collaborate and	
	encrypt/decrypt messages	
	using the Braille code.	
Phase 3.	Exploration: Caesar cipher	
Activity/Task	Description/Procedure	Duration
A3.1 Warm up –	Students are introduced to	10 minutes
linking to earlier	the Caesar cipher encryption	
discussed	method and the way it is	
	used.	
	An introduction to the method	
	An introduction to the method	
	can be found here:	
	can be found here: https://www.youtube.com/watch?v=sMO	
	<i>can be found here:</i> https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title	
	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a	
A32 Exploration –	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students.	25 minutes
A3.2 Exploration – Caesar cipher	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares	25 minutes
A3.2 Exploration – Caesar cipher	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces	25 minutes
	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher	25 minutes
	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method.	25 minutes
	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to	25 minutes
	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and	25 minutes
	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to	25 minutes
Caesar cipher	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher.	
Caesar cipher A3.3 Discussing	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher. The teacher and students	25 minutes 10 minutes
Caesar cipher A3.3 Discussing the weaknesses of	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher. The teacher and students discuss the symmetric	
Caesar cipher A3.3 Discussing the weaknesses of symmetric	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher. The teacher and students discuss the symmetric encryption methods they	
Caesar cipher A3.3 Discussing the weaknesses of	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher. The teacher and students discuss the symmetric encryption methods they have used so far to	
Caesar cipher A3.3 Discussing the weaknesses of symmetric	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher. The teacher and students discuss the symmetric encryption methods they have used so far to understand that the methods	
Caesar cipher A3.3 Discussing the weaknesses of symmetric	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher. The teacher and students discuss the symmetric encryption methods they have used so far to understand that the methods can be deciphered, especially	
Caesar cipher A3.3 Discussing the weaknesses of symmetric	can be found here: https://www.youtube.com/watch?v=sMO Zf4GN3oc&feature=emb_title The teacher can project a way of using it and discuss it with the students. The teacher shares Worksheet 3 and introduces students to the Caesar cipher method. Students are asked to collaborate to encrypt and decrypt messages using Caesar cipher. The teacher and students discuss the symmetric encryption methods they have used so far to understand that the methods	

	Diffie-Hellman Key	
	Exchange-RSA	
Activity/Task	Description/Procedure	Duration
A4.1 Warm up –	The teacher summarizes the	15 minutes
linking to earlier	course of the lesson so far	
discussed	and reminds students that the	
	main problem of	
	cryptography is the sending	
	of a message from a	
	transmitter to a receiver	
	without being able to be	
	caught-received by a third	
	party interfering with the	
	route of the message. It is also pointed out that the main	
	weakness of symmetric	
	cryptography methods is the	
	secure sending of the key	
	between transmitter and	
	receiver without being	
	perceived by third parties.	
	Students are informed that	
	symmetric cryptographic	
	problems have been	
	addressed with public key	
	cryptographic methods since	
	the 1970s. The teacher	
	connects Public Key	
	Encryption (PKE) to pre-	
	existing knowledge by	
	presenting examples such as	
	secure messaging (email),	
	information transmission over	
	the Internet (Secure http -	
	https) and digital signatures.	
	It is suggested that the relevant video: The Internet:	
	Encryption & Public Keys	
	(Code.org),	
	https://www.youtube.com/watch?v=Zgh	
	MPWGXexs is viewed.	
A4.2 2 Exploration-	Students are briefly informed	30 minutes
Diffie-Hellman Key	that the PKE method was first	
Exchange	published in 1976 by	
algorithm and PKE	Whitfield Diffie and Martin	
	Hellman, although it is known	
	from an earlier time in the	
	state secret service. The	
	teacher shares Worksheet 5	
	and introduces students to	
	Diffie-Hellman Key Exchange	
	algorithm.	
	Depending on the readiness	
	of the class, the algorithm	

C.2 Assessment		dem stud with math the r work Wor the cryp meth softv PKE meth can a tools crea	only be shortly onstrated, or the ents can also proceed the study of the nematical background of nethod, included in the scheet. ksheet 6 demonstrates PKE asymmetric tography algorithm nod with CrypTool vare. Students test the process and try out the nod with each other. They also use different free and web pages to te key pairs for yption-decryption.	
C.2 ASSESSMENT	C.2.1 Student's feedbac and reflection	ck	Students create public an keys and then exchange messages and try to dec they are able to complete the student is considered	encrypted rypt them. If the process, I to have gained
C.3 Homework/ Work with parents- family	knowledge of the method.Students are asked to apply the RSA method: key generation, encryption/decryption and exchange of messages with their parents using different online tools and simulation software.			neration,
	Part D. Information	on foi	the Teachers	
D.1 Adaptation - Differentiation for inclusion of all students	All students should be	able	to implement the scenario.	
D.2 Extension	encryption with the exa were extremely difficul machines. Alan Turing machine encodes mes computer science. Initially how the Enigm explained with the help	acher ample It to d ssage ssage na ma p of v	introduces the use of mac of the Enigma machine. T ecipher either by humans of empt to figure out the way s, paved the way for the de chine works is demonstrate ideo.	These machines or by other the Enigma evelopment of ed and

1. Firstly, a simple simulation made with paper that simulates the
machine with one rotor.
2. Secondly a simulation with the CrypTool educational software.
Students are asked to collaborate to encrypt and decrypt messages
using Enigma machine simulations.
Suggested videos:
https://www.youtube.com/watch?v=-mdSvGUd0_c
https://www.youtube.com/watch?v=ASfAPOiq_eQ
D.2.2. Educational game
A game can be organized for the students to consolidate the
encryption methods. Indicative examples:
1. Students are divided into A. The Cryptographers and B. The
Hackers. The cryptographers choose a message and a method
and hackers try to break their "code" by decrypting the messages.
Cryptography methods practiced by students are used.
2. Students invent a hidden treasure mystery game. Specifically, a
series of instructions for accessing the hidden treasure are
encrypted and made accessible with QR-Codes placed in
different places. Players must decrypt the QR-Code message to
find out where the next one is (the first one is given). For
decryption they can use paper-pencil, their programs and
cryptool.org. The treasure may be the web address of the movie <i>"imitation game"</i> .
3. The students can build an escape room. The escape from which will require the decryption of instructions.
D.2.3. Reflecting on Cryptography Students could:
 study and discuss the applications of the RSA method. Observe
how intractable data security problems are exploited (e.g.
calculating large prime numbers).
 discuss and research cryptography and privacy
- study cryptography policies and laws. What is the position of the
citizens?
D.2.4. The biography of A. Turing (movie "imitation game")
Students can watch the movie "imitation game" which refers to Alan
Turing's biography and his efforts to decipher the algorithm on which
the Enigma machine is based. Following this students discuss issues
of encryption. Additionally themes which extend from this for example
history, language, peace education, human rights and sex education
may then be explored in co-operation with other subjects such as art,

D.2.5. Mathematical Background of RSA Method

history, biology and other subjects as inter-thematic projects.

	 Students are introduced to the method 's mathematical background. Worksheet 8 illustrates the method with small prime numbers. Students can practice, finding prime numbers mathematically compute private and public keys and encrypt-decrypt messages with the RSA method. Mathematical knowledge of powers and mod operation are prerequisites. This scenario-extension can be combined with Maths (calculations of powers and application of mod rules). D.2.6. Digital Signatures The teacher connects PKE through examples of secure messaging (email), information transmission over the Internet (Secure http - https) and digital signatures. The digital signature of documents or messages made using the hidden key for encryption and the public
	key for decryption is also displayed. The problem of pretense and identification is raised, and the role of certification authorities is introduced. Worksheet 7 helps students to explore the Digital Signature procedure and practice the signing-verification phase with CrypTool software.
D.3 Resources	Youtube
D.4 Experience deriving from the implementation of the scenario	
D.5 Relations to other scenarios	
D.6 Reviews by teachers	
D.7 Assessment of the scenario	[1=Very Bad – 5=Very Good]
D.8 References	Grimm, R., Kempe, T., Löhr, A., & Scholle, O. (2015). <i>Informatik</i> . (Schöningh-Schulbuch, 1. Auflage, 4. Druck). Paderborn: Schöningh.
	Spioncamp (2019).Bergische Universität Wuppertal, retrieved from https://ddi.uni-wuppertal.de/website/repoLinks/v287_Alle-Stationen-hintereinander.pdf
	Part E. Annexes
	Worksheet 1
	Worksheet 2
	Worksheet 3
	Worksheet 4
	Worksheet 5

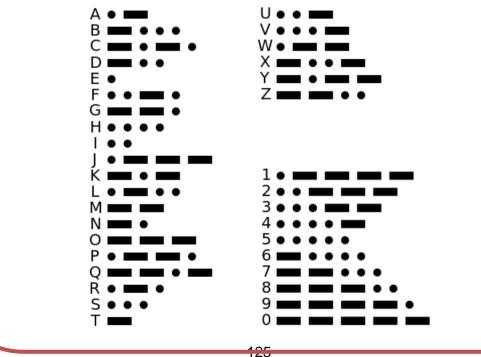
Worksheet 6
Worksheet 7
Worksheet 8

CRYPTOGRAPHY

Worksheet 1

 Student name(s):

 Group name:

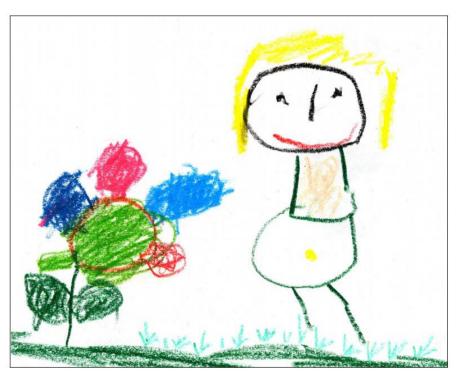

Cryptography is the practice of using techniques to securely communicate on the Internet, when trying to exchange private messages. With cryptography you can **encrypt** your messages to avoid third parties from having access to them. The receiver will have to **decrypt** your message to read it.

1. Think of a **message** you would like to send to a friend of yours and write it down:

What do you think you should do to **encrypt** your message, so that nobody else understands it? Write down your encrypted message:

What does your friend need to know so that he/she can decrypt your message?

In 1832, before the invention of telephones, American Samuel Morse invented a device called the **Morse telegraph**, which was used to transmit messages over long distances. A network of cables was gradually established throughout the country. The cables did not transmit sound but electrical pulses of long or short duration, according to the table below.



Between letters there was a brief pause and between words a longer one. Light signals could also be used for the transmission of Morse code.

2. Based on the table above, can you understand the following message?

- **3.** What is the Morse signal for **SOS**? (This is the international help signal.)
 - **4.** In groups of two, try to send a message to another group of your classmates by flashing a lens to represent Morse signals.

Another way to transmit messages is by hiding them in media, e. g. in pictures. This method is called **steganography**. If you look at the picture below, you may not notice that there is a message hidden in it. But the picture contains a message in Morse code. The long and short stems of the grass are the dashes and dots respectively, while each tuft is a letter.

Spioncamp (2019).Bergische Universität Wuppertal, retrieved from https://ddi.uni-wuppertal.de/website/repoLinks/v287_Alle-Stationen-hintereinander.pdf

- 5. Can you find the secret message? _
- 6. How would you draw a picture to encrypt a message for your friend?

CRYPTOGRAPHY

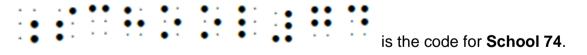
Worksheet 2

Student name(s):

Group name: Date:

BRAILLE CODE

Louis **Braille** was born in France in 1808 and went blind after an accident at the age of 3. At the age of 14 he developed a font which blind people can read. The font consists of raised points that someone can feel with one's fingers. The Braille signs are depicted in Table1.

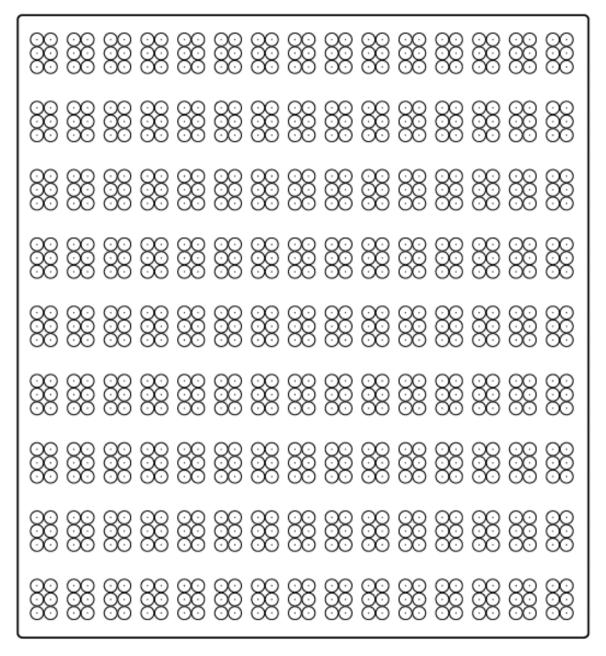

Table 1. Braille signs

Α	В	С	D	Е	F	G	Н	I	J	Κ	L	М
• :	•	•••		•				•	•			
Ν	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Ζ
							•••					
1	2	3	4	5	6	7	8	9	0			
• •	•	•••	:::	•••	•••		•••	•••	•••			

Words and numbers are discerned by using different signs before them. With these signs the reader knows if what follows is a word, or a number:

• • when a word follows, or • • when a number follows.

For example:



1. Can you decrypt the following message?

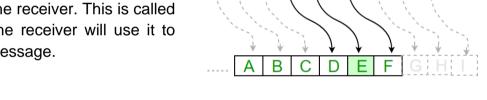
2. Using the tip of your pencil, try to code your name and age by puncturing on the form below.

Use the Braille signs table to see which sign corresponds to each letter.

Ask your classmate to read what you wrote with his/her eyes closed, by touch. **GOOD JOB!**

CRYPTOGRAPHY

Worksheet 3


Student name(s): _____

Group name: Date:

CAESAR CIPHER

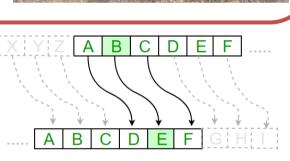
Caesar cipher (or Caesar code) is one of the most famous and easy encryption systems, used by Julius Caesar (100-44 B.C.) for his private messages. According to this method, each letter of a message is substituted by another letter, some fixed number of positions down the alphabet. The number of positions is defined by the **key**, or Caesar shift, e. g. left shift of 3 or right shift of 4 etc.

Method: First, you will have to choose a number from 1 to 26, which you will have to share with the receiver. This is called the key and the receiver will use it to decrypt your message.

Then you need to write the alphabet in two lines: first the letters from A to Z and then each letter replaced, beginning from the letter in the position right after the key.

For example, in the case where the key is 4, letter A will be replaced by E (the letter after the 4th one), letter B will be replaced by F and so on. The first four letters (ABCD) follow right after Z.

	А	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ
Replaced by	E	F	G	Н	Ι	J	K	L	Μ	Ν	0	Ρ	Ø	R	S	Т	U	V	W	Х	Y	Z	A	В	С	D


1. Based on the above, if you use Caesar cipher key 4, the word ANNA will be encrypted to ERRE. Can you encrypt the following message using the above method (Caesar cipher key 4)?

CRYPTOGRAPHY IS FANTASTIC:

2. Based on the above, can you also decrypt the following message?

GSQTYXIVW VSGO:

Variation:

The method presented can easily be broken, so a variation of it was found. The sender and receiver will have to agree on a **key word**, for example the word **DODEKANISOS** (an island complex in Greece). The key word is written in the beginning of the alphabet (same letters are not repeated). Then you replace each of the other letters with the rest of the letters of the alphabet, beginning from the last letter of the key word. See the example below:

	А	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Υ	Ζ
Replaced by	D	0	Е	κ	Α	Ν	I	S	Т	U	V	W	Х	Y	Z	В	С	F	G	Н	J	L	Μ	Ρ	Q	R

This table will be used for coding and decoding.

3. Based on the above variation, if you use the Caesar cipher key **DODEKANISOS**, can you now encrypt the following message?

CRYPTOGRAPHY IS FANTASTIC:

4. Also based on the above, can you now decrypt the following message?

GSQTYXIVW VSGO:

5. Do you notice any difference?

ACTIVITY:

In groups of two, agree on a key word and create the corresponding table below using Caesar cipher:

	Α	В	С	D	Е	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Υ	Ζ
Replaced																										
by																										

Send an encrypted message to each other. Did you decrypt the message you received correctly?

You now can encrypt and decrypt messages using the Caesar cipher method!

Homework: Why not try to make your own cipher disk?

Well done!

ENIGMA CRYPTOGRAPHY MACHINE Worksheet 4

Student name(s):
Group name:

Date:

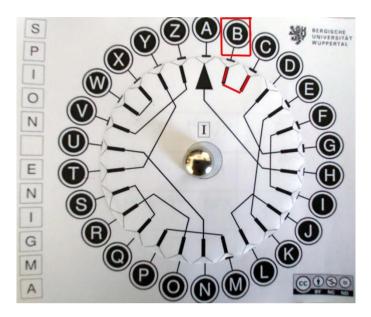
Enigma cryptography machine

The "Enigma" machine was invented in 1923 by the German engineer Arthur Scherbius. Its name comes from the Greek word "enigma". This machine was originally used for commercial purposes, it was commercially available before World War II but it was modified into many variants and used to encrypt German army orders in World War II. Historical accounts confer that Alan Turing, an employee of the English counterintelligence, managed to break the code. "The imitation game" is a movie which refers to these events and the tragic fate of Turing.

Encryption/Decryption Method

Next a simplified simulation of the engine is presented. It consists of two wheels, an internal and an external one. The internal wheel rotates while the external wheel stays fixed.

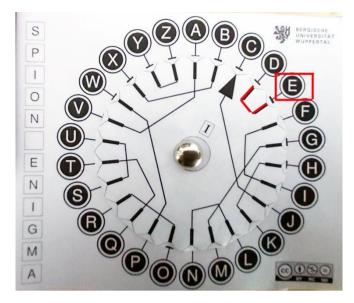
Prerequisite: Both Sender and recipient must possess the machine!


Encryption instructions:

- Place the arrow to point it towards the key.
- Then locate the letter of message you want to encrypt.
- Follow the link. This is the first encrypted letter.
- Then turn the arrow to the right so that it points to one letter down (pointing to the next letter of the key clockwise).
- Follow the link. This is the second encrypted letter.
- Do the same for all the letters in the message to be encrypted. Do not forget to rotate the arrow one letter down each time in a clockwise direction.

Example

- 1. A key letter has been agreed upon. For example «A». The big arrow of the internal wheel should point to the key letter, that is letter «A».
- 2. If for example we want to encrypt the word «BYE»
- 3. The large arrow on the inner wheel must indicate the key, i.e. «A».

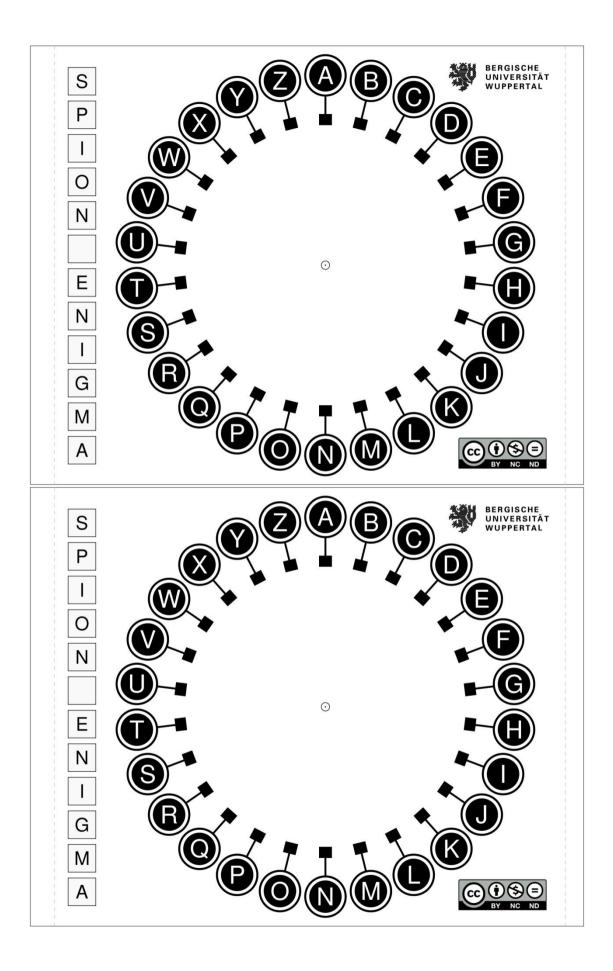

4. To encrypt the first letter B, look at its mapping. The letter B corresponds to the letter C. C is therefore the first encrypted letter.

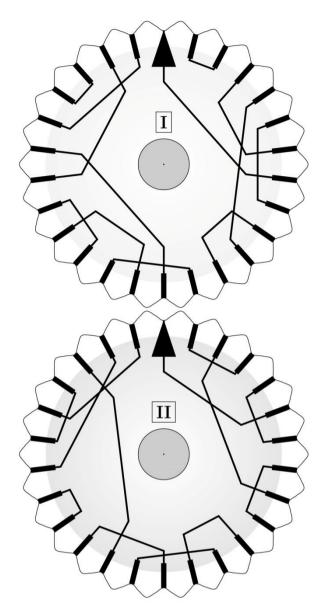
5. To encrypt the next letter, turn the large arrow one position down clockwise. It should now point to B.

- 6. To encrypt the letter Y notice that Y is connected to X. The second encrypted letter is therefore X.
- 7. Turn the arrow one more position clockwise. It should now point to the letter C.

8. To encrypt the letter E notice that E is connected to D. The third encrypted letter is therefore D.

Following the procedure described above, the word **BYE** was encrypted in the ciphertext **CXD**.


Decryption instructions:


- Place the arrow pointing to the letter that is the key.
- Then locate the letter you want to decrypt.
- Follow the link. This is the first letter of the encrypted message.
- Then turn the arrow one letter down (pointing towards the next letter of the key) clockwise.
- Follow the link. This is the second encrypted letter.
- Do the same for all the letters in the message. Do not forget to rotate the arrow one letter at a time in a clockwise direction.

Construction of rotor

Print the two rotor discs. Use a CD / DVD holder. In this case, cut the inner grey circle.

Alternatively use a (blister drawing pin)

Spioncamp (2019).Bergische Universität Wuppertal, retrieved from https://ddi.uniwuppertal.de/website/repoLinks/v287_Alle-Stationen-hintereinander.pdf

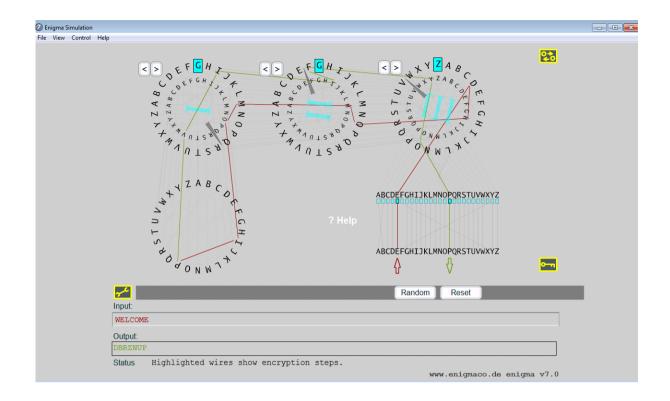
Extension of Worksheet 4

Activity 1

Simulation with CrypTool

The Enigma Machine itself uses three such rotors which are in fact cylinders. For an introduction to the operation of the Enigma Machine watch the two videos suggested here.

https://www.youtube.com/watch?v=-mdSvGUd0_c https://www.youtube.com/watch?v=ASfAPOiq_eQ


Let's try an example of simulation that is close to reality.

Download the simulation-tool cryptool1.4.41 https://www.cryptool.org/de/cryptool1 From the www.cryptool-online.org site.

Open the menu and choose Individ. Procedures/Visualisation of algorithms /Enigma

How can I encrypt a plain text?

- The first step is to make up a key. In this case, a key consists of two parts.
- The second step is to decide which pairs of letters should be exchanged or trans- positioned in the plugboard, e.g. A to B and also F to X. Notice that rotor settings at the beginning of the text entry, must be chosen for all three rotors e.g. F-E-S.
- The third step is to "RESET" the whole machine to the "initial state" by clicking on "RESET". The machine is now ready to encrypt the first sample.
- The fourth step is to drag the small yellow circle underneath A to B and release the mouse button. Thus, A and B have been exchanged. Please exchange F and X in that same way.
- The fifth step is to set the mentioned rotor settings by pressing the buttons "<" or ">" above each specific rotor. Each click of the mouse puts a rotor one position forward in the indicated direction.
- Finally, the word "welcome" is typed in. The line "Output:" should show the ciphertext i.e."DBRZNUP". The encrypted text looks completely different compared to the original, the only similarity is the same number of letters.

Activity 2

Encrypting –Decrypting with Simulator of Enigma-machine (CryptTool)

Students are divided into two groups: an encryption and a decryption group Using Cryptool software each group respectively encrypts or decrypts messages after having initially agreed on the values that the rotors will have and two letter transpositions.

Secret memorandum for encrypting and de	crypting groups
1. Set the rotor values (A-Z, English alphabet)	
rotor 1=	
rotor 2=	
rotor3=	
2. Set the letter alternation	To be kept top

Instructions for the encrypting group

Open CrypTool (Individ. Procedures/Visualisation of algorithms /Enigma).

Set the rotors as agreed

Set the letter transpostions

Enter the text for encrypting

Send the encrypted text to your decrypting group

Instructions for the decrypting group

Open CrypTool (Individ. Procedures/Visualisation of algorithms /Enigma).

Set the rotors as agreed

Set the letter transpositions

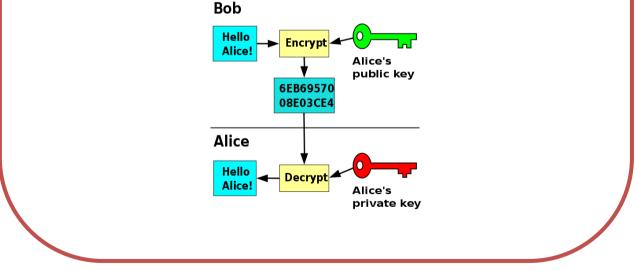
Enter the text for decrypting

Check the decrypted message

Asymmetric Encryption: Diffie- Hellman algorithm Worksheet 5

Student name(s):

Group name: Date:

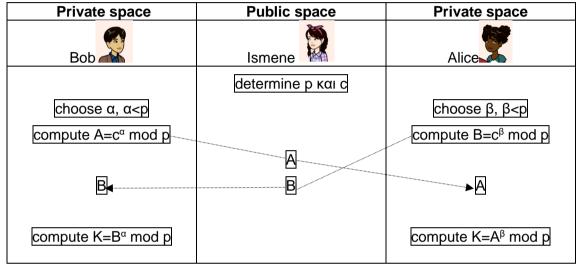

Diffie- Hellman algorithm

Method

Cryptography flourished when it became possible for the sender to encrypt the message with a secret key, send another public key to the recipient, and allow the recipient to decrypt the message using only the public key. Any third party who has access to the public key cannot decrypt the message!!! This is why such a process was called **asymmetric encryption**: But is such a thing possible?

For many years it was considered impossible to exchange a key that even if a third party knew it, it could not decode the encrypted message. In 1976 Martin Hellman, Whitfield Diffie and Ralph Merke developed the Diffie-Hellman algorithm which allows two parties to agree on a key, which even a third party would not know how to decrypt the message.

The diagram below (wikimedia.org) illustrates the steps for sending a message. Two different keys for encryption and decryption are used. Each user freely provides his public key to be sent encrypted messages that only he can decrypt with his secret-private key.


Let's explain it with an example: Bob and Alice agree to use a key number. A third party Ismene can obtain (by eavesdropping !!!) the public key number. Bob and Alice use the key to encode and decode messages which are then exchanged, not secretly, Ismene can see them, but she cannot encrypt them.

Bob and Alice apparently agree at first to use a **prime** number p. They must also agree on a **natural** number, say c. You should c <p.

Bob then chooses a positive integer α (less than p) which he keeps secret.

Alice also chooses a positive integer β (less than p) which she keeps secret.

Bob and Alice can calculate the **key** "**K**" based on the formulas given in the table below. Ismene could know p, c, A and B but cannot calculate the key K because she does not know α and β .

Reference: Spioncamp (2019).Bergische Universität Wuppertal, retrieved from https://ddi.uniwuppertal.de/website/repoLinks/v287_Alle-Stationen-hintereinander.pdf

Here is an example with numbers

Private space	Public space	Private space
Bob	Ismene	Alice
	р=17 каı c=5	
choose α, με α <p< td=""><td></td><td>choose β, β<p< td=""></p<></td></p<>		choose β, β <p< td=""></p<>
α=4		β=7
compute A=c ^α mod p		compute B=c ^β mod p
A=5 ⁴ mod 17		B=5 ⁷ mod 17
A= 625 mod 17		B= 78.125 mod 17
A=13	<u>A</u>	B=10
B	B	A
compute K=B ^a mod p		compute $K=A^{\beta} \mod p$
K=10 ⁴ mod 17		K=13 ⁷ mod 17
K=10.000 mod 17		K=62.748.517 mod 17
K=4		K=4

The key that Bob and Alice will use is 4. This key can be used to encrypt and decrypt messages.

You can use the Windows calculator in scientific view to calculate powers and divisions with mod.

Question: Is it possible for Ismene to find the key K?

Answer: Yes by trying combinations of numbers from 0 to p.

In case p is small, as here, finding the key is easy. But if the numbers to be chosen are large then it is impossible even with the fastest computers available to find the key through number testing.

Activity 1

Private space	Public space	Private space
Bob	Ismene	Alice
	p=7 και c=4	
choose α, α <p< td=""><td></td><td>choose β, β<p< td=""></p<></td></p<>		choose β, β <p< td=""></p<>
α=		β=
compute $A=c^{\alpha} \mod p$		compute B=c ^β mod p
A=		В=
A=		B=
A=	A	B=
B	B	
compute K=B ^α mod p		compute K=A ^β mod p
K=		K=
K=		K=
K=		К=

Compute key K applying Diffie- Hellman algorithm for numbers p=7 και c=4

Asymmetric Encryption: PKE (RSA) Procedure Worksheet 6

Student name(s): _____ Group name: _____ Date: ____

Activity 1

The operation of the RSA algorithm will be demonstrated in two parts with CrypTool:

- a. The generation of an RSA key,
- b. The encryption and decryption of messages

According to RSA, encrypted communication between two parties requires:

1. a public key, which consists of a pair of numbers (N, e)

2. a private key, which also consists of a pair of numbers and which remain secret (N, d)

Generation of RSA keys

To create an RSA key select Individual Procedures \ RSA Cryptosystem \ RSA Demonstration.

For the RSA key, two different prime numbers, p and q are needed.

Enter two prime numbers into the fields **Prime number p** and **Prime number q**, or generate two random prime numbers, p and q.

As an example we wish to generate a random 256-bit RSA key. To do this, click on the Generate prime numbers... button. Similarly to menu selection Indiv. Procedures \ RSA Demonstration \ Generate Prime Numbers..., a dialog box opens in which to generate prime numbers p and q. For prime number p, choose 2^127+2^126 as the lower limit and 2^128 as the upper limit, and activate for the value range the radio button, Both are equal. When you click on Generate prime numbers, two prime numbers p and q of bit length between 127.5 and 128 are generated. When p and q are multiplied together, the result is RSA modulus N of bit length greater than 2*127.5 = 255, i.e. a 256-bit RSA key.

Prime numbers can be generated as often as you like. If you click on the Apply primes pushbutton, prime numbers p and g are passed to the RSA dialog. At the same time RSA modulus N is calculated, also the Euler phi function phi(N).

The next step is to determine the public RSA key e, a number that is coprime to phi(N). Sometimes it is not easy to find such a number. For this reason we offer a small tip: the number $e = 2^{16+1} = 65537$ (= 10000000000000001 binary) is in practice always coprime to phi(N).

Click on the **Update parameters** pushbutton, and the <u>secret RSA key</u> d will then be calculated from the number e.

You can now encrypt and decrypt messages.

2. Encryption or decryption of messages using the RSA key pair

Once you have generated the RSA key, you can encrypt and decrypt messages.

You can view an example below:

		e number N = pq is the public RSA modulus, and phi(N) =
p-1 q-1 is the Ei key d is then calc	uler totient. The public key e is fre ulated such that d = e^(-1) (mod p	ely chosen but must be coprime to the totient. The privat hi(N)).
 For data encryption and the public key 		ill only need the public RSA parameters: the modulus N
^o rime number entry —		
Prime number p	5	Generate prime numbers
Prime number q	7	
RSA parameters		
RSA modulus N	35	(public)
phi(N) = (p-1)(q-1)	24	(secret)
Public key e	2^16+1	
Private key d	17	Update parameters
		-1 071
RSA encryption using	e / decryption using d [alphabet	size: 27]
	e / decryption using d [alphabet O numbers	Alphabet and number system options
Input as 🔎 text		-
Input as 🔎 text		-
Input as • text Input text WELCOME	C numbers	-
Input as • text Input text WELCOME	C numbers separated into segments of Size	Alphabet and number system options
Input as text Input text WELCOME The Input text will be W # E # L # C # O #	C numbers separated into segments of Size	Alphabet and number system options
Input as text Input text WELCOME The Input text will be W # E # L # C # O #	C numbers separated into segments of Size 1 # M # E e 10 format.	Alphabet and number system options
Input as text Input text WELCOME The Input text will be W # E # L # C # O # Numbers input in bass [23 # 05 # 12 # 03 #	C numbers separated into segments of Size 1 # M # E e 10 format.	Alphabet and number system options
Input as retext Input text WELCOME The Input text will be W # E # L # C # 0 # Numbers input in bass [23 # 05 # 12 # 03 # Encryption into cipher	C numbers separated into segments of Size # M # E e 10 format. :15 # 13 # 05 rtext c[i] = m[i]^e (mod N)	Alphabet and number system options
Input as text Input text WELCOME The Input text will be W # E # L # C # O # Numbers input in bass [23 # 05 # 12 # 03 #	C numbers separated into segments of Size # M # E e 10 format. :15 # 13 # 05 rtext c[i] = m[i]^e (mod N)	Alphabet and number system options

Activity 2

Students are divided into two groups (one group encrypts, the other decrypts).

Step 1

Activity for both groups: the creation of public and private key pairs.

Step 2

The Encryption group encrypts a message.

Step 3

The encrypted message is sent to the decryption group

Step 4

The decryption group decrypts the encrypted message

Activity 3

The operation of the RSA algorithm will be demonstrated alternatively in other simulation software:

- https://travistidwell.com/jsencrypt/demo/,
- https://www.devglan.com/online-tools/rsa-encryption-decryption
- https://8gwifi.org/rsafunctions.jsp

Students can:

- 1. Create RSA keys
- 2. Encrypt/Decrypt and exchange messages

Asymmetric Encryption: Digital Signature – Worksheet 7

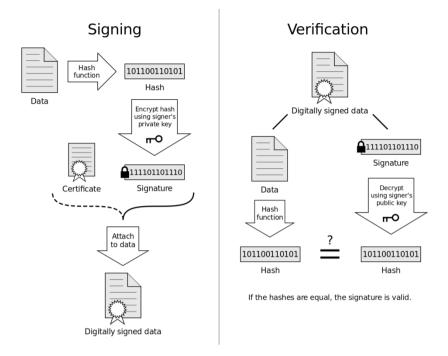
Student name(s): _____

Group name: Date:

Method

Create and verify digital signature

The use of the digital signature involves two procedures: the creation of the signature and its verification. Below, the actions of the sender and the recipient are described step by step in order to facilitate understanding of the digital creation and verification signature mechanism.


Sender

- 1. The sender using a hash algorithm (one way hash) creates the summary of the message (message digest) to be sent. A series of digits of a certain length will be generated regardless of the size of the message.
- 2. The sender encrypts the above using the private key. The digital signature is thus produced and consists of a series of digits.
- 3. The encrypted summary (digital signature) is attached to the text and the digitally signed message is transmitted over the network (note that message can be encrypted by its sender with the use of the public key).

Recipient

- 1. The recipient separates the digital signature from the message.
- 2. The recipient creates the message summary by applying the same hash algorithm as the sender to the message received.
- 3. The digital signature is decrypted using the sender's public key and a digital signature summary is produced.
- 4. The message and digital summaries are compared and if they are found to be the same, it means that the message received by the recipient is intact. If on the other hand they are found to be different, then the message sent has been subjected to change.

The diagram below illustrates the signing process (digital signature)

Activity: Practicing the Digital Signature process with CrypTool.

- 1. The public key pair is created from the menu: Digital signature/PKI/Generate keys (additionally PIN is required)
- 2. Next the text for encryption is typed in or the file to be encrypted is uploaded.
- 3. Digital Signatures/Sign Document command is then chosen. It is necessary to specify
 - a. The Hash function algorithm (MD2, MD5 etc)
 - b. The signature algorithm (RSA etc)
 - c. The public key pair
- 4. Sign

Sign a Document					×
Choose hash function	C	hoose signature algori	thm		
Algorithm: Output leng	j th	Factorization based a	lgorithms		
C MD2 128 bits		• RSA			
MD5 128 bits		Discrete logarithm based algorithms			
C RIPEMD-160 160 bits		Elliptic curve based a	Igorithms		
C SHA 160 bits		C ECSP-DSA	C A		ordinates
C SHA-1 160 bits		C ECSPINH	© P	rojective	e coordinates
Choose a key/PSE to be used who Last name First name HybridEncrypti Bob SideChannelAt Bob ZERVAS KOSTAS Z K	n signing Key type EC-prime239v1 RSA-512 RSA-1024 RSA-1024	Key identifier PIN=1234 PIN=1234 ST	Created 09.05.2007 12 06.07.2006 12 19.05.2021 03 09.10.2021 21	51:34 44:35	Internal ID no. 1178702474 1152179494 1621385075 1633803906
Listed key types: I RSA keys I DSA keys I DSA keys I EC keys	T Display	PIN code for chosen I y signature time y intermediate results		2004	
Sign					Cancel

- 5. Save the produced file and send to recipients. This file contains
 - a. The signature
 - b. The content to be sent

The team that will receive the file containing the signature and the content can confirm the signature (which guarantees that the text has reached intact), choosing Digital /signature/PKI/Verify Signature

Asymmetric Encryption: RSA Procedure-**Mathematical Background**

Worksheet 8

Student name(s): _____ Group name: Date:

Method

The table below shows the RSA procedure (prerequisite knowledge: prime numbers, powers)

1	Choose two prime numbers p and q	р=3 кан q=11
2	Compute N=p*q	N=3*11=33
3	Compute r=(p-1)*(q-1)	r=(3-1)*(11-1)=2*10=20
4	Choose a number e in such a way that e	e=7
	and r have no common divisor	e=5 r=20 have no common
		divisor
5	Determine number d such as	d=23
	e*d mod r=1	7*23 mod 20=161 mod 20=1
6	Publish N and e, keep secret d	Public key (N,e)=(33, 7)
		Private key (N, d)=(33, 23)
7	Encrypt message M:	For example M=2
	Compute C=M ^e mod N	C=2 ⁷ mod 33=128 mod 33 =29
8	Decrypt C	Decrypt C=29
	Compute M=C ^d mod N	M=29 ²³ mod 33=2
		M=2

The philosophy of the algorithm is that calculations in one direction are easy, but much more difficult in another direction. The RSA method is based on the mathematical fact that it is easy to calculate the product of two prime numbers, but it is very difficult to factorize this product, that is, to find the factors from which it is formed. In this case (if we limit ourselves to small numbers, it is possible with tests to calculate the private key d with tests).

But when the numbers are large, the order of 200-300 digits is extremely time-consuming even with the fastest computers to calculate d. It is "computationally impossible" to calculate it. The factorization of small numbers, for example in our example of 33, is easy. We find "by hand that 33" is produced by multiplying 3 by 11. There are also applications that can factorize numbers, such as the one given in the link https://www.mathpapa.com/factoringcalculator/

1	Choose two prime numbers p and q	р= каі q=
2	Compute N=p*q	N=
3	Compute r=(p-1)*(q-1)	r=
4	Choose a number e in such a way that e and r have no common divisor	e=
5	Determine number d such as e*d mod r=1	d=
6	Publish N and e, keep secret d	Public key (N,e)= Private key (N, d)=
7	Encrypt message M: Compute C=M ^e mod N	For example M=2
8	Decrypt C Compute M=C ^d mod N	Decrypt C

Activity: Mathematical Background of RSA Method

Choose two prime numbers p and q and then apply RSA Method.

You can use the Windows calculator in scientific view to calculate powers and divisions with mod or apply mod rules.

Mod rules

 $(x+y) \mod b = x \mod b + y \mod b$ $(x-y) \mod b = x \mod b \cdot y \mod b$

This makes it easy to calculate powers modulo a number $(x^{y+z}) \mod b = (x^y \star x^z) \mod b = (x^y \mod b \star x^z \mod b) \mod b$

References

Grimm, R., Kempe, T., Löhr, A., & Scholle, O. (2016). *Informatik*. (Schöningh-Schulbuch, 1. Auflage, 4. Druck). Paderborn: Schöningh (p. 280-284)

Exemplar Scenario 05: CompuT Contest – "Be Computationally Intelligent

Part A. General Data	
A.1 Title:	CompuT Contest – "Be Computationally Intelligent"
A.2 Author(s):	Papamargariti Georgia, Papamargariti Alexandra
A.3 Abstract/ Summary:	Nowadays we may find some excellent examples of augmented reality in education worldwide. The ability to connect reality and digital content has been steadily improving, opening more options for teachers and students. This scenario demonstrates how augmented reality concepts can be used in real life examples. Students are going to use augmented reality technology in collaboration with mobile learning and the Internet of things to organize a school contest. The purpose of the contest is to find out the most qualified student in computational thinking concepts in their school. The contest will be held among students to find out who is the most computational intelligent one. A given pool of questions related to computational thinking problems will be used. Then the questions will be assigned to QR codes. The QR codes will be spread around the school (classrooms, hallways, playground etc.). Students are going to search for the QR codes to answer the questions. The results will be collected into google spreadsheets files. The students will have to process the data registered in the spreadsheets (using functions, filters, and other processing tools) and find out the winner (student/students who have answered correctly in most of the questions of the contest or why not all).
	Although the main goal of this project is to teach students how spreadsheets are used for data processing, this project offers many other educational opportunities that allow us to integrate a variety of other learning tasks, such as mobile learning, internet of things, augmented reality.
	The teaching method employed is the project-based learning method and the students will work in groups.
A.4 Keywords:	contest, QR codes, data processing, computational thinking, forms, spreadsheets
A.5 Version:	1 st version
A.6 Date:	29/10/2020
A.7 Copyright license:	Attribution ShareAlike CC BY-SA
Part B. Learning Dat	<u>a</u>
B.1 Grade(s):	Grades 8-9, Age 13 – 15 years old
B.2 Subject(s):	Computer Science, ICT
B.3 Topic(s):	Data analysis

B.4 Computational				
Thinking	Algorithmic Thinking (A		\checkmark	
	Algorithmic Thinking (A	AL)	v	_
Dimensions:	Abstraction (AB)			
	Generalization (GE)		~	_
	Logical reasoning (LR)		v	_
	Pattern matching (PM)			
	Problem decomposition	· · · ·	\checkmark	
	Problem translation (P	Т)		
	Evaluation (EV)		✓	
	Representation (RE)		✓	
	Data collection (DC)		\checkmark	
	Data representation (D	R)	\checkmark	
	Data analysis (DA)		\checkmark	
	Modeling (MO)			
	Simulation – (SIM)			
	Automation (AUT)			
	Sequencing (SE)			
	Testing (TE)			
	Understanding People	- (UP) /Artificial		
	Intelligence (AI)			
	3-3-()			
B.5 Computational				
Thinking	Tinkering experimentin	g & playing		
Approaches:	Creating, designing, ar	nd making	\checkmark	
	Debugging, finding, an			
	Persevering, keeping g			
	Collaborating, working		\checkmark	
		<u> </u>		
B.6 Thematic in the				
context of the	Educational Robotics or			
	Educational Robotics or Physical Computing			
context of the	Physical Computing	Modeling/Simulatic	on	
context of the	Physical Computing Computational Science	Modeling/Simulatic	on	
context of the	Physical Computing	Bifocal modelling		
context of the	Physical Computing Computational Science	Bifocal modelling Sensors use or ma		
context of the	Physical Computing Computational Science	Bifocal modelling Sensors use or ma Maths and CS		✓
context of the	Physical Computing Computational Science project	Bifocal modelling Sensors use or ma		✓
context of the	Physical Computing Computational Science project Data science project	Bifocal modelling Sensors use or ma Maths and CS		✓
context of the	Physical Computing Computational Science project	Bifocal modelling Sensors use or ma Maths and CS		✓
context of the	Physical Computing Computational Science project Data science project History of science and	Bifocal modelling Sensors use or ma Maths and CS		✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: ✓		✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or	Bifocal modelling Sensors use or ma Maths and CS Other: ✓		✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction		✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms		✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or using manipulatives	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	✓
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	
context of the	Physical Computing Computational Science project Data science project History of science and technology Digital game, software, or mobile app Digital humanities projects Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or using manipulatives	Bifocal modelling Sensors use or ma Maths and CS Other: ✓ Digital Storytelling Interactive Fiction Text mining Algorithms everyday life	aking	

B.7 Purpose/Aim of the learning scenario:	The main goal of this project is to teach students how spreadsheets are used for data processing and learn how to deal with combinational statistic queries. However, this project offers many other educational opportunities that allow us to integrate a variety of other learning tasks, such as mobile learning, Internet of things, augmented reality. The use of QR codes technology provides students with a deeper connection with the real world. Moreover, it gives them an opportunity to develop their communication skills, interacting with other students, groups of students and the entire school community.				
B.8 Learning outcomes/goals ²² :	At the end of the learn B.8.1 Knowledge B.8.2 Skills B.8.3 Attitudes- affective	 bing scenario students should be able to: Use functions Combine data from different spreadsheets Sort data Illustrate data into graphs Breakdown combinational queries Answer queries using functions Model queries into formulas Evaluate results after modeling queries into formulas Manage duplicate/multiple records issues encountered in a data set Practice skills used in scientific research (such as collecting, selecting, processing useful information, comparing and interpreting) Develop computational thinking skills Develop a positive attitude towards communication Develop a positive attitude towards collaboration 			
		 Develop organizational skills attitude Recognize the usefulness of spreadsheets in everyday life applications 			
B.9 Horizontal competences - 21 st century skills:	21st century skills suc	o helps students develop some very important th as critical thinking, problem solving, creativity, work, analytic reasoning and social awareness.			
	B.9.1 Learning and innovation skills:	4C's: Collaboration, Communication, Critical Thinking			
		Students collaborate to solve the tasks, communicating with their group members, thinking critically and computationally.			
	B.9.2 Digital literacy skills:	Information literacy, Information and Communication technologies (ICT) literacy			
		The scenario enhances Information and ICT literacy while students use technology to participate in a contest and produce cognitive results.			

²² For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

	B.9.3 Career and life skills:	Flexibility, initiative and self-direction, social interaction, productivity and accountability, leadership, and responsibility
		To come to the end of the scenario, students will have to be flexible and productive, be responsible and socially interact with their classmates.
B.10 Modern	Project-Based Learnir) <i>Q.</i>
teaching methods:	Collaborative Learning	
B.11 Integration of CT into the curriculum:		processing concepts are an integral part of CT. pject areas and curriculum activities is a <i>one size</i>
B.12 Relation to curriculum and/or standards:		ulum, Grade 8-9, Ages 13-15 ırriculum, ICT Curriculum
B.13. Prerequisite knowledge:	Prior knowledge need scenario. Students sh	ed to successfully implement the current ould be able to:
	 lines/rows/cells etc manage spreadsh create formulas us use relative and all 	eets sing its functions sum, average, min, max, count bsolute value of a cell ohs to illustrate various information
B.14. Difficulty Level of the Scenario:	Intermediate	
B.15. Social setting of the scenario:	Small groups (3-4 stu	dents)
B.16 Place of implementation:	Computer Lab, Schoo	l yard, Classroom
B.17 Teaching time – Duration:	7 x 45' sessions	
B.18 Educational material, resources,	B.18.1 Software:	Google Forms, QR code creator, Google spreadsheets, Microsoft office Word, Browser
instruments, tools, and media:	B.18.2 Hardware:	Personal computer with internet access, projector, smart board, mobile phones or tablets
	B.18.3 Online resource	s: Online QR creator tool, Youtube videos
	B.18.4 Conventional educational material:	WorkSheets, Evaluation Sheet

Part C. Learning Experience Design

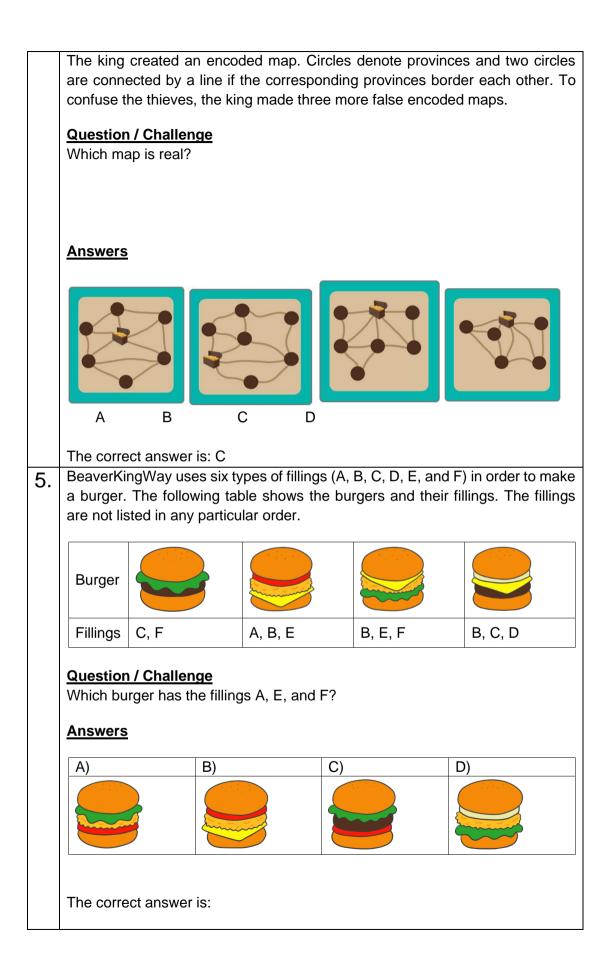
	erience Design		
C.1. Activities-	Dhasa 4	Indua durations to the Durais of	451
Action-Plot- Storyboard	Phase 1. Activity/Task	Introduction to the Project Description/Procedure	45' Duration
sequence table:3	A1.1 Introduction to the contest	Introduction to the project, gaining attention, student activation. Teacher introduces the contest that	15'
	philosophy	students are going to set up and the organization details. Emphasis is given to each stage of the project, describing the goals of the project, the technology and software used, the structure and philosophy of the activities and the impact in the school community.	
		 (Videos to support the teacher: The magic of QR codes in the classroom https://www.youtube.com/watch?v=N RgWRXFXLQs 	
		 What is M-Learning? https://www.youtube.com/watch?v=- EnZca-Te2Y 	
		 Mobile Learning: Mobile Tech in the Classroom https://www.youtube.com/watch?v=H2 Ly1FOHIa4) 	
		Also, the anonymity issue is discussed. The students' id (name, surname, nickname) should be hidden for privacy reasons during the contest. A decision is made on how to protect the privacy of the participants. Let students decide on this matter taking into consideration real life examples.	
		(A unique code id assigned per each participant student may be a good solution.)	
	A1.2 Contest questions	Students are divided into small groups (3 or 4 students per group). They are given a pool of questions (20 in total- you can find some examples of questions in Annex 1) to discuss. The questions concern different aspects of computational thinking and students are asked to classify them according to their difficulty, defining an easy	25'

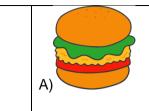
A1.3 Summary	Teacher sums up and sets goals for the next stage.	5'
and next phase		
Phase 2.	Using Google Forms	45'
Activity/Task	Description/Procedure	Duration
A2.1 Question selection	Each group selects two questions from the pool of questions that are going to be used in the contest. An easy and a difficult question are chosen per group.	5'
A2.2 Modeling in Google Forms	The questions take a digital form using Google Forms. Teacher shares Worksheet 1 and instructs groups on the creation of the forms and the appropriate settings so that data is collected correctly. Except from the question in each google form, students will have to	35'
	create a text field (short answer question in Google Forms) where participants will insert the unique id code assigned to them. The teacher briefly discusses once more the necessity of anonymity with the groups.	
A2.3 Summary and next phase	The double record issue arises. What if a candidate answers two or more times the same question? What happens when duplicate/multiple records are encountered in a data set? How can this affect the accuracy of the result? Briefly discuss ways of solving this problem before moving on to the next phase (food for thought).	5'
Phase 3.	Using QR technology	45'
Activity/Task	Description/Procedure	Duration
A3.1 QR introduction	 Introduction to QR technology. Examples from real life. What is a QR code, and how it works, where it is used etc. Application to the project. Related videos (optional): https://www.youtube.com/watch?v=zZ XCt1Ud_zE, World's first beacon based Augmented Reality Museum App 	5'
A3.2 Create QR codes	Teacher shows, using the smart board, how students can assign QR codes to demonstrate questions modeled in google forms.	35'

	Sharing Worksheet 2, he/she asks	
	students to generate QR codes for	
	each question and save them in the	
	shared lab folder with specific naming.	
	The teacher will print the QR codes on	
	cards.	
	Important note: In the attached	
	-	
	Worksheet, students use the QR	
	codes creation website:	
	http://gr.qr-code-generator.com/	
	The teacher can properly modify the	
	Worksheet and use any of the QR	
	codes creation sites available.	
A3.3	We sum up and set goals for the next	5'
Summary		J. J
	stage.	
and next		
phase		
Phase 4.	Testing and evaluating	45'
Activity/Task	Description/Procedure	Duration
A4.1 Does	In this phase students test and	30
the process	evaluate the procedure of the contest	
	-	
work	themselves. Do the QR codes work,	
correctly?	are the data stored right, are the	
	questions modeled and displayed	
	correctly?	
	Each team answers the question of	
	•	
	another team and monitors the	
	procedure.	
	Each team gives feedback to the	
	Each team gives feedback to the others. Teams make optimizations	
	others. Teams make optimizations	
442	others. Teams make optimizations before the contest starts.	10'
A4.2	others. Teams make optimizations before the contest starts. Testing data must be deleted and	10'
A4.2 Initialization	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done	10'
Initialization	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts.	
	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done	
Initialization A4.3	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next	
Initialization A4.3 Summary	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage.	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word	
Initialization A4.3 Summary	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular,	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for explaining the contest, announcing the	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for explaining the contest, announcing the terms of participation, the rules and	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for explaining the contest, announcing the terms of participation, the rules and objectives of the competition and	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for explaining the contest, announcing the terms of participation, the rules and	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for explaining the contest, announcing the terms of participation, the rules and objectives of the competition and encouraging students to participate in	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for explaining the contest, announcing the terms of participation, the rules and objectives of the competition and encouraging students to participate in it. They will also place the QR codes in	
Initialization A4.3 Summary and next	others. Teams make optimizations before the contest starts. Testing data must be deleted and possible last-minute changes are done before the contest starts. We sum up and set goals for the next stage. Students are urged to spread the word to their schoolmates. One student from each group will join the advertising team, which takes over the mission of informing the other students in the school about the contest. In particular, the team will be responsible for explaining the contest, announcing the terms of participation, the rules and objectives of the competition and encouraging students to participate in	

	The contest will take place in a specific	
	The contest will take place in a specific	
	period and all students will be	
	welcomed to participate.	
Phase 5.	Data processing	2 x 45'
Activity/Task	Description/Procedure	Duration
A5.1 Using spreadsheets	After the end of the contest, students are going to collect and process the answers of the participants. Students are divided into their initial groups (groups of 3 or 4) and start to process the data collected in the spreadsheets generated for each question of the contest.	2 x 45'
	Worksheet 3 is shared, in which each group is asked to answer the research questions and write down the results. Students are expected to use functions, create graphs, and draw complex conclusions through data processing. The multiple records issue is being solved.	
	The students are asked to save the outcomes in a word document named by the name of their team.	
Phase 6.	Results – Impact - Evaluation	45'
Activity/Task	Description/Procedure	Duration
A6.1 Find the winner	It is the time to find the winner. The groups compare the results from all other groups to find out the candidate with the most correct answers. Guided by the teacher, the groups compare their results (spreadsheets and word files) and combine them to find the winner. Will there be unanimity in the teams? If not, who is right? Teams discuss and work together to reach a correct, valid, and unquestionable result.	20'
A6.2 Feedback	At this phase, each group suggests to the plenary ways to improve the contest organization. What went wrong, what needs to be improved, optimized. Then plenary discusses the impact of the contest in the school community.	10'
A6.3	An evaluation sheet is given to groups	15'

			sheet could be implemented ne questionnaire.	
		<u></u>		
C.2 Assessment		lesired lear	6) groups answer an evaluation she ning objectives have been achieved.	et to
	C.2.1 Students and reflection	feedback	After the contest ends (Phase 5), or group suggests to the other groups we to improve the procedure. Stud detect problems, suggest solutions, evaluate the efficiency in order optimize the contest.	ways lents and
C.3 Homework/ Work with parents- family	None			
Part D. Information f	or the Teachers			
D.1 Adaptation - Differentiation for inclusion of all students			ation could implement the scenario. In I needs, proper adaptations could be	
D.2 Extension		,	he contest could be transformed to c erdisciplinary areas of knowledge.	cover
D.3 Resources	Participants shou school should ha	•	ided with smart phones or tablets, so pment.	o the
	Printers and pape on walls (if decide	•	he QR codes. Materials to stick the co).	odes
	Computer lab wit	h Internet d	connection.	
D.4 Experience deriving from the implementation of the scenario				
D.5 Relations to other scenarios				
D.6 Reviews by teachers				
D.7 Assessment of the scenario	[1=Very Bad – 5=	=Very Good	1]	
D.8 References				
Part E. Annexes	Worksheets and I	Evaluation	sheet	
	Examples of que	stions		
	Worksheet 1			
	Worksheet 2			
	Worksheet 3			
	Evaluation sheet			


Examples of questions


To implement the scenario, you need some questions concerning Computational Thinking. Here are 5 examples of questions you could use, coming from the International Challenge on Informatics and Computational Thinking Bebras. You may use these questions, other questions from Bebras Challenges which you can find online, create your ones, or even ask students to create theirs.

			QUESTIONS		
1.	them the g	n. Beaver George mak	tes snacks for his party eat something that will n	d and get sick when they ea and wants to be sure that a ot cause them allergies.	
		linden	maple	Oak tree	
		TIT			
		birch	poplar	willow	
	getti	ng sick: ave time, George doe		ood that can be eaten witho	
		Anna			
		Veronica	Willow, oak, linden, n Willow, oak, poplar	nahia	
		Stella	oak		
		Joan	Linden, birch		
		Emmanuel	Willow, maple, birch		
		Frank	Oak, linden		
		George	Poplar, maple		
	How	<u>stion:</u> many types of wood c eat without getting sicl	•	snacks, so that all the gues	ts
	Ans	wers:			

	Correct Answer C)3
2.	A beaver tries to make an embroidery pattern by using an embroidery program and a machine. The embroidery program uses the command OUT(cc)-IN(dd), where cc and dd indicate the position of the needle in the grid. For example, OUT(B2)-IN(A3) is a command to move the needle to the B2 position and pull it out from back to front and then move the needle to the A3 position and pierce it in, from front to back. The following two commands create a pattern like below.
	1 2 3 4 5 6 7 8 9 10
	BOOOOOOOOO
	$\mathbf{G} \bigcirc \bigcirc$
	$\mathbf{H} \bigcirc \bigcirc$
	OUT(E6)-IN(G8);OUT(E2)-IN(E4)
	Question / Challenge Which commands could be used to create a ribbon pattern like the one in the image?
	1 2 3 4 5 6 7 8 9 10
	B O O O O O O O O O
	$\mathbf{C} \bigcirc \bigcirc$
	Answers: A) OUT(H2)-IN(C2);OUT(H9)-IN(C9);OUT(C9)-IN(C2);OUT(H9)-IN(C2) B) OUT(C2)-IN(H9);OUT(H2)-IN(C9);OUT(C2)-IN(H2);OUT(C9)-IN(H9) C) OUT(H9)-IN(C9);OUT(H9)-IN(H2);OUT(C2)-IN(H2);OUT(C9)-IN(H2)
	160

	D) OUT(C2)-IN(C9);OUT(H2)-IN(H9);OUT(C2)-IN(H2);OUT(C9)-IN(H9)
	Correct Answer
	B) 'OUT(C2)-IN(H9)';'OUT(H2)-IN(C9)';'OUT(C2)-IN(H2)';'OUT(C9)-IN(H9)'
3.	A queen uses knots on hanging ropes (called quipu) to announce news to her kingdom. For example, the following quipu might be the announcement "let's celebrate".
	All that matters is the order of the ropes and the number of knots on each rope. Each rope has 0, 1, 2 or 3 knots. There are only 50 different possible announcements made by the queen.
	Question / Challenge What is the minimum number of ropes that the queen needs?
	Answers A)2 B)3 C)4 D)5
	The correct answer is: B
4.	King of the beavers has hidden his treasure in a country of 7 provinces as shown in the map below.

Date _____

Team Name _____

1. In the frames below copy and paste the questions your team selected.

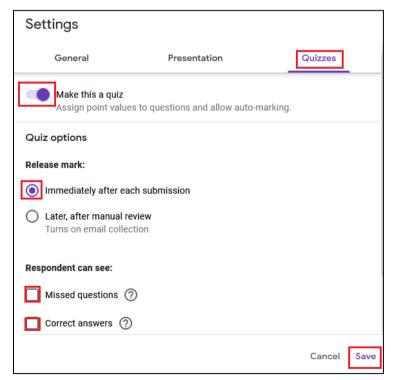
1 st Question
2 nd Question

2. Modeling questions in Google Forms

Step 1: Open Google Forms website (https://docs.google.com/forms/) and log in with the account credentials:

Username→ myschool_ct_contest@gmail.com

Password → ABC123!!!

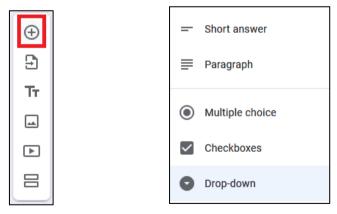

<u>Step 2</u>: Create a new Form for the first question. Name the form "Question X", where X stands for $\begin{bmatrix} 1 \end{bmatrix}$ for team 1

for team 1
 for team 2
 for team 3
 for team 4
 for team 5

Step 3: Configure your form. Click the *submit another response and click Save.*

Settings	
General Presentation	Quizzes
Show progress bar	
Shuffle question order	
Show link to submit another response	
Confirmation message:	
Your response has been recorded.	
	Cancel Save

Then in the *Quizzes* menu make this form a quiz and apply the settings shown below and then click *Save*.


<u>Step 4</u>: Insert a short answer question so each student that participates in the contest can fill in his/her unique code identifier (that question will take 0 points).

Question 1		= Short answer
		■ Paragraph
Untitled Question	Multiple choice	Multiple choice
Add option or Add "Other"		Checkboxes
	E E Required	Drop-down

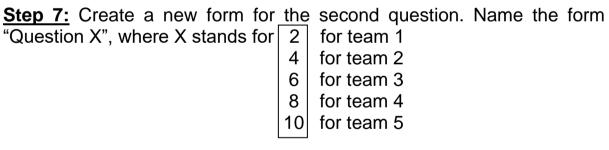
Make the settings shown below (numeric code identifier):

Give your code id.	- Short answer -
Short-answer text	
Number v Is number v	Custom error text X
Answer key (0 points)	🗋 🔟 Required

<u>Step 5:</u> Insert your first question. You can choose from multiple choice, checkboxes and dropdown question.

Model your question as you like. Don't forget to activate the *Required*

button.


Step 6: Apply the settings in *Responses* menu in order to collect data correctly. Click *Responses* and then click in and click *Select response* destination.

	Get email notifications for new responses
	Select response destination
Questions Responses	کې Unlink form
· · · · · · · · · · · · · · · · · · ·	Download responses (.csv)
Accepting responses	Print all responses

Data will be collected in the existing spreadsheet called *Responses*. Find it and link it with the form.

Select response destination		×
O Create a new spreadsheet Untitled form (Responses)	Learn	more
Select existing spreadsheet		
	Cancel	Select

The form for the first question is ready!

Step 8: Repeat from Step 3 till Step 6.

The form for the second question is ready!

Team Name _____

Step 1: Copy link – first question

Open the Google Form for the first question and click the Send button. Then click the 🕒 button and copy the link that corresponds to the first question.

Send form	×
Collect email addresses	
Send via 🗹 🕞 <>	fy
Link	
https://docs.google.com/forms/d/e/1FAIpQLSfR-KE3C5yv9j	GzeXl4HdHHumucUYDu/
Shorten URL	
	Cancel Copy

Step 2: Create a QR code.

Go to the website: http://gr.qr-code-generator.com/

Paste the URL for the online form in the blank space. The QR code will generate automatically. You can change the QR code's shape, color, logo etc.

	QR Code Ge CREATE YOUR QR CODE	enerator FOR FREE					SIGN UP NOV
 ♥ ♥	E URL ⑧ BITCOIN 조 IMAGES	王 VCARD	FACEBOOK	@ E-MAIL	eng eng SWS 대학	ভি WiFi (A) APP STORES	
G + 82632	https://t	forms.gle/	wa9TBuWI	(PGXuRei	57		
4	亡 Upload ar	ıy file (.jpg, .pdf,	.mp3, .docx, .ppb	c)		© 99 Scan tracking	SHAPE & COLOR

When you are done download the QR code. Click the button and save the jpg file in the shared folder called **QR Codes**.

Attention: Name your jpg file as "Question X",

where X stands for 1 for team 1 3 for team 2 5 for team 3 7 for team 4 9 for team 5

The QR code for the first question is ready!

Step 3: Copy link - Second question

Open the Google Form for the second question and click the Send button. Then click the 🕒 button and copy the link that corresponds to the second question.

Step 2: Create a QR code

Go to the website: http://gr.qr-code-generator.com/

Paste the URL for the online form in the blank space. The QR code will generate automatically. You can change the QR code's shape, color, logo etc.

w URL	E VCARD	📄 техт	@ E-MAIL	SW2	🛞 WIFI	
⑧ BITCOIN 즈 IMAGES	🖞 TWITTER	[]^ FACEBOOK	PDF	£3 мрз	(A) APP STORES	Scan ME ME 35
https://	forms.gle/	wa9TBuW	kPGXuRei	·57		回 经运 种气 SCAN ME
						FRAME USW SHAPE & COLOR LOGO
<u>↑</u> , Upload a	ny file (.jpg, .pdf,	.mp3,.docx,.ppt	k)		Scan tracking	

When you are done download the QR code. Click the button and save the jpg file in the shared folder called **QR Codes**.

Attention: Name your jpg file as "Question X",

where X stands for 2 for team 1 4 for team 2

4 for team 2 6 for team 3 8 for team 4 10 for team 5

The QR code for the second question is ready!

Well done!

Worksheet 3

Date _____

Team Name _____

<u>Step 1:</u> Open the Google Sheet *Responses* and download it to your PC. Open it and look at the content. Check:

- the columns
- the sheets
- the data in each column

Step 2: Find the duplicate/multiple data (if there are any) (use sorting). Decide about the multiple records that correspond to the same candidate. Save the new data set in a new Excel file, named by the name of your team.

Step 3: Make formulas using functions, arithmetic operators, expressions and other excel tools to answer the following questions. Make a document file named by the name of your team to gather and represent information for each question.

- 1. How many students participated in the contest?
- 2. How many of them answered both the two questions of your team?
- 3. Which candidates did not answer one, or both questions of your team? (Those candidates should be excluded from the contest)
- 4. How many candidates answered correctly to the first question of your team?
- 5. How many candidates answered correctly to the second question of your team?
- 6. Create a graph to model questions 4 and 5.
- 7. How many candidates answered correctly to both questions of your team?

- 8. How many candidates gave a wrong answer to both questions of your team?
- 9. Create a graph modeling questions 7 and 8.
- 10. Which candidate / candidates answered correctly one of the two questions of your team?
- 11. Which candidate / candidates answered correctly both questions of your team?

Evaluation sheet

Date _____

Team Name _____

1. QR codes are used in

- a. supermarkets
- **b.** museums
- c. marketing
- d. all the above

2. You can make QR codes online.

- a. True
- b. False

3. To create an online questionnaire, you need

- a. Google Forms
- b. Google Slides
 c. Google Docs
 d. All the above

4. The data collected from a Google Form are registered in a document file.

- a. True
- b. False

5. To process data, you may need to use

- a. Functions
- **b.** Filters
- c. Operators
- d. Expressions
- e. None of the above
- f. All the above

6. The multiple entries issue in a data set can be solved

- a. with unique code identifiers.
- b. with sorting and filtering
- c. with unique code identifiers, sorting and timestamp
- d. with timestamp

7. Suggest some other use of QR codes in your everyday life.

8. What was the most difficult task you issued during this project?

- a. QR code creation
- **b.** Google Form creation
- c. Processing of the data
- d. Working in groups
- e. Modeling formulas Other ____

Exemplar Scenario 06: Studying the Skyros Archipelago Lizards

	Part A. General Data			
A.1 Title:	Studying the Skyros Archipelago Lizards			
A.2 Author(s):	Elisavet Mavroudi, University of the Aegean			
A.3 Abstract/ Summary:	This scenario involves students in an authentic data analysis project with the aim of generating scientific knowledge, since it is based on a large set of data which comes from real research. The scenario also falls within the field of CT because it employs several CS practices in solving problems in the field of biology. Students will summarize data sets, interpret them based on simple knowledge in the field of Biology, construct chart graphs, practice spatial reasoning, compare subsets of data based on the values of mean and variance, filter outliers, test hypotheses, and finally, they will suggest the collection of further data to answer questions. The scenario constitutes an adaption of (Tally, 2019)			
A.4 Keywords:	Data analysis, experiment, hypotheses testing, Biological Evolution			
A.5 Version:	V01			
A.6 Date:	30/09/2021			
A.7 Copyright license:	Attribution ShareAlike CC BY-SA			
	Part B. Learning Data			
B.1 Grade(s):	K-12: Grades 7-8 or Age(s): 12-14 years old			
B.2 Subject(s):	Biology,			
	Computer Science,			
	Mathematics (Statistics)			
B.3 Topic(s):	Ecosystem's interactions, Biological Evolution, Adaptation			
	Analyzing and interpreting data, constructing explanations			
	Measures of location and spread			
	Data analysis			
B.4 Computational Thinking Dimensions:	Check or note the dimensions which the scenario involves: Algorithmic Thinking (AL) Abstraction (AB) Generalization (GE) Logical reasoning (LR) Pattern matching (PM)			
	Problem decomposition (PD)Problem translation (PT)Evaluation (EV)			

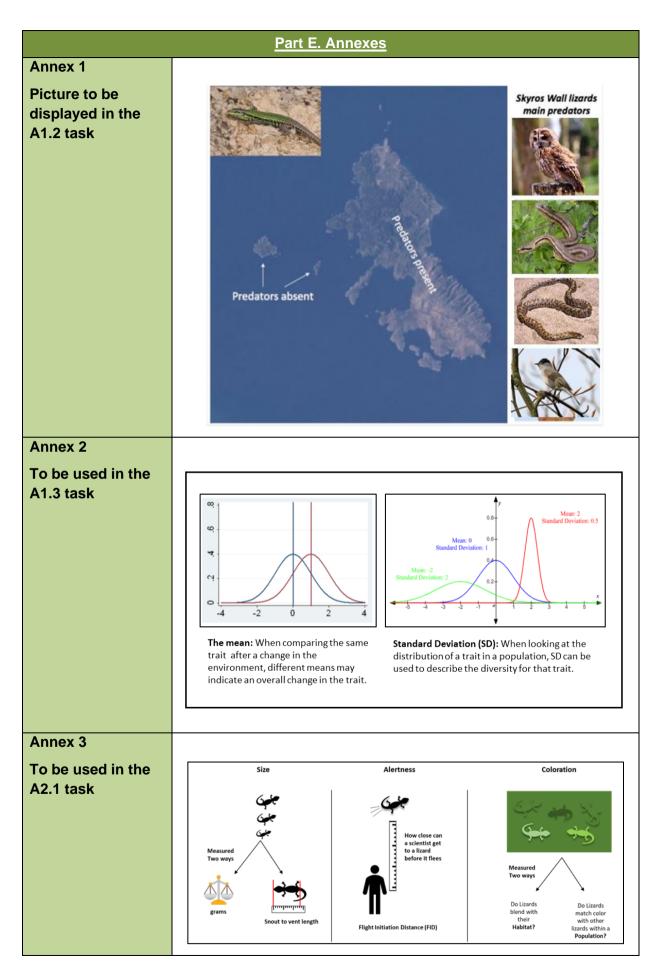
	Depresentation (DE)		
	Representation (RE)		•
	Data collection (DC)		
	Data representation (D	K)	✓
	Data analysis (DA)		•
		Modeling (MO)	
		Simulation – (SIM)	
		Automation (AUT)	
	Sequencing (SE)		
	Testing (TE)		
	Understanding People	- (UP) /Artificial	
	Intelligence (AI)		
B.5 Computational	Check or note the CT approach	hes which the sce	enario employs
Thinking	Tinkering experimentin	g & playing	\checkmark
Approaches:	Creating, designing, an		\checkmark
	Debugging, finding, and	v	
	Persevering, keeping g	-	
	Collaborating, working	together	\checkmark
DOTI		_ ; , , ,	
B.6 Thematic in the	In the context of the CompuT F	•	e some thematic units
context of the	to drive the development of the	e scenario:	
CompuT Project:	Educational Robotics or		
	Physical Computing		
	Computational Science	Modeling/Simulatio	n
	project	Bifocal modelling	
		Sensors use or ma	king
		Maths and CS	
		Other:	
	Data science project		\checkmark
	History of science and		
	technology		
	Digital game, software, or		
	mobile app	Disital Char dalling	
	Digital humanities projects	Digital Storytelling Interactive Fiction	
		Text mining	
		Algorithms in	
		everyday life	
		Other:	
	Artificial Intelligence		
	Projects		
	Studio approach – Future		
	Classroom projects		
	Unplugged experiential or		
	using manipulatives		
	Other:		
B.7 Purpose/Aim	The long-term goal of this scer	nario is for studen	ts to get involved in
of the learning	an authentic, comprehensive p	roject of data and	alysis and application
scenario:			

	of the scientific method on sustainability and biodiversity, thus linking important concepts of data analysis with their applications.		
B.8 Learning outcomes/goals ²³ :	After the completion of the scenario, students are expected to be able to:		
	B.8.1 Knowledge	• understand the environment's crucial role in the evolution processes	
		 understand how the selective pressure of predation contributes to the diversification of some traits such as body size and alertness 	
		 understand that islands are isolated places, and the evolution of species there can follow a different course from what happens elsewhere 	
	B.8.2 Skills	use various CODAP tools to analyze data	
		 describe data sets based on the shape of the data distribution and statistical measures 	
		 read graphs and answer graphs questions about data, between data and beyond data 	
		 propose and justify data-driven hypotheses and predictions and plan further studies to investigate hypotheses and predictions 	
		 communicate the results of data analysis clearly and concisely. 	
	B.8.3 Attitudes- affective	 appreciate the value of data in generating claims and reasoning 	
		communicate ideas from data	
		appreciate the scientific method	
		 realize that research is a collaborative effort carried out by many people 	
B.9 Horizontal competences - 21 st	This learning scenario creates the appropriate conditions for the development of various 21st century skills.		
century skills:	B.9.1 Learning and innovation skills:	4C's: Collaboration, Communication, Critical Thinking, Creativity	
		Throughout this learning scenario, students wor small groups. They are asked, with the help of properly designed questions, to process some of to draw conclusions, which they then present to the plenary. Through this way of working, they of develop and / or improve their Collaboration, Communication and Critical Thinking skills. Final	

²³ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

their creative potential could be enriched by contact with the scientific methods.B.9.2 Digital literacy skills:Information literacy, Media literacy, Information and Communication technologies (ICT) litera Digital citizenshipThrough the present scenario students are expected to learn how to use a web-based of analysis environment to summarize, visualizi interpret data, advancing their skills to use of evidence to support a claim.	ion acy,		
skills:and Communication technologies (ICT) liter Digital citizenshipThrough the present scenario students are expected to learn how to use a web-based o analysis environment to summarize, visualiz 	acy,		
expected to learn how to use a web-based of analysis environment to summarize, visualiz interpret data, advancing their skills to use of	lata		
	e, and		
B.9.3 Career and life skills:Flexibility and adaptability, initiative and self direction, social and cross-cultural interaction productivity and accountability, leadership, a responsibility	n,		
B.10 Modern The scenario includes modern teaching methods such as:			
teaching methods: Collaborative Learning, as students need to work on teams to complete the tasks.	-		
Project-Based Learning, students will have to complete a project are assigned with.	Project-Based Learning, students will have to complete a project they are assigned with.		
B.11 Integration of CT into the curriculum: This scenario includes a variety of disciplines such as biology, in and CS, blended with many CT dimensions.	This scenario includes a variety of disciplines such as biology, math and CS, blended with many CT dimensions.		
B.12 Relation to Greek National Curriculum			
curriculum and/or standards:Grade 7 Biology Curriculum (Ecosystems: Interactions and Applications)			
Grade 8 ICT Curriculum (Spreadsheets and Data Analysis)			
Grade 8 Mathematics Curriculum (Descriptive Statistics)			
knowledge: data analysis software, introduction to the concept of natural selection as well as a brief introduction to the statistical measur mean value and standard deviation, while a higher degree of familiarity of students with all the above is expected to be achief	selection as well as a brief introduction to the statistical measures of mean value and standard deviation, while a higher degree of familiarity of students with all the above is expected to be achieved through the scenario. Any relevant prior knowledge / skills however,		
B.14. Difficulty Intermediate Level of the Scenario:			
B.15. Social setting <i>small group (3-4 students), whole class</i> of the scenario:			
B.16 Place of Computer Lab	Computer Lab		

B.17 Teaching time – Duration:	4 x 45' sessions			
B.18 Educational material,	B.18.1 Software:		CODAP (a free educationa data analysis)	l software for
resources,	B.18.2 Hardware:		Pcs	
instruments, tools, and media:	B.18.3 Online resources:		the downloadable data files, a map of the Skyros Archipelago, a presentation on the Darwin's Finches	
	B.18.4 Conventional educational material:			
	Part C. Learning	<mark>l Expe</mark> r	ience Design	
C.1. Activities-	Dhase 1			
Action-Plot- Storyboard	Phase 1.		t happens when Ilations are separated?	
sequence table:	Activity/Task		ription/Procedure	Duration
	A1.1 Warming up, engaging the students	of 3-4 The t of Sk surro and r sea la to the small conse and c in Sk sepal pose "Ovel years you h do yo on th have those Skyro 5' for the q plena The t the in the in point hatps.	class is divided in groups 4 students. eacher projects a map yros and the unding small islands reports on how the rising evel of the Aegean over ast 18,000 years has led e formation of these l islands and has equently caused lizard other animal populations yros to become rated. He/she then s the following question: r those thousands of s, and according to what have learned in Biology, ou think that the lizards e small islands might evolved differently than e on the main island of os? the groups to reflect on uestion and a follow–up ary discussion feacher can use some of ch material available on hternet (e.g. the power presentation at ://sciencecases.lib.buffal u/collection/detail.html/?c id=550&id=550) to ent the case of	15'


	"Darwin's Finches and Natural Selection"	
A1.2 Presenting the case of the educational scenario	At this point, the teacher presents the case the scenario is about. He/ She displays the picture from Annex 1 and provides the students with all the necessary information. Students are informed that they will be asked to study a small lizard from the Skyros archipelago to examine how the lizards of the surrounding small islands differ from the lizards of the main island of Skyros and why. A key fact for the analysis is that, unlike the main island of Skyros, on the small islands there are no snakes and birds that are the main enemies of the lizard. Finally, the students are informed that the data that will be used throughout this course has been collected by researchers who are investigating the ecological causes of the evolutionary deviation of the population in the Skyros lizard. Specifically, the differences in body size, alertness, and coloration between the lizards of the small islands and the mainland (the island of Skyros) were examined.	15'
A1.3 A little bit of statistics	Following is a brief and concise reference to the concepts of mean value and standard deviation, with the help of the figure in Annex 2, which is projected by the teacher. He/She explains that statistical measures can help us describe changes in the distribution of characteristics and make comparisons between populations. After commenting on the usefulness and the way of interpretation of each of the	15'

	above 2 statistical measures,	
	the students are informed	
	that they will use these two	
	statistical measures to	
	analyze the data for the	
	lizards that live on the island	
	of Skyros and the	
	surrounding small islands.	
Phase 2.	Getting familiar with	
F11050 2.	CODAP software and the	
	data	
Activity/Task	Description/Procedure	Duration
A2.1	First, the way in which the data	10'
	were collected and the	10
Informing the class	characteristics that will be	
about the source of	studied, are briefly presented.	
the data	The teacher projects and	
	explains the image in Annex	
	3.	
	•.	
	For the needs of the	
	research, the lizards were	
	"captured", tagged and then	
	several morphological	
	characteristics of theirs were	
	measured. The present	
	study, however, deals with	
	the measures of weight (in	
	grams) and length (from	
	snout to vent - SVL length).	
	The researchers did not	
	consider the length of the tail	
	as it is common for lizards in	
	capture to lose their tails	
	which then grow back, so any	
	other measurement could be	
	misleading.	
	The researchers also	
	measured the alertness of	
	the lizards, which is	
	expressed by the distance	
	they were able to approach	
	the lizard until it felt the need	
	to move away from the	
	danger. This distance is	
	called the Flight Initiation	
	Distance (FID) and the	
	measurements for all lizards	
	were made during their	
	maximum activity which is	
	between 10:00 am and 4:00	
A2.2	pm. Summarizing the above, the	35'
	Summarizing the above, the	35
Getting familiar	teacher informs the students	
14 000 A C		
with CODAP software	that, working in groups, they are going to study the data	

	plenary and each in turn is	20
Activity/Task A4.1	Description/Procedure The groups return to the	Duration 25'
	and reflecting on the findings	Dungting
Phase 4.	CODAP format, which will be needed. Summarizing, presenting,	
	computer and is handed the corresponding Worksheet (one version of Worksheet II in Annex 5). In addition, each group is also given access to the corresponding data file in	
	characteristics can, depending on the number of groups, be assigned to one or two groups. Each group shares one	
	"coloring" is considered in relation to the environment and to other members of the population, each of these two	
	each one can undertake the investigation of an individual trait. As "size" is broken down into two dimensions, weight, and length, and also	
	the data has been achieved, the class is divided into groups, 3-5, depending on the number of students and	
Working with real data	At this point, and provided that a satisfactory degree of familiarity with the use of the software and the format of	45
Activity/Task	Description/Procedure	Duration 45'
Phase 3.	Application, conduct of the study	
	differences between the two different habitats, the island of Skyros and the small islands around it. Before proceeding with their study, it would be useful for the students to familiarize themselves with both the software they will use and the format of the data. In this process they will be assisted by Worksheet I, in Annex 4.	
	collected by the researchers, regarding five characteristics of the lizards and look for differences between the two	

Presenting the	invited to present its findings	
findings	invited to present its findings and the answers it gave in	
lindingo	the Worksheet. During these	
	presentations the teacher fills	
	in the data in the	
	corresponding position of the	
	table in Annex 6.	
A4.2 Further discussion on the scientific	At this point it can be emphasized that for both the issues of size and color	5'
methods/practices	adaptation, scientists have chosen to investigate more	
	than one dimensions, while the findings on the second	
	dimension each time, confirm and reinforce the findings and conclusions of the findings on	
	the first dimension. In addition, a presentation on	
	the issue of outliers can be made by the groups invited to	
	negotiate this issue as well as, a relevant debate in	
	plenary.	
A4.3	The teacher displays, for	15'
Summary and	completion, the following	
homework	summary table: Trait mainland islands	
assignment	Trait mainland islands size	
	alertness	
	Coloration	
	predators	
	After completing the table	
	with the participation of	
	students, the teacher asks	
	the following questions:Describe how the traits	
	Describe now the traits you studied in the	
	lizards of the Skyros	
	archipelago have	
	changed over time.	
	How does the absence of predators in the amall	
	of predators in the small surrounding islands	
	explain the difference in	
	size, alertness, and	
	color adaptation?	
	The answers to the questions	
	are assigned as a written report at group level.	

C.2 Assessment	Informal teacher assessme	nt of pupils during the tasks.		
	A final report per group is provided for assessment purposes			
	C.2.1 Student's feedback and reflection	Students will get immediate feedback		
C.3 Homework/ Work with parents- family	homework. In this case, the	could alternatively be assigned as report with the students' observations / n in a collaborative document, per group		
	Part D. Information for	r the Teachers		
D.1 Adaptation - Differentiation for inclusion of all students				
D.2 Extension	It would be interesting to ask the groups of students to design research that will utilize the tools and methods that they had the opportunity to get acquainted with through the current teaching scenario, as well as to suggest how to collect the data.			
D.3 Resources	 Finzer, B.,& Kochevar, R. (2019). Monday's lesson: Zoom in! teaching science with data. @Concord, 23(2), 7. Finzer, W., Busey, A., & Kochevar, R. (2018). <i>Data-driven inquiry in</i> 			
	 the pbl classroom: Linking maps, graphs, and tables in biology. The Science Teacher. Tally, B. (2019). Population Divergence: How are island lizards changing in the Skyros Archipelago?, a learning scenario in zoominscience project, http://www.zoominscience.edc.org/, 			
	http://datascience.zoominmarketing. content/uploads/2020/05/Diversifica			
D.4 Experience deriving from the implementation of the scenario				
D.5 Relations to other scenarios				
D.6 Reviews by teachers				
D.7 Assessment of the scenario	[1=Very Bad – 5=Very Goo	d]		
D.8 References				

Annex 4	Worksheet I						
Worksheet I							
To be used in the A2.2 task							
Annex 5	Worksheets IIa, IIb, IIc	, Ild, lle					
Worksheets II							
To be used in phase 3							
Annex 6	Habitat Category	"Mass" mean	"Mass" SD				
To be used in the	Skyros (mainland)						
A4.1 task	Surrounding islands (island)						
	Habitat Category"SVL" mean"SVL" SD						
	Skyros (mainland)						
	Surrounding islands (island)						
	Habitat Category"FID" mean"FID" SD						
	Skyros (mainland)						
	Surrounding islands (island)						
	Habitat Category"Correlation to Habitat" mean"Correlation to Habitat" SD						
	Skyros (mainland)						
	Surrounding islands (island)						
	Habitat type	ype Percentage (%) of similarity with the population					
	Skyros (mainland)						
	Surrounding islands (island)						

Studying the Skyros Archipelago Worksheet I

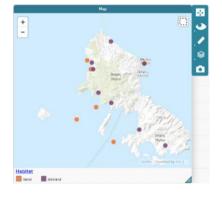
Name(s): _____

Date:

Let's get a little familiar with the program and our data!

- 1. In a browser, go to: https://codap.concord.org/ and click LAUNCH CODAP
- 2. Using the option:

OPEN DOCUMENT OR BROWSE EXAMPLES


open the "<u>Size data.codap</u>" file (accessible for download at: https://cutt.ly/KbO4hYg).

3. Look carefully at the table and try to answer the following questions:

Questions	Record your answers here
There are three distinct (but interconnected) sections in the table.	
Which are these and what information does each one contain?	
How many areas of the island of Skyros and how many different islands have the researchers collected data from?	
How many different lizards have been studied?	

Exploring the map

The map shows the main island of Skyros (mainland) and the surrounding small islands (island) while all the areas from which samples were taken have been marked with dots.

Questions	Record your answers here
Drag the "Habitat" title from the table to the middle of the map. What do you notice?	
Click on any row in the section of the table. What happens on the map;	

Explore the areas on the map of Skyros and the surrounding	
islands. Zoom In, click on a dot with the mouse. What do you	
notice about the table?	

Constructing a graph

Use the following tool to build a graph:

						\$3565							- ×	•
	Pethon			atel										
	Palamari													
	Nof			it e ta	15.									
	Mola			1										
	Mesa Disvetes						••••							L
a	Interimi				will		.11							. 4
ocation	Kyria Panagia					•••								
8	Koteles						1							
	and of Asiesa													
	Drinks													
	Abiba				•••	••••								
	cikis Azhanase.						•••							
	Agar Molau													
		0	2	•	6	ð		12 855	14	15	18	20	22	
Heb	itet													
	sand the	and .											4	

Drag the title "Mass" on the X-axis and the title "Location" on the Y-axis from the table. Then drag "Habitat" in the middle of the chart and notice the change.

Well done! You are now ready to explore the research data to look for possible differences between the two large populations, the lizards that live on the island of Skyros and those that live on the surrounding small islands.

Worksheet IIa - Studying the lizards' weight

Your group will investigate the weight of the lizards. Remember that lizards from various areas of both the main island of Skyros and the surrounding small islands had been temporarily trapped by the researchers, were then measured and finally, tagged.

Let's make a few hypotheses...

If we take into account that Skyros and the surrounding islands are distinct ecosystems in which the selective pressures are different.....

Questions	Record your answers here
Do you expect that the lizard's weight would vary in these two habitats? And if so, how?	
How do you believe the absence or presence of predators would affect any possible difference in size between mainland and island lizards?	

Open the "Size data" file in the CODAP environment

Graph Construct a graph by placing the "**Mass**" field on the X-axis and the "Habitat" field on the Y-axis. Then drag "**Habitat**" to the center of the chart to color the dots.

Observe the graph paying special attention to the outliers.

Use the ruler tool to calculate the **Mean** of the lizard "mass" variable for each environment category.

Questions	Report your findings here
Mean for the Mass of the mainland lizards (island of Skyros)	
Mean for the Mass of the island lizards (surrounding small islands)	
How much heavier are the lizards of the small islands compared to those of the island of Skyros? Express your answer as a difference percentage. (%)	
How could the presence / absence of predators explain the difference you found?	

Use the ruler tool again, this time to calculate the Standard Deviation of the lizard "mass" variable for each environment category.

Questions	Report your findings here
Standard Deviation for the Mass of the mainland lizards (island of Skyros)	
Standard Deviation for the Mass of the island lizards (surrounding small islands)	
Which population, the one from the main island of Skyros or the one from the surrounding islands, shows greater variability in mass? Based on this difference in the value of the standard deviation, what would you conclude about the two populations?	
Remember that the separation of populations between the main island and the small ones around it happened thousands of years ago. How could the presence / absence of predators explain the difference in lizard size?	

Examining the effect of the outliers

On the graph that contains outliers, perform drag-selection of the data, leaving out the outliers. With the help of the tool, hide the unselected values (from the "Hide Unselected Cases" option) and recalculate the Mean Value and the Standard Deviation.

- 1. In which of the two habitats are the outliers found?
- 2. What do you observe on the values of the Mean and the Standard Deviation?
- 3. If you were the researcher, would you choose to include the outliers in your data or would you exclude them and why?

Summarize here your observations and your conclusions about the outliers.

Worksheet IIb – Studying the lizards' body length

Your group will investigate the length of the body of the lizards. Remember that lizards from various areas of both the main island of Skyros and the surrounding small islands had been first temporarily trapped by the researchers, were then measured and finally, tagged. In the case of body length, the snout to vent length was measured.

Let's make a few hypotheses...

If we take into account that Skyros and the surrounding islands are distinct ecosystems, in which the selective pressures are different.....

Questions	Record your answers here
Do you expect that the lizard's body lentgh would vary in these two habitats? And if so, how?	
How do you believe the absence or presence of predators would affect any possible difference in body length between mainland and island lizards?	

Open the "Size data" file in the CODAP environment

Construct a graph by placing the "**Snout_to_Vent Length**" (SNV Length) field on the X-axis and the "**Habitat**" field on the Y-axis. Then drag "Habitat" to the center of the chart to color the dots.

Observe the graph paying special attention to the outliers.

Use the ruler tool to calculate the **Mean** of the lizard "Snout_to_Vent Length" variable for each environment category.

Questions	Report your findings here
Mean for the SNV Length of the mainland lizards (island of Skyros)	
Mean for the SNV Length of the island lizards (surrounding small islands)	
How much longer are the lizards of the small islands compared to those of the island of Skyros? Express your answer as a difference percentage. (%)	
How could the presence / absence of predators explain the difference you found?	

Use the ruler tool again, this time to calculate the Standard Deviation of the lizard SNV Length variable for each environment category.

Questions	Report your findings here
Standard Deviation for the SNV Length of the mainland lizards (island of Skyros)	
Standard for the SNV Length of the island lizards (surrounding small islands)	
Which population, the one from the main island of Skyros or the one from the surrounding islands, shows greater variability in body length? Based on this difference in the value of the standard deviation, what would you conclude about the two populations?	
Remember that the separation of populations between the main island and the small ones around it happened thousands of years ago. How could the presence / absence of predators explain the difference in lizard size?	

Examining the effect of the outliers

On the graph that contains outliers, perform drag-selection of the data, leaving out the outliers. With the help of the stool, hide the unselected values (from the "Hide Unselected Cases" option) and recalculate the Mean Value and the Standard Deviation.

- 1. In which of the two habitats are outliers found?
- 2. What do you observe on the values of the Mean and the Standard Deviation?
- 3. If you were the researcher, would you choose to include the outliers in your data or would you exclude them and why?

Summarize here your observations and your conclusions about the outliers.

Worksheet IIc – Studying the lizards' alertness

Your group will investigate the lizards' alertness. Which lizards move away from danger faster, those from the main island of Skyros or those from the surrounding small islands? It should be mentioned here that the main predators of lizards are snakes and birds, which, however, do not appear on the small islands around Skyros.

Let's make a few hypotheses...

Questions	Record your answers here
Do you think that alertness is an important trait for a lizard? Why is that;	
Taking into account that Skyros and the surrounding islands are distinct ecosystems, in which the selective pressures are different What differences in alertness (if any) would you expect to see between the lizards of Skyros and the small islands around it?	

Open the file "Flight Initiation Distance Data.codap" (available for downloading at https://cutt.ly/XbO4GFV) in the CODAP environment. Exactly as you did with the "Size data" file before, take some time to study the table and its three distinct sections, to get acquainted with the data it contains.

Construct a graph by placing the "Flight Initiation Distance - FID" field on the Xaxis and the "Habitat" field on the Y-axis. Then drag "Habitat" to the center of the chart to color the dots.

Observe the graph carefully.

Keep in mind that the FID distance indicates how far away from the lizard the researcher was when the lizard started running.

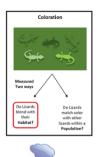
Use the ruler tool to calculate the Mean of the lizards' "FID" variable for each environment category.

Questions	Report your findings here
Mean for the FID of the mainland lizards (island of Skyros)	
Mean for the FID of the island lizards (surrounding small islands)	
In which of the two environments were the researchers able to get closer to the lizards?	

Which lizards are more alert or more careful? Use data in your answer and explain what that data shows. Comment on the populations mean values.	
How could the absence of predators explain the difference in the alert levels you observed between the two populations (mainland vs island)?	

Use the ruler tool again, this time to calculate the Standard Deviation of the FID variable for each environment category.

Questions	Report your findings here
Standard Deviation for the FID of the mainland lizards (island of Skyros)	
Standard Deviation for the FID of the island lizards (surrounding small islands)	
What is the difference in variability between the lizards of Skyros and those of the surrounding islands? What would this difference be due to?	
Does this finding surprise you? Justify your answer.	


Examining the effect of the outliers

On the graph that contains outliers, perform drag-selection of the data, leaving out the outliers. With the help of the tool, hide the unselected values (from the "Hide Unselected Cases" option) and recalculate the Mean Value and the Standard Deviation.

- 1. In which of the two habitats are the outliers found?
- 2. What do you observe on the values of the Mean and the Standard Deviation?
- 3. If you were the researcher, would you choose to include the outliers in your data or would you exclude them and why?

Summarize here your observations and your conclusions about the outliers.

Worksheet IId - Investigating the lizards' coloration to habitat

Your group will investigate the coloration of the lizards to the habitat. The researchers investigated the lizards' camouflage or how well they blend with their environment. They analyzed the color from the RGB images both, of the lizards' backs and squares from their surroundings (1m X 1m). The higher the ratio between the lizard's dorsal surface and their habitat, the better the lizards are covered. The degree of similarity in the data is given by a number called "correlation to habitat".

Let's make a few hypotheses...

Questions	Record your answers here
How would the color of an animal be important in avoiding predators?	
Taking into account that Skyros and the surrounding islands are distinct ecosystems, in which the selective pressures are different What differences in coloration do you predict there will be between island and mainland lizards?	

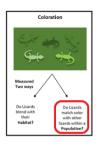
Open the file "<u>Coloration Data.codap</u>" (available for downloading at https://cutt.ly/3bO4TS2) in the CODAP environment. Exactly as you did with the "Size data" file before, take some time to study the table and its three distinct sections, to get acquainted with the data it contains.

Construct a graph by placing the "**Correlation to Habitat**" field on the X-axis and the "Habitat" field on the Y-axis. Then drag "Habitat" to the center of the chart to color the dots.

Observe the graph paying special attention to the outliers.

Use the ruler tool to calculate the Mean of the lizard "Correlation to Habitat " variable for each environment category.

Questions	Report your findings here
Mean for the Correlation to Habitat of the mainland lizards (island of Skyros)	
Mean for the Correlation to Habitat of the island lizards (surrounding small islands)	
Describe what each graph (Skyros Island and surrounding small islands) tells you about how well the lizards match in color with their habitat.	


Which lizards blend better with their environment? Explain your reasoning in relation to the presence / absence of predators.

Use the ruler tool again, this time to calculate the Standard Deviation of the lizard "Correlation to Habitat" variable for each environment category.

Questions	Report your findings here
Standard Deviation for the Correlation to Habitat of the mainland lizards (island of Skyros)	
Standard Deviation for the Correlation to Habitat of the island lizards (surrounding small islands)	
Comparing the two populations, the lizards of Skyros and those of the surrounding islands, where do you find more diversity in color? What is the proof of this?	
How would you explain your remarks? Take into account the different selective pressures in these habitats.	

Worksheet IIe - Investigating the lizards' coloration to each other

Your group will study how lizards blend in their own population by displaying a similar coloration. The researchers examined whether the lizards from the island of Skyros are more similar to each other than the lizards on the surrounding small islands. The degree of similarity in the data is given by a number called "correlation to population".

Let's make a few hypotheses...

Questions	Report your answers here
What, do you believe, is the cause of this investigation?	
What does it tell you about lizards' ways of hiding from their enemies?	

Open the file "<u>Coloration Data.codap</u>" (available for downloading at https://cutt.ly/3bO4TS2) in the CODAP environment. Exactly as you did with the "Size data" file before, take some time to study the table and its three distinct sections, to get acquainted with the data it contains.

Construct a graph by placing the "**Correlation to Population**" field on the X-axis and the "Habitat" field on the Y-axis. Then drag "Habitat" to the center of the chart to color the dots.

Use the ruler tool to calculate the Mean of the lizard "Correlation to Population" variable for each environment category

Estimate the percentage of lizards that are similar in color to each other at about 80% or more. *Hint:* Add the percentage to boxes .8-.9 and .9-1.

Questions	Report your findings here
Percentage of lizards that are similar in color by 80% or more on the island of Skyros. (mainland)	
Percentage of lizards that are similar in color by 80% or more on the surrounding small islands (island)	
According to your analysis, the lizards on the small islands around Skyros are more or less similar to each other than those on the main island of Skyros.	
Try to interpret the difference between the two populations. (mainland vs island) found above.	

Exemplar Scenario 07: Studying Cam Carpets to learn mathematics and computational thinking

	Part A. General Data
A.1 Title:	Studying Cam Carpets to learn mathematics and computational thinking
A.2 Author(s):	Evangelia Stamatarou, Maths Teacher, 2 nd Lyceum of Rhodes
A.3 Abstract/ Summary:	The students experiment with Cam Carpet idea first using everyday material and light sources and progressively more formal tools to mathematise and make sense of the optic phenomena involved. First, students try a simple projection using light source and, pen and pencil to experiment with the optic illusion behind Cam Carpets. Then, they use Geogebra for the geometric analysis of simple cases of cam carpet phenomena (e.g. they will compute the cam carpet for simple letters) progressively they are introduced to the analytical model behind the cam carpets using equation systems for key point coordinates and finally, they model the optics using matrices. Finally, they can apply the new knowledge in an optional outdoor activity in which they represent the name of their school three-dimensionally as a Cam Carpet in the school yard. Thus, through the sequence of the various learning tasks, they better comprehend the maths related to the use of computing technology and improve their Computational Thinking skills. During this project, students will use their knowledge in Maths, Science and Arts.
A.4 Keywords:	digital technology, geometric analysis, outdoor activities
A.5 Version:	V2
A.6 Date:	20/6/2022
A.7 Copyright license:	CC BY-SA 3.0
Part B. Learning Data	
B.1 Grade(s):	Grades 10-11, Ages: 16-17
B.2 Subject(s):	Maths, Computer Science, Physics, English Language, Arts
B.3 Topic(s):	

B.4 Computational	Check or note the dimensions which the scenario involves:	
Thinking Dimensions:	Algorithmic Thinking (AL)	
Dimensions.	Abstraction (AB) X	
	Generalization (GE)	
	Logical reasoning (LR) X	
	Pattern matching (PM)	
	Problem decomposition (PD) X	
	Problem translation (PT)	
	Evaluation (EV)	
	Representation (RE) X	
	Data collection (DC)	
	Data representation (DR)	
	Data analysis (DA)	
	Modeling (MO) X	
	Simulation (SIM) X	
	Automation (AUT)	
	Sequencing (SE)	
	Testing (TE)	
	Understanding People – (UP) /Artificial X	
	Intelligence (AI)	
B.5 Computational	Check or note the CT approaches which the scenario employs	
Thinking	Tinkering experimenting & playing X	
Approaches:	Creating, designing, and making X	
	Debugging, finding, and fixing errors	
	Persevering, keeping going X	
	Collaborating, working together X	

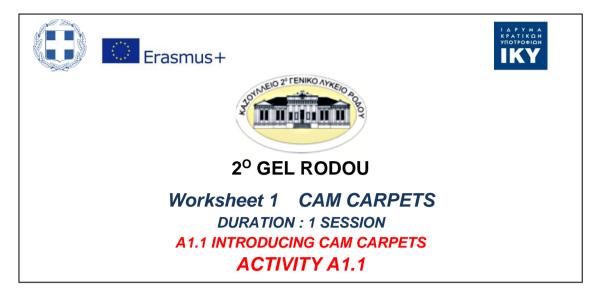
B.6 Thematic in the context of the	In the context of the C to drive the development			me thematic units
CompuT Project:	Educational Robotics			
	Physical Computing		Maalaliaa (Oireada tiar	
	Computational Scient	ce	Modeling/Simulation	X
	project		Bifocal modelling	
			Sensors use or making	
			Maths and CS	X
	Dete ecience preiect		Other:	
	Data science project History of science an	4		
	technology	a		
	Digital game, softwar mobile app			
	Digital humanities pro	ojects	Digital Storytelling	
			Interactive Fiction	
			Text mining	
			Algorithms in	
			everyday life Other:	
	Artificial Intelligence			
	Projects			
	Studio approach – Fu Classroom projects	ture		
	Unplugged experient	ial or		
	using manipulatives			
	Other:			
B.7 Purpose/Aim of the learning scenario:	Hopefully, mathematic all the students, even that Mathematics isn't experiences in the rea insight into human a Mathematics is used creation of a model.	for those someth al world. abilities l within	e intimidated by it. St ing abstract but it is They will connect Ma like eyesight and th the interdisciplinary	tudents will realize closely related to athematics with an hey will see how approach to the
	computational method mathematical problem	s and too s.	ols in doing mathema	tics by solving real
B.8 Learning	At the end of the learn	ing scen	ario students should	be able to:
outcomes/goals ²⁴ :	B.8.1 Knowledge		realize the real applic geometric analysis	cation of
			define the sense of s geometrical thinking	pace and develop
	B.8.2 Skills	✓	produce optical imag	es.
			understand mathema applying mathematic	

²⁴ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

	Γ	
		Additionally there is an implementation of mathematics in the real environment
		\checkmark use computational method and tools
	B.8.3 Attitudes- affective	 ✓ arouse enthusiasm and interest in their work, throughout the school community
		 ✓ enhance their self-esteem, satisfaction and adopt a more positive attitude towards knowledge.
		✓ work collaboratively
B.9 Horizontal competences - 21 st	This learning scenario development of variou	creates the appropriate conditions for the us 21 st century skills
century skills:	B.9.1 Learning and innovation skills:	Collaboration: students collaborate as they work in groups of 2
		Communication : students will communicate with other groups to test their results
		<i>Critical Thinking</i> : students need to critically think to make decisions on the projections of the objects
		Creativity : students are expected to improve their projection of a three-Dimensional Object by changing points
	B.9.2 Digital literacy skills:	<i>Information literacy</i> : students evaluate information to properly create a three- dimensional object for the observer (camera)
		Information and Communication technologies (ICT) literacy: students will be able to train a computational model and create their projections in a popular software (Geogebra)
		Digital citizenship : students will be aware of the use of CAM CARPET and the its applications in various fields in everyday life.
	B.9.3 Career and life skills:	<i>Flexibility and adaptability</i> : students can be flexible and adapt their data to train their model to react in new cases
		<i>Initiative and self-direction</i> : students should make decisions by themselves but also contribute to the group to come up with a result
		Social and cross-cultural interaction : students should interact with other groups and test their results
		Productivity and accountability : students should try to do their best in the time given

		Leadership and responsibility students should cooperate and make decisions for the	
		best result	
B.10 Modern teaching methods:	Students work in groups of 2 based on a Collaborative inquiry script. They will learn by Project-Based Learning, STEM Learning, Learning by design, Authentic learning in the school yard.		
B.11 Integration of CT into the curriculum:	Creation of computational models in order to solve mathematical problems.		
B.12 Relation to curriculum and/or standards:	Greek National Curriculum, Grades 10 &11, Geometry Curriculum and Analytic Geometry Curriculum		
B.13. Prerequisite knowledge:	Students need to have	basic knowledge of geometry and drawing.	
B.14. Difficulty Level of the Scenario:	Intermediate		
B.15. Social setting of the scenario:	A large group of students (8-10), working also in groups of 2-3		
B.16 Place of implementation:	Classroom, computer lab and may be school yard		
B.17 Teaching time – Duration:	7 x 45' sessions		
B.18 Educational	B.18.1 Software:	Geogebra, Excel	
material, resources, instruments, tools,	B.18.2 Hardware:	Video camera or smartphone, tripod, light source preferable led type flash.	
and media:	B.18.3 Online resource	schinkel.de/camcarpet-ein-projekt-des- mathe-kurs-ma1-der-aktuellen-q1 https://www.youtube.com/watch?v=kHrp 85-ekol https://3dsportsigns.com/ https://www.youtube.com/watch?v=YMX sVACiwwo https://www.geogebra.org/search/cam% 20carpets?fbclid=IwAR0m_Fy7OBjndB RN0Spk3xMjsDOhzEww86wspehKme0 5afUlwneCOKmEtMs	
	B.18.4 Conventional educational material:	Notebooks, color pencils, markers, geometrical instruments, millimetre paper, cartons, lego type building blocks, piece of string	

	Part C. Learning	Experience Design	
C.1. Activities-			
Action-Plot-	Phase 1.	Introduction to the Cam	
Storyboard		Carpet idea	
sequence table:	Activity/Task	Description/Procedure	Duration
	A1.1 Introducing	The teacher distributes	45 '
	Cam Carpets	Worksheet 1 to the students.	
		By visiting the links provided	
		in the worksheet and by	
		answering the supportive	
		questions, students are	
		guided to discover what a	
		•	
		cam carpet is and what	
		context it usually finds	
		application in.	
		The goal is for students to familiarize themselves with	
		the concept of cam carpets	
		as well as to come up with	
		ideas for creating their own	
		cam carpet. Their ideas are	
		written down on a piece of	
		paper.	
		The students may decide on	
		the size and the place where	
		the two-dimensional	
		projection of the 3-D object of their choice, will be drawn.	
	Phase 2.	Exploring the central	
		projection	
	Activity/Task	Description/Procedure	Duration
	A2.1 Discovering the	A two dimensional Cam	<i>45</i> '
	projection of a three-	Carpet image creates a	
	dimensional Object	three-dimensional image for	
		the observer (camera) However, this three-	
		dimensional image can only	
		be seen from a specific	
		viewpoint. From another	
		position it seems to be	
		neither upright nor legible.	
		The three-dimensional letter	
		object is not physically	
		present but due to the	
		representation it is created by	
		our eyes when located in the	
		camera position.	
		The teacher introduces the	
		Cam Carpets principle via	


	shadowing. S/he distributes Worksheet 2 , for this purpose, along with the necessary material. Worksheet 2 guides the students to shed light on an object so that its shadow appears on a sheet of paper. After drawing it on the paper they are asked to remove the object so that the students can see its projection as well as the optical 3-D illusion that applies under the same viewpoint. The light source should be suitable. A led /smartphone source on a tripod would serve. The students are given millimetre paper to create the projection of letters intuitively. The teacher supervises so that the students project the shadow correctly on the paper. So, they can realize how a two-dimensional Cam Carpet image creates a three-dimensional image for the observer (camera)	
A2.2 Creating the projection of an object using pieces of string	The teacher places a letter object on the graph paper. With the help of a piece of string he shows exactly how to create the projection of a three-dimensional object on the paper observing it from a certain point	45'

 More specifically, with the help of his students, the teacher 1. Puts a letter object on the graph paper. 2. Ties the one edge of a piece of string to the tripod. 3. S/he stretches the rope until it touches first, a point of the object and then, the paper. S/he, then, marks the point on the paper.
4. S/he continues making as many and suitable points as s/he can on the paper.
5. S/he then joins the points until the projection of the object is complete.
6. S/he calls the students to see the projection of the three-dimensional object letter with the help of a piece of a string which supports the observation from a certain point.

Phase 3.	Creating the projection of a 3D-object with GEOGEBRA	
A3.1 Exploring the projection of a 3D- object in GEOGEBRA	Through the guidance of Worksheet 3 and an appropriate Geogebra applet, the students, first experiment with the projection of a three- dimensional letter in Geogebra (ensuring a specific camera position) and, vice versa, with the 3D-impression of the Cam Carpet viewed from a fixed camera position. Special controls allow for the height of the camera position to be shifted as well as to show/hide the trackpoints, the projection of the 3-D letter and of the letter itself. Then, the teacher showcases the projection of a letter made in GEOGEBRA. He/she also conveys the projection on graph paper in scale.	45'
A3.2 Creating the projection of a three- dimensional Object with GEOGEBRA	The students, in turn, practice by creating a projection of a three-dimensional letter with geogebra The students are also given millimetre paper to create the projection of a letter like the projection in the geogebra environment. The teacher supervises so that the	45'

	modalling project correctly	
	modelling project correctly.	
Phase 4.	Creating the projection of	
	a three-dimensional object with vectors	
Activity/Task	Description/Procedure	Duration
A4.1 Analytical	The teacher helps the	45'
general solution of	students recall related key	40
the cam carpet	points from analytical	
problem	geometry. Assuming a	
prosicili	specific camera position	
	(point K) and the projection of	
	the 3D-object on the xy-	
	plane, the teacher distributes	
	Worksheet 4 and helps	
	students obtain the equation	
	of the line that is defined by	
	point K and by any given	
	point A of the 3D-object. The	
	coordinates of the	
	corresponding track point on	
	the xy-plane can then be	
	calculated by setting the z	
	coordinate equal to zero.	
	S/he then asks students to	
	produce an excel	
	spreadsheet to automate the	
	solution	
	Students apply the	
	spreadsheet in a case study	
	problem e.g. the short	
	name of the school.	
	Students are assigned to	
	make their own cam carpet	
	analytically to demonstrate it	
	at school	
A4.2 Drawing all the	The students use a large	45'
letters of the name	piece of carton to draw the	
of our school	whole name of the school in	
(optional)	the size they have agreed	
Phase 5.	Evaluation	
Activity/Task	Description/Procedure	Duration

	A5.1 Evaluate and	Students will be given 45'
	A5.1 Evaluate and reflect on the project	Students will be given 45' Worksheet 5 to describe and
		evaluate their experience
		· · ·
C.2 Assessment	Informal teacher asses	sment of students during the tasks.
		e assessment worksheet. So, the teacher will
	get know the students'	reflection.
	C.2.1 Students feedbac and reflection	Students get immediate feedback
C.3 Homework/		r CAM CARPETS at home. They could also
Work with parents-		nts and family to find out the use and propose
family	extension to each tean	e teacher could select and assign an
		ras nomework.
	Part D. Informatio	n for the Teachers
D.1 Adaptation -		
Differentiation for		
inclusion of all students		
D.2 Extension	AAD Oregets the final	They project it is the school 45'
	A4.2 Create the final product	They project it in the school 45' yard.
	product	
D.3 Resources		
D.4 Experience		
deriving from the		
implementation of the scenario		
D.5 Relations to other scenarios		
D.6 Reviews by teachers		
		Open di
D.7 Assessment of the scenario	[1=Very Bad – 5=Very	Gooaj
D.8 References		carpets as outdoor STEM education activity.
		STEM Education in the digiTal Age,139. https://www.wtm-verlag.de/DOI-Deposit/978-3-
	<u>95987-144-0/978-3-95</u>	
	Part E	Annexes
	Worksheet 1, Workshe	et 2, Worksheet 3, Worksheet 4, Worksheet 5
		· ·

GROUP #: NAME/SURNAME: CLASS...../ ... DATE

1. Visit the following links :

2. What is the video about?

.....

3. Visit the following link and watch the video

<u>https://www.gesamtschule-schinkel.de/camcarpet-ein-projekt-des-mathe-kurs-ma1-der-aktuellen-q1/</u>

Pay special attention to the following screenshot:

4. What was the issue of the video?

.....

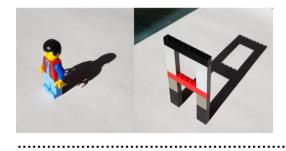
5. What do you think a CAM CARPET is?

6. Where do you think we can find CAM CARPETS?

.....

7. Do you think it is possible for us to make our own CAM CARPETS?

8. Suggest an idea for a Cam Carpet of ours!


Object:
Size:
Location:

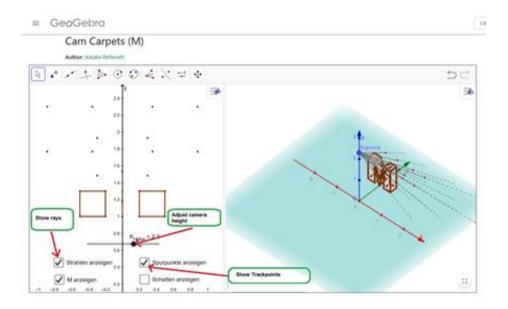
GROUP #: NAME/SURNAME: CLASS...../ ... DATE

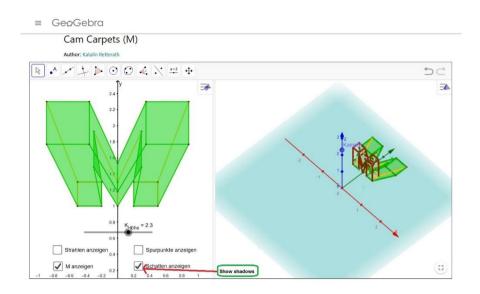
Students will be in groups of 2-3 and handed out an object, graph paper, tripod and smartphone

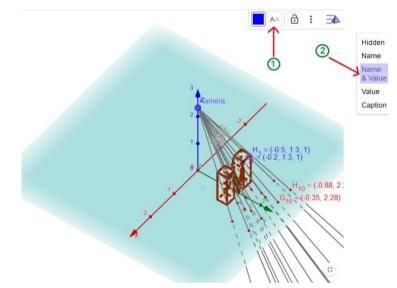
1. What do you see in the photo?

- 2. Now we are going to make our projection of the three-dimensional object on the ground from a particular point.
 - a. Put the object on the graph paper.
 - b. Then put the tripod in front of it.
 - c. Put the smartphone on the tripod and turn the light on.
 - d. Look the projection of the object on the ground from a particular point.
 - e. Turn the light on. (You may move your smartphone a little bit so that this point changes and see how the projection changes.)

- f. Fix the "particular point" and draw the projection which is created on the paper from this point.
- g. Turn off the light, remove the physical object, turn the camera of the smartphone on and watch the 3-D impression of the object. You should take care as to not change the location of the smartphone.
- h. Notice that, when viewed from a different point, the two-dimensional projection of the object, does not give the 3-D impression of the object.


So far ...So nice!!!


You have learned that you can obtain a 3-D illusion of an object by creating its shadow on the ground, when light is being shed from a particular point.


GROUP #:	
	RNAME:
CLASS/	DATE

1. Visit the link <u>https://www.geogebra.org/m/TYt3mxdQ.</u> Experiment for a while with this geogebra applet. You can rotate the xy level in the right pane of the application and use the controls on the left to show/disappear the rays, the trackpoints of the object itself and/or its shadow. The following illustrative images may be helpful:

2. Select a few points (vertices, preferably) of the 3-D letter as well as their corresponding track points and display their coordinates. The following screenshot might help:

3. You can get the coordinates of all the track points corresponding to the vertices of the 3-D model of the letter, by following the next steps:

		=	GeøGebra	12/10/1	
	X Close	R	• • + >	⊙ ⊙ ∢ 💥 🛱 🕈	
1	V Algebra	1	Name	Description	Value
	x= CAS	8	Point G		G = (-0.2, 1.3, 0)
	Graphics 2	9	Point H		G = (-0.2, 1.3, 0) H = (-0.5, 1.3, 0)
	Spreadsheet	9 10	Point A1(0.2, 1, 1)		$A_1 = (0.2, 1, 1)$
	Probability Calculator	11	Point B ₁ (0.5, 1, 1)		$B_1 = (0.5, 1, 1)$ $B_1 = (0.5, 1, 1)$
0	Construction Protocol	12	Point C ₁ (0.5, 1.3, 1)		$C_1 = (0.5, 1.3, 1)$
	$H_{1} = (-0.5, 1.3, 1)$	13	Point D ₁ (0.2, 1.3, 1)		$D_1 = (0.2, 1.3, 1)$
	= (-0,2,1,3,1)	14	Point E1(-0.5, 1, 1)		$E_1 = (-0.5, 1, 1)$
		15	Point F1(-0.2, 1, 1)		$F_1 = (-0.2, 1, 1)$
	$H_{10} = (-0.88, 2)$	16	Point G1(-0.2, 1.3, 1)		G ₁ = (-0.2, 1.3, 1)
	G ₁₀ = (-0.35, 2.28)	17	Point H1(-0.5, 1.3, 1)		H ₁ = (-0.5, 1.3, 1)
2	and in the second se				
	1 to at 1	88	Ray t ₂	Ray through Kamera, G1	t_2 : X = (0, 0, 2.32) + λ (-0.2, 1.3, -1.32)
~		89	Ray i3	Ray through Kamera, H1	i_3 : X = (0, 0, 2.32) + λ (-0.5, 1.3, -1.32)
		90	Point G10(-0.35, 2.28)	Intersection point of t2, o	G ₁₀ = (-0.35, 2.28)
		91	Point H10(-0.88, 2.28)	Intersection point of i3, o	H ₁₀ = (-0.88, 2.28)
		92	Point C10(0.88, 2.28)	Intersection point of I2, o	C ₁₀ = (0.88, 2.28)

- 4. Let's try to create the projection of a 3D object in Geogebra, from scratch. Watch carefully what your teacher will do in GEOGEBRA and do the same in order to draw the projection of your own object in GEOGEBRA.
- 5. Transfer the projection of your letter to the graph paper (scale will be needed).

WONDERFUL WORK!! Now it's the time for the geometric analysis!

GROUP #: NAME/SURNAME: CLASS..../ ... DATE

Let's assume the camera position at point K:

K CAMERA (X_{CAM},Y_{CAM},Z_{CAM})

And a point A of our 3D-object:

A POINT (X,Y,Z)

The vector AK represents the direction vector of the line g_{AK} :

 $g_{AK} = \overrightarrow{OA} + r \overrightarrow{AK}$

In the xy-plane z=0 and so we have: $0 = z + (z_{CAM}-z)r$

This gives

 $r = - \frac{z}{z_{cam} - z}$

Now it's time to select as many points of the 3D-object as you need for an accurate projection and try to automate the process of gaining the coordinates of the track points with the help of Excel. The following examples might prove helpful:

	Επιλογές υπολογισμού - Υπολογισμός	ημένων 🐐 - 😚	Βα Ανίχνευση προη «Η Ανίχνευση εξαρη η Ν Κατάργηση βελι		 Διαχείρ ονομάτ 		1 * Kειμένι	ρατη χρήσι ομική *	Σ Αυτόμ Πρόσφ	fx σαγωγή νάρτησης
							/ fx	×	· • :	16
	L	1	н	G	F	E	D	c	в	A
									3	Kowim
									-5	Ycam
									10	Zcam
						AK			QA	
	TRACK POINT 2	TRACK POINT Y	TRACK POINTY	r (divergence)	Zcam-Z	Ycam-Y	Xcam-X		UA	
=CONCATENATE("(";H7;" ";I7;" ";J7;")")	(G7)*(F7))	=B7+((G7)*(E7))	A7+((G7)*(D7))		=\$B\$3-C7	=5852-87	=SBS1-A7	6	0	0
=CONCATENATEI"(":H8:"[":I8:"[":J8:"]")	(G8)*(F8))	=88+((G8)*(E8))	A8+((G8)*(D8))		=5853-08	=5852-88	=SBS1-A8	3.6	0	15
=CONCATENATE("(";H9;" ";I9;" ";J9;")")	(9+((G9)*(F9))	=89+((G9)*(E9))	A9+((G9)*(D9))		=\$853-C9	=5852-89	=SBS1-A9	0	0	1
=CONCATENATE["(";H10;" ";I10;" ";J10;"	:10+((G10)*(F10))	=B10+((G10)*(E10))	A10+((G10)*(D10))		=\$B\$3-C10	«\$B\$2-B10	#\$B\$1-A10	0	0	2
«CONCATENATE("(";H11;" ";I11;" ";J11;"	:11+((G11)*(F11))	=B11+((G11)*(E11))	A11+((G11)*(D11))		*SB\$3-C11	+5852-811	*SBS1-A11	0	0	2
=CONCATENATEI"(":H12;" ":I12;" ":J12;"	12+((G12)*(F12))	=B12+((G12)*(E12))	A12+((G12)*(D12))		=SB53-C12	=SBS2-B12	=5B51-A12	0	0	4
=CONCATENATEI"(":H13:" ":13:" ":J13:"	(13+((G13)*(F13))	=813+((G13)*(E13))	A13+((G13)*(D13))		=SBS3-C13	=5B\$2-B13	=\$B\$1-A13	0	0.5	1.45
=CONCATENATE["(";H14;" ";I14;" ";J14;"	:14+((G14)*(F14))	=B14+((G14)*(E14))	A14+((G14)*(D14))	=-{C14/F14}	=\$B\$3-C14	«\$B\$2-B14	=\$B\$1-A14	0	0	9
=CONCATENATE["(";H15;" ";I15;" ";J15;"]	:15+((G15)*(F15))	=B15+((G15)*(E15))	A15+((G15)*(D15))	=-(C15/F15)	=SBS3-C15	=SBS2-B15	=SBS1-A15	0	0	10
=CONCATENATE["(";H16;" ";I16;" ";J16;"	:16+((G16)*(F16))	=B16+((G16)*(E16))	A16+((G16)*(D16))	=-(C16/F16)	=\$8\$3-C16	«SB\$2-B16	=SBS1-A16	0	0	14
=CONCATENATE["(";H17;" ";I17;" ";J17;"	:17+((G17)*(F17))	=B17+((G17)*(E17))	A17+((G17)*(D17))	=-(C17/F17)	=\$B\$3-C17	=5B\$2-B17	=SBS1-A17	0	0	15
=CONCATENATE("(";H18;" ";I18;" ";J18;")	(18+((G18)*(F18))	=818+((G18)*(E18))	A18+((G18)*(D18))	=-(C18/F18)	=\$B\$3-C18	=SBS2-B18	=SB\$1-A18	0	0	15,24
=CONCATENATE["(";H19;" ";I19;" ";J19;"	:19+((G19)*(F19))	=819+((G19)*(E19))	A19+((G19)*(D19))	=-(C19/F19)	=\$B\$3-C19	=5B\$2-B19	=5851-A19	0	0	16
=CONCATENATE "(";H20;" ";I20;" ";J20;"	:20+((G20)*(F20))	=B2O+((G2O)*(E2O))	A20+((G20)*(D20))	=-(C20/F20)	=\$B\$3-C20	=58\$2-820	=SB\$1-A20	0	0	17
=CONCATENATE["(";H21;" ";I21;" ";J21;"]	21+((G21)*(F21))	=B21+((G21)*(E21))	A21+((G21)*(D21))	=-(C21/F21)	=\$B\$3-C21	=SB52-B21	=5B51-A21	0	0	18
=CONCATENATE["(";H22;" ";I22;" ";J22;"]	22+((G22)*(F22))	=B22+((G22)*(E22))	A22+((G22)*(D22))	=-(C22/F22)	=\$8\$3-C22	=SB\$2-B22	=\$B\$1-A22	3,6	0	15
=CONCATENATE("(";H23;" ";I23;" ";J23;"	23+((G23)*(F23))	=823+((G23)*(E23))	A23+((G23)*(D23))	=-(C23/F23)	=\$B\$3-C23	«\$B\$2-B23	#\$B\$1-A23	2,57	0	15
=CONCATENATE["(";H24;" ";I24;" ";J24;"]	:24+((G24)*(F24))	=B24+((G24)*(E24))	A24+((G24)*(D24))	=-(C24/F24)	=\$B\$3-C24	=\$B\$2-B24	=5B\$1-A24	0	0	20
=CONCATENATE["(";H25;" ";I25;" ";J25;"	:25+((G25)*(F25))	=B25+((G25)*(E25))	A25+((G25)*(D25))	=-(C25/F25)	=\$B\$3-C25	=\$B\$2-825	=\$B\$1-A25	0	0	21
=CONCATENATE("(";H26;" ";I26;" ";J26;"	:26+((G26)*(F26))	=B26+((G26)*(E26))	A26+((G26)*(D26))	=-(C26/F26)	=\$B\$3-C26	=\$B\$2-B26	=\$B\$1-A26	0	0	23
=CONCATENATE["(";H27;" ";I27;" ";J27;"	27+((G27)*(F27))	=B27+((G27)*(E27))	A27+((G27)*(D27))	=-(C27/F27)	=\$B\$3-C27	=\$B\$2-B27	=SB\$1-A27	0	0	24
=CONCATENATE["(":H28:" ":128:" ":J28:"]	28+((G28)*(F28))	=B28+((G28)*(E28))	A28+((G28)*(D28))	=-(C28/F28)	=\$8\$3-C28	=5852-828	=5851-A28	5	1	9

AP)	XEIO	KE	NTPI	(H E	ΙΣΑΓΩΓΗ	ΔIA	ΤΑΞΗ ΣΕΛΙΔΑΣ	τγποι	ΔΕΔΟΜΕΝΑ	ΑΝΑΘΕΩΡΗΣΗ	ПРОВОЛН Foxit PDF POW	/ERPIVOT		
Επυ	κόλλης	∦ ≣∎ √) -	Calibri B I	<u>u</u> .	• 11		≡ = ≫ • ≡ = € *	Е Стик		 Μορφοποίηση Μορφοποίηση Στ υπό όρους - ως πίνακα - κελι 	ο νλ	" Εισαγωγή ^ς Διαγραφή] Μορφοπο	Ŧ
Г	Τρόχει	ро	Es.		Γραμματ	οσειρά	Es.	Στοίχιση	Tai l	Αριθμός	Γ _μ Στυλ		Κελιά	
M:	16		*	\times	\sim	f_{x}								
al	A	в	с	D	E	F	G	н	1	J	к	L	м	N
1	Xcam	3												
2	Ycam	-5												
3	Zcam	10												
4														
5		OA	_		AK	_								
6	X 0	Y	Z	Xcam-X			r (divergence)	TRACK POINT X	TRACK POINTY	TRACK POINT Z	TP			
7 8	15	0	6 3.6	3 -12	-5 -5	4 6.4	-1,5	-4,5 21.75	7,5 2,8125	0	(-4,5 7,5 0) (21,75 2,8125 0)			
。 9	15	0	3,0 0	-12	-5	6,4 10	-0,5625	21,75	2,8125	0	(21,75 2,8125 0) (1 0 0)			
10	2	0	0	1	-5	10	0	2	0	0	(2 0 0)			
11	3	o	o	0	-5	10	0	3	0	0	(3 0 0)			
12	4	0	0	-1	-5	10	0	4	0	0	(4 0 0)			
13	1,45	0,5	0	1,55	-5,5	10	0	1,45	0,5	0	(1,45 0,5 0)			
14	9	0	0	-6	-5	10	0	9	0	0	(9 0 0)			
15	10	0	0	-7	-5	10	0	10	0	0	(10 0 0)			
16	14	0	0	-11	-5	10	0	14	0	0	(14 0 0)			
17	15	0	0	-12	-5	10	0	15	0	0	(15 0 0)			[
18	15,2	0	0	-12,24	-5	10	0	15,24	0	0	(15,24 0 0)			
19	16	0	0	-13	-5	10	0	16	0	0	(16 0 0)			
20	17	0	0	-14	-5	10	0	17	0	0	(17 0 0)			
21	18	0	0	-15	-5	10	0	18	0	0	(18 0 0)			
22 23	15 15	0	3,6 2,57	-12 -12	-5 -5	6,4 7,43	-0,5625 -0.34589502	21,75 19.15074024	2,8125 1,729475101	0	(21,75 2,8125 0) (19,1507402422611 1,72947510094213 0			
23 24	20	0	2,57	-12	-5	7,43	-0,34589502	19,150/4024	1,729475101	0	(19,150/402422611 1,72947510094213 0 (20 0 0)	1		
24	20	0	0	-17	-5	10	0	20	0	0	(21 0 0)	_		
26	23	0	0	-20	-5	10	0	23	0	0	(23 0 0)			
27	24	ō	ō	-21	-5	10	0	24	0	0	(24 0 0)		-	
28	9	1	5	-6	-6	5	-1	15	7	0	(15 7 0)			
29														
30														
	•		0	Φύλλο1	Φύλ	λο2	(+)					4		

GROUP #:	
	RNAME:
CLASS/	DATE

1. Your friend asks you what is CAM. What would you answer?

••••••	• • • • • • • • • • • • • • • • • • • •	 ••••••	•••••

During the scenario :

2. I liked

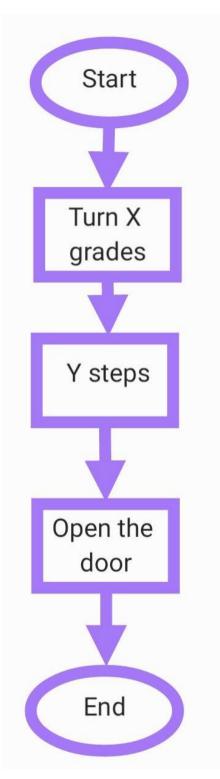
3. I didn't like

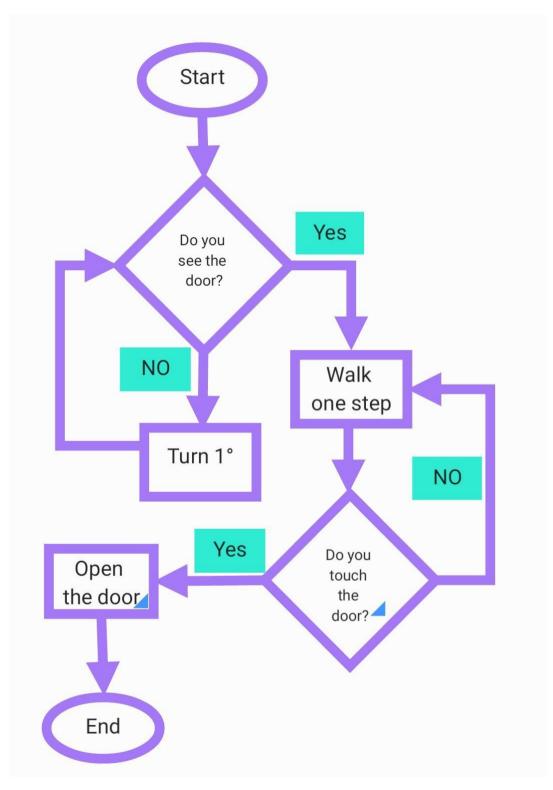
Exemplar Scenario 08: Let's talk to the machines

	Part A. General Data					
A.1 Title:	Let's talk to the machines					
A.2 Author(s):	Manuel Toro Casaucao, IES El Sobradillo					
A.3 Abstract/ Summary:	in this scenario, students will learn how to decompose simple algorithms sequentially and how to express and communicate them hrough flowcharts.					
A.4 Keywords:	Flowcharts, sequential thinking, robotics, progr	ramming languages.				
A.5 Version:	Draft					
A.6 Date:	15/09/2021					
A.7 Copyright license:	Attribution ShareAlike CC BY-SA					
	Part B. Learning Data					
B.1 Grade(s):	Grage 10 or Ages 15-16 years					
B.2 Subject(s):	Technology					
B.3 Topic(s):	Programmable control systems. Robotics.					
B.4 Computational Thinking Dimensions:	Algorithmic Thinking (AL) Abstraction (AB) Generalization (GE) Logical reasoning (LR) Pattern matching (PM) Problem decomposition (PD) Problem translation (PT) Evaluation (EV) Representation (RE) Data collection (DC) Data representation (DR) Data analysis (DA) Modeling (MO) Simulation – (SIM) Automation (AUT) Sequencing (SE) Testing (TE) Understanding People – (UP) /Artificial Intelligence (AI)					
B.5 Computational Thinking Approaches:	Tinkering experimenting & playingCreating, designing, and makingDebugging, finding, and fixing errorsPersevering, keeping goingCollaborating, working together					

B.6 Thematic in the				
context of the CompuT Project:	Educational Robotics Physical Computing	or	\checkmark	
	Computational Science	e	Modeling/Simulation	✓
	project		Bifocal modelling	
			Sensors use or making	
			Maths and CS	\checkmark
			Other:	
	Data science project			
	History of science and	ł		
	technology			
	Digital game, software mobile app			
	Digital humanities pro	jects	Digital Storytelling	
			Interactive Fiction	
			Text mining	
			Algorithms in everyday life	
			Other:	
	Artificial Intelligence Projects			
	Studio approach – Future Classroom projects			
	Unplugged experiential or		✓	
	using manipulatives			
	Other:			
B.7 Purpose/Aim of the learning scenario:	By completing this scenario, students will have developed a basic understanding of how programmable systems work, and will understand the need to decompose the solution of a problem into a sequence of simple steps. They will also learn an efficient way to communicate these solutions through flowcharts. Across the board, students will understand the importance of knowing the machine (hardware) to design the solution (software).			, and will a problem into a fficient way to cross the board, the machine
B.8 Learning outcomes/goals ²⁵ :	Note how the scenario competences and vario			
	B.8.1 Knowledge	•	Understand the import decomposing the solut into sequential steps. Understand the import capabilities of the mac design the solution to a Know the rules of the k symbols.	ion of a problem ance of knowing the hine (hardware) to a problem. pasic flowchart
	B.8.2 Skills		Know how to decompo	-
			algorithm into sequenti Know how to represen	-
		•	alow now to represent	a gonanno aoing

²⁵ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon


		flowcharts.		
	B.8.3 Attitudes- affective	 Recognize the importance of machines in solving everyday problems. 		
B.9 Horizontal competences - 21 st century skills:	This teaching scenario creates the right conditions in order to develop 21 st century skills such as critical thinking, problem solving, creativity, communication, collaboration, curiosity, initiative, perseverance, adaptability.			
	B.9.1 Learning and innovation skills:	Critical thinking: finding solutions to problems. Students have to look for solutions to each problem that appears during the learning situation.		
		Creativity: thinking outside the box. Students must be original in finding solutions to problems.		
		Collaboration: students will be able to share their proposals with the rest of the students in order to outline the solution.		
		Communication: express solutions using flowchart language.		
	B.9.2 Digital literacy skills:	Information literacy: students will search for information about the different programming languages.		
	B.9.3 Career and life skills:	Flexibility and adaptability, social and cross- cultural interaction, productivity and accountability, leadership and responsibility:		
		Students will adapt their model to their needs and resources, interacting with their classmates, being productive and responsible on the result.		
B.10 Modern	The scenario includes modern teaching methods such as:			
teaching methods:	Learning by coding, as students will have to sequence solutions to problems.			
	Collaborative learning, as students will have to work as a team to complete the task.			
B.11 Integration of CT into the curriculum:	This learning situation sequential problem sc	is related to programming languages and lving.		
B.12 Relation to curriculum and/or standards:	Systems, of the subje	is related to the topic of Programmable Control ct Technology of 4th ESO. It is also related to mation and Communication Technologies I and alaureate.		
B.13. Prerequisite knowledge:	No prerequisite knowl	edge required.		
B.14. Difficulty Level of the Scenario:	Intermediate			
B.15. Social setting of the scenario:	The students will have the activities of this sc	e to work in small groups to complete some of renario.		
B.16 Place of implementation:	Classroom or Comput	ter Lab		


B.17 Teaching time – Duration:	3 x 45' sessions		
B.18 Educational	B.18.1 Software:		
material,	B.18.2 Hardware:		
resources,			
instruments, tools, and media:	B.18.3 Online resource	es: <u>https://www.areatecnologia</u> <u>de-flujo.htm</u>	.com/diagramas-
	B.18.4 Conventional	Whiteboard and marker. Pa	aper and pencil+-
	educational material:	69+.	
	Part C. Learning	Experience Design	
C.1. Activities-			
Action-Plot-	Phase 1.	Understand problem	
Storyboard sequence table:		sequencing.	Duration
Sequence table.	Activity/Task A1.1 Let's get to	Description/Procedure Students are presented with	Duration 10'
	know the hardware	the idea that the teacher is a	10
		state-of-the-art "robot" with	
		the following capabilities:	
		- Take a number of steps.	
		- Turn a number of degrees	
		to the left or right.	
		- Detect if it sees the	
		classroom door. - Detect if it can touch the	
		classroom door.	
		- Open the door.	
	A1.2 We have a	Students will be divided into	15'
	problem	groups, and asked to explain	
		to the teacher how they can	
		get out of the class.	
		NOTE: Normally students will	
		pose non-sequential solutions in human language,	
		practically in one sentence.	
		"E.g.: Find the door and go	
		outside."	
		Then the teacher will point	
		out the need to explain it only	
		by using the actions	
	A1.3 Let's program	understood by the machine. The different groups will	20'
	the teacher.	design their solution and test	
		it with the teacher, performing	
		the actions indicated by each	
		group, inviting reflection if the	
	Phase 2.	algorithm fails.	
	Activity/Task	Understanding loops. Description/Procedure	Duration
	A2.1 We do not	Now the groups are asked to	10'
	know how he is	test their algorithms, but the	
	doing.	teacher will change their	
		position and/or orientations,	

			g them find out that		
			e no longer work.		
	A2.2 Flow charts.		teacher will explain the	20'	
			of flowcharts (optionally		
		-	may be asked to consult		
			://www.areatecnologia.c		
			liagramas-de-flujo.htm)		
		-	ksheets 1 and 2 could be		
	12 2 11/a program		pited at this point.	15'	
	A2.3 We program our solution		teacher will give an	15	
			nple of a flowchart with		
			rror for the students to		
		find a	a solution.		
	Phase 3.		program		
	A3.1 We raise the		teacher will place tables	10'	
	level.		e center of the classroom		
			rve as obstacles. Now		
		-	will have to get out		
			ding obstacles. In this		
			students will understand		
			with the previous		
			dware" we don't have the		
		-	ibility to avoid them. So		
			/ill have a teacher 2.0		
			has a new ability: tect obstacles.		
			: The starting position is		
		unkr	•		
	A3.2 We program		group will look for a	20'	
		solut	•		
	A3.3 Summary and	The	different solutions are	15'	
	discussion	teste	d, compared and their		
		struc	ture analyzed.		
C.2 Assessment					
	C.2.1 Students feedbac and reflection	ck	Students will test and corre algorithms.	ct their	
C.3 Homework/	No homework needed	d.			
Work with parents-					
family					
	Part D. Informati	on for	the leachers		
D.1 Adaptation -	All students could imp	olemer	nt the scenario.		
Differentiation for					
inclusion of all					
students					
D.2 Extension	https://code.org/				
D.3 Resources	https://www.areatecnolog	ogia.co	m/diagramas-de-flujo.htm		
	https://www.youtube.com	m/watc	h?v=awhRzotTT0E&list=LLk	NaV2CUupBwlE	

	<u>o-n6aT93A</u>
D.4 Experience deriving from the implementation of the scenario	The students have a first approach to programming languages and begin to understand the different control structures. The teacher can change, if deemed appropriate, the machine for a student from phase 2 onwards.
D.5 Relations to other scenarios	
D.6 Reviews by teachers	
D.7 Assessment of the scenario	[1=Very Bad – 5=Very Good]
D.8 References	
	Part E. Annexes
	Worksheet 1 - Example of solutions to the problems posed PHASE I
	Worksheet 2 - Example of solutions to the problems posed PHASE II .

Worksheet 1 - Example of solutions to the problems posed PHASE I.

Worksheet 2 - Example of solutions to the problems posed PHASE II.

Exemplar Scenario 09: *"Useless" robots*

	Part A. General Data
A.1 Title:	"Useless" robots
A.2 Author(s):	Feness, Kristine
	Langeland, Monica
	Lauw, Sabine
	Opdahl, Borghild Marie
	Sætveit, Trude
	All the above are science teachers from Fyllingsdalen videregående skole
A.3 Abstract/ Summary:	In short terms this project is about building a "useless robot" to inspire teachers and students to further their knowledge of electronic design and programming. A useless robot solves a problem you didn't know that you had. For example, "do you need someone that can wave to you?" Make a waving robot. One possible solution to this can be done with the ARM- based microcomputer called Microbit. The Microbit is easily programmable with their own block-based programming language (Makecode) so little to none programming experience is required. In addition to programming the microbit, the students must design a robot using cardboard and whatever decorations they want. In this way, the task is twofold and appeals to several students. The students work together in groups to solve the task, both in relation to design and programming.
A.4 Keywords:	Microbit, Makecode, programming, robotics, design, innovation, electronics, servo
A.5 Version:	Final
A.6 Date:	18/8/2022
A.7 Copyright license:	CC BY-SA 3.0 (https://creativecommons.org/licenses/?lang=en)
	Part B. Learning Data
B.1 Grade(s):	Grade 11, Ages: 15 - 16, but can be younger
B.2 Subject(s):	Mathematics, Computer Science, Arts
B.3 Topic(s):	Use of technology, including block-programming

B.4 Computational	Check of	r note the dimensions which the scena	rio involves:	
Thinking		Algorithmic Thinking (AL)	Х	
Dimensions:		Abstraction (AB)	Х	
		Generalization (GE)		
		Logical reasoning (LR)	Х	
		Pattern matching (PM)		
		Problem decomposition (PD)	Х	
		Problem translation (PT)	Х	
		Evaluation (EV)	Х	
		Representation (RE)	Х	
		Data collection (DC)		
		Data representation (DR)		
		Data analysis (DA)		
		Modelling (MO)		
		Simulation – (SIM)	Х	
		Automation (AUT)	Х	
		Sequencing (SE)	Х	
		Testing (TE)	Х	
		Understanding People – (UP) /Artificial		
		Intelligence (AI)		
B.5 Computational	Check of	r note the CT approaches which the so	cenario employs	6
Thinking		Tinkering experimenting & playing	Х	
Approaches:		Creating, designing, and making	X	
		Debugging, finding, and fixing errors	X	
		Persevering, keeping going	X	
		Collaborating, working together	X	

B.6 Thematic in the				
context of the	Educational Robo	tics or	Х	
CompuT Project:	Physical Computing			
	Computational Sc	ience	Modelling/Simulation	Х
	project		Bifocal modelling	Х
			Sensors use or making	Х
			Maths and CS	Х
			Other:	
	Data science pro	oject		
	History of science	e and		
	technology			
	Digital game, softw	vare, or		
	mobile app			
	Digital humanities p	orojects	Digital Storytelling	
			Interactive Fiction	
			Text mining	
			Algorithms in	
			everyday life Other:	
			Other:	
	Artificial Intelligence Projects Studio approach – Future Classroom projects Unplugged experiential or			
	using manipulatives			
	Other:			
B.7 Purpose/Aim	The aim of the exercise is to give students an introduction to			
of the learning	algorithmic thinking. This is done with a low barrier to enter block			
scenario:	programming language with Microbit. This will increase their			
	knowledge within computer science and algorithmic thinking, so it won't be as hard to learn a real programming language like python in the future. Another important goal is collaboration between students			
	and inspire creative design and innovation.			
B.8 Learning	Specify observable actions and evaluable performance criteria in			
outcomes/goals ²⁶ :	terms of students' kno	wledge, s	skills, and attitudes-a	ffective domains.
	B.8.1 Knowledge Basic knowledge of block programming			amming
	B.8.2 Skills	Planning	g, making code	
	B.8.3 Attitudes-	Open m	minded	
	affective			
			collaboratively	

²⁶ For the effective formulation of learning-instructional goals the works of Mager, who claims for the definition of observable actions and Measurable Criteria of performance evaluation under specific conditions, could be useful. Mager, F. (1975). Preparing Instructional Objectives. (2nd ed.). Belmont, CA: Fearon. & Mager, F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction. Atlanta: The Center for Effective Performance. The verbs could follow the Bloom's knowledge taxonomy, see for example: https://tips.uark.edu/blooms-taxonomy-verb-chart/. It is important to use higher order thinking verbs. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing, Abridged Edition. Boston, MA: Allyn and Bacon

B.9 Horizontal	Note how the scenario	o might support the development of general	
competences - 21 st	competences and various of the so-called 21 st century skills.		
century skills:	B.9.1 Learning and innovation skills:	The core skills in the useless robots exercise is collaboration, communication, and creativity.	
	B.9.2 Digital literacy skills:	Information and Communication technologies (ICT) literacy	
	B.9.3 Career and life skills:	Flexibility and adaptability, Initiative and self- direction	
B.10 Modern	Learning by coding		
teaching methods:	STEM learning		
	Collaborative learning because the students work together in groups and have to agree on the design, what the robot should do, and how to program it.		
B.11 Integration of CT into the curriculum:	The Norwegian curriculum has a section that deals with both basic skills and values that should form the basis for all teaching across subjects. The learning scenario useless robots fit in on several of these points. For example one of the core elements in the Norwegian curriculum is: <i>«School shall allow the pupils to experience the joy of creating, engagement and the urge to explore, and allow them to experience seeing opportunities and transforming ideas into practical actions."</i> Digital skills are one of the 5 basic skills in the curriculum. These must be worked on in all subjects, and with a clear progression. Some subjects have a greater responsibility than others, and when it comes to algorithmic thinking this is emphasized in mathematics and science. From 1 st year of upper secondary school the curriculum says: <i>«formulate and solve problems using algorithmic thinking, various problem-solving strategies, digital tools and programming"</i> and <i>" identify variable quantities in different situations, set up formulas and explore these using digital tools"</i>		
B.12 Relation to curriculum and/or standards:	mathematics): formula thinking, various prob programming Norwegian National C create programs that The curriculum explain	Eurriculum, Grade 11, 1T (theoretical ate and solve problems using algorithmic lem-solving strategies, digital tools and Eurriculum, Grade 11, Science: Evaluate and model science phenomena ns this as: The students will understand, create ncluding programming and modelling, in work	

B.13. Prerequisite	It can be an advantage to know a little bit of block programming in			
knowledge:	advance, but the introductory course the students receive just before the task should also provide enough basic skills to complete the task			
B.14. Difficulty Level of the Scenario:	Easy			
B.15. Social setting of the scenario:	Small group of 3-4 students			
B.16 Place of implementation:	Classroom			
B.17 Teaching time – Duration:	240 minutes			
B.18 Educational	B.18.1 Software:		MakeCode editor	
material, resources,	B.18.2 Hardware:		Microbit, servo motor, voltage source, connection cables	
instruments, tools, and media:	B.18.3 Online resources:		Microbit.org	
	B.18.4 Conventional educational material:		<i>Tutorials</i> on paper, design cardboard, wheels, scissor	
		Even		
C.1. Activities-	Part C. Learning	схре	nence Design	
Action-Plot-	Phase 1.			
Storyboard sequence table:	Activity/Task		Makecode.org cription/Procedure	Duration
Sequence table.	A1.1 Introduction activities	The teacher introduces the task orally and shows the power point. The teacher explains very fundamentally the various possibilities of a microbit.		20 min
	A1.2 Practice together with the teacher	The teachers and students go to makecode.microbit.org , and they perform a first task together. The students learn to make their first program and export the program to their microbit.		20 min
	A1.3 Exploration activities	Each group of students continues with the tasks in the booklet. The aim is to gather sufficient knowledge about programming the microbit with servos.		50 min

	Phase 2.	Design and build robot	
	Activity/Task	Description/Procedure	Duration
	A2.1	Each group decide what task	
	Analysis and design of the robot	their robot should perform.	100 min
	A2.2 Program the microbit	The group makes a programming code, such that the microbit and servo	
	A2.3 Building the robot	preform the desired task. The groups build the robot using cardboard and attach the microbit and servo.	
	A2.4 Testing the robot	The group test their robot to make sure it works as intended.	
	Comments to phase 2: The order of activities in this phase differs from group to group. The group have an initial idea from A2.1 but change their plan during construction. After testing in phase A2.4 the group may need to do changes in their program and therefore go back to A2.2. A group that manages their time well, may decide to spend more time to decorate their robot, phase A2.3, after testing their robot.		
	Phase 3	Presentation and evaluation (assessment	
		activities)	
	Activity/Task	Description/Procedure	Duration
	A3.1 Presentation	Each group present their robot for the rest of the class.	20 min
	A3.2 Competition	The students decide which robot has the best design and which robot is the most useless. Each student gets three tokens that he/she can gives as points to his/her desired winner.	10 min
	A3.3 Evaluation	Each groups evaluate their performance, see C2 Assessment.	20 min
C.2 Assessment	 Each group will present their product to the rest of the class. They must then answer the following. 1) Explain what the useless robot should do? 2) Show what it does 3) What problems did you encounter along the way? 4) How did you solve the problem? 5) Describe how you managed to work together in the group 6) If you were to solve the problem again, what would you do differently? 		

C.3 Homework/ Work with parents- family	feedback to each group in r reason for not using grades	ignment with grades, but give oral elation to the questions above. The is that we want the assignment to serve working with algorithmic thinking. Each group has a conversation with the teacher about how they solved the problem, what problems they encountered along the way, and how they attacked the problems.	
	Part D. Information for	r the Teachers	
D.1 Adaptation - Differentiation for inclusion of all students	In order for as many students as possible to participate and feel mastered, it is important that all students work their way through some simple introductory tasks in microbit. It is important that each individual student undergoes the basic training on their own PC.		
D.2 Extension	We use this task as a starting point for further programming in python and use of Microbit in science education.		
D.3 Resources	Microbit.org, training booklet, PowerPoint used by teacher		
D.4 Experience deriving from the implementation of the scenario	The experience from our implementation is that the task created commitment. It is a plus that there is both an artistic part that does not use CT, and the part where one uses microbit. This meant that more students took an active part in the task. We observed that some students opted out of the microbit part of the assignment.		
D.5 Relations to other scenarios			
D.6 Reviews by teachers			
D.7 Assessment of the scenario	[1=Very Bad – 5=Very Good]		
D.8 References	The idea of useless robots was originally developed by the Norwegian national centre for IT in education, a former organization by the Norwegian Ministry of Education and Research.		
Part E. Annexes			
	Booklet for students[https Power point presentation fo	://tinyurl.com/ycx67863] r teachers[https://tinyurl.com/44pcysub]	

Appendix V. Reflection on learning scripts implementation

The appendix contains indicative theoretical evaluations and reflections on the empirical implementation of some of the exemplar scenarios developed in the project.

Theoretical Evaluation of the Exemplar Scenario "Finding needles in the World's Biggest Haystack"

Anastasios Savas, Directory of Education of Dodecanese, Greece

The "Finding Needles in the World's Biggest Haystack" scenario mainly concerns the Web search methodology and algorithms, while also handling subjects such as web pages, html, metadata, and indexing. The scenario is proposed for ages 12-15 years old and cultivates several computational thinking dimensions throughout the implementation process. Given the wide spread of new technologies and the ever-increasing use of the World Wide Web and search engines, the subject of the scenario is considered quite interesting for the students and important for several educational purposes. The scenario introduces students to searching methods in an unplugged way, using the example of a book and several pages and words on it. Students get familiar with the indexing method, in an interesting and innovative way, as they are taught that computers and search engines do not perform some kind of "magic" to come up with the results, but they base their function in unplugged methods previously used by people, even before the advent of computers. Students are then introduced to several critical concepts such as search engines and advanced searching methods, indexing, HTML, page ranking, adaptation through Machine Learning etc.

The subjects that the scenario is proposed for are search engines and algorithms, but it could also be used as a starting point to teach several critical concepts such as the ones mentioned above. Students of several ages could be engaged to it, according to their capabilities and previous knowledge. The duration could also be modified, depending on the number and difficulty of the activities implemented. Various computational thinking dimensions are involved in the scenario, all applied in an interesting context. Overall, searching the web is an everyday, common activity for people of all ages and understanding of it can benefit future citizens and workers. Regarding the teaching methods and social setting of the scenario, students are proposed to work in groups, testing and evaluating the methods proposed by the teacher, using different words and book pages, role playing and exchanging information between groups, thus exploiting all the advantages of modern, current educational approaches to cultivate computational thinking in class. Several 21st century skills can also be developed through this way of working and learning. The scenario introduces basic methods and concepts of Computer Science to teach search methods, that is to solve a real-life problem. This is a basic method used to integrate computational thinking in class, so this scenario can be described as a typical example of computational thinking scenario.

Despite the very interesting content, the variety of concepts involved in the scenario includes the risk of difficulty in understanding. Teachers should adjust the scenario to the classes' needs, based on the age and level of students. On a next version, the scenario could be enriched with more Worksheets, complementary to the descriptions already provided, to better guide students and teachers throughout the process. Overall, it is a very interesting and engaging scenario, confronting a current issue with an engaging and meaningful way. It is suitable for students at Junior high school and will definitely be implemented in our school next year.

Theoretical Evaluation of the Exemplar Scenario "Studying the Skyros Archipelago Lizard"

Anastasios Savas, Directory of Education of Dodecanese, Greece

The pedagogical scenario titled "Studying the Skyros Archipelago Lizard" concerns the data analysis dimension of the computational thinking mindset. More specifically it uses the data storing and analysis capabilities of digital computers to solve real world problems. In the case of this scenario the problem is the answer to scientific question: How the presence of predators (e.g. snakes, eagles) shapes the features of specific local populations of preys (lizards). The scenario is obviously adopting the interdisciplinary approach to integrated Computational Thinking in Biology and Statistics. Using the excellent software environment CODAP and real world authentic scientific data from the Skyros islands the students are able for question posing, and compute simple descriptive statistical measures (mean value, standard deviation) to compare sub-groups of the population and support their answers. Students are so introduced to data analysis and refresh their statistical and scientific methodology capabilities. No need to say that students will also advance their biology knowledge.

What I find really interesting is the natural way that students are separated in groups to solve subproblems using similar resonance. This makes easy the implementation of the scenario in various sizes of classes. The intuitive application of the statistical concepts of mean value and standard deviation will help to reinforce their understanding by the students. It may also be difficult to implement for the students that may have no good understanding of the descriptive statistics measurements. In this case a corresponding preparation of the students, by introduction or refreshment of the statics concepts may be needed.

For me the specific scenario is really an exemplar for the computational thinking concept as the application of Computer Science concepts and methods for the solving of problems to other Scientific disciplines and the building of knowledge. More practically I find this scenario very interesting to implement in vocational education where I teach (ages 16-18) because I believe it helps students to consolidate knowledge of data analytics, statistics and science methodology (question, hypotheses, data collection and analysis, answer to question). This knowledge will advance the ability of my students to apply digital data analysis to solve real world problems and opens the word of data analytics to the view of feature professionals.

Theoretical Evaluation of the Exemplar Scenario "Cryptography"

Vasileios Kasapidis, Directory of Education of Dodecanese, Greece

The purpose of the scenario is to help students become familiar with the concept of cryptography and various methods of encrypting and decrypting messages. Students will then be able to protect their data by using various cryptographic methods to send and receive messages in the ever-evolving age of technology. The scenario consists of a series of worksheets that break down the various aspects of the scenario's walkthrough methodology. The first 4 worksheets are of a scalable difficulty. The first 2 worksheets are basic and well written and introduce the term cryptography with the use of morse code and braille language both of which are easy to take in. Continuing with the worksheets, two real cryptography techniques are explained, the Caesar cipher and the Enigma machine, which both are interesting to the students since both have historical value. The last four worksheets dig in further to the term of cryptography with modern methods of ciphering and applications of

cryptography, including asymmetric encryption, RSA (Public Key Encryption) and digital signatures. Those last worksheets include the use of certain computer software applications to demonstrate the above mentioned techniques.

The overall educational scenario is very well designed and includes interesting learning steps to keep the student focused. Despite being a lengthy scenario that a teacher will require extra time to complete the learning process, it is driven by the self explanatory worksheets that students can easily do by them selves and have the teacher acting as a coach. The last worksheets are focused on a more advanced and with a theoretical aspect on how those methods are implemented and can be omitted by the teacher in case the available time is not adequate. According to the teaching needs the scenario can be altered in such a way that worksheets require less time to complete, since each worksheet consists of activities that students have to complete in both ways, ciphering and deciphering certain messages.

As a last note to the authors, it's worth mentioning that the last worksheet includes an extend of mathematical background that students of certain age may find difficult to work with therefore it can also be altered by the teacher in order to be suitable to the class.

Reflection on the implementation of the Exemplar Scenario "Useless Robots"

Monica Langeland, Fyllingsdalen vgs., Norway

Fyllingsdalen vgs have used the scenario "Useless Robots" as an activity the first week of school for new students. The students complete the whole scenario in one day.

Programming have been gradually implemented in the Norwegian curriculum during the last two years. Therefore the topic is quite new for most students. The students come from different lower secondary schools, and how programming is implemented varies from school to school. It's useful that our new students get a quick introduction to the programming hardware that is available at our school (Microbit).

The first week of school is important for building a good learning environment in the classes. "Useless robots" is an activity that focuses on teamwork, creativity, endurance, problemsolving and troubleshooting. These are learning methods that we want the students to use during their next three years at our school.

The students are randomly put together in groups of three students. Most groups function sufficient. In some cases one student have prior knowledge to Microbit and complete the task without involving the other students. The teacher have to make sure that all students participate in their group. In other cases the students divided the work among them, but then they see that they need to collaborate closely in order to make a functioning robot. This enchants the student's ability to communicate.

The level of creativity varies between the groups. Therefore it's important that the teacher asks questions in the brainstorming part of the project, for example "What is the most boring activity you perform during the day?" Then the students go on to solve their own problem, which make them invest more energy in the project.

The subject in upper secondary school in Norway are the same as students know from their precious years at school, which they have completed with a different level of success. Since programming is quite new to all, they meet the topic with a more open mind. They are not so afraid to make mistakes. We think that this gives them endurance during the day. In addition they have a clear goal – they have to complete their useless robot.

The students occasionally find that the useless robot that worked at one point does not work when show it to the class. We think it might be a good idea for the students to take pictures and film their own process. Then they have documented that the robot works, and they don't end the project with a negative feeling of showing something that doesn't works.

By using the scenario we hope that the students get to know each other and learn programming in a fun way. The atmosphere in the classroom is relaxed and playful. The biggest success in the scenario is the learning by design and making approach. The students make a tangible product. If there is a problem with their design or programming, they have to solve it. The result is evidence of their progress in programming. Many students are surprised by their own ability to program and their final result.

Reflection on the implementation of the Exemplar Scenario "Cats and Dogs"

Stavroula Prantsoudi, University of the Aegean/LTEE, Greece

The purpose of the scenario is to introduce students to the concepts of Artificial Intelligence (AI) and Machine Learning (ML) and raise their awareness on issues related to AI ethics and algorithmic bias. The scenario was implemented in a class of 12 students, aged 15, in an urban high school in central Greece. It was implemented while on the Computer Science class (1 hour per week) and lasted 3 hourly sessions (3 weeks). The students enthusiastically welcomed the subject of AI and were thrilled to express their opinions and questions during the scenarios' implementation.

Concerning the Introduction to AI (Worksheet 1) students gave varying answers to the relevant questions. They did not manage to sufficiently define AI but gave rather controversial and incomplete answers. They also only partially recognized the applications of AI: most of them (11/12) answered that chat bots, robots, and virtual assistants (Siri, Alexa) make use of AI, but fewer selected search engines (7/12), translation systems (6/12), autonomous vehicles (4/12), social media (2/12) and online advertisements (1/12). As risks caused by using AI, most of the students referred to job loss due to automation, socio-economic inequality, and the danger of weapons automation.

The students followed the instructions on Worksheet 2 and built, trained, and tested their ML models. They also cooperated with their classmates and tested each other's models. The students went back to feed their models with more data and train them again before they answered the assessment worksheet, where their answers were mostly correct. The steps were well described, and students did not meet any difficulties on following them. Regarding the AI ethics/safety (Worksheet 3), after the implementation of the activity students seemed to gain better understanding of the way ML is used and computers are trained. They mostly answered that it is very difficult to create an AI system that would work properly in every case, acknowledging the several restrictions and difficulties of AI. They also understood the importance of the human factor on the proper training of systems, proposing the employment of "people from different nationalities" and feeding the systems with variety of data, to avoid bias and discrimination issues. However, they seemed to precede the loss of jobs as the most important danger of AI, a belief which could be further researched.

Overall, the implementation of the scenario seems to have improved students' knowledge on issues related to AI and ML, helping them understand the ways in which a computer can be trained to become an "intelligent" machine which can help humans make decisions. It also helped on raising students' awareness on algorithmic bias and discrimination issues, feeding fruitful discussions in class, which provoked students' interest and attention. Students had the

chance to wonder and express themselves on current important issues and discuss on matters hardly discussed before. The scenario was very well received and will definitely be implemented again in future classes.

Comparative reflection of "Cats and Dogs" scenario in Norway, Spain, and Greece

The exemplar scenarios "Cats and Dogs", concerning Artificial Intelligence (AI) and Machine Learning (ML), was implemented in three countries of the program, Greece, Spain, and Norway. Teachers from the three partner countries implemented the scenario in different class settings and reflected on the outcome, providing data to feed a cross-cultural investigation of the computational thinking cultivation by students in different countries, using the same educational scenario. The worksheets were collected and compared to provide an overall reflection of the scenario in different cultural settings.

The number of students in the classes varied and the final data collected concerned 21 Norwegian students, 16 Greek students and 9 Spanish students, all aged 15-16 years. Factors such as previous knowledge of Computer Science concepts or the position of computational thinking in the national curricula were not examined since the scenario concerns an introduction to AI with certain prerequisites and goals. The implementation of the scenario met the general purposes of the CompuT project and was not mandatory for teachers and students.

Following the steps described in the scenario, students of all countries answered a group of general questions concerning their previous knowledge on AI and ML. An educational intervention was then implemented, where they were asked to create, test, modify and evaluate a ML model which could discern between a cat or a dog, given a certain picture. The students collected data to create appropriate data sets, classified their data and used test data to test their model. They were also guided to return and train their model again to improve its performance. After completing the intervention, they were asked a group of questions to test their acquisition of AI and ML knowledge resulting from the intervention.

The data collected provided some interesting conclusion on the effect of the scenario. Before the intervention students answered that computers show intelligence, giving unclear and general answers, without being able to sufficiently argument on them. They answered that people can teach computers by programming them ("giving them instructions", "creating codes and patterns", "coding"), or even not at all, while after the intervention they managed to understand that computers "use information or sets of data categorized", or "machine learning algorithms use historical data as input to predict new output values". Concerning the ML applications, students before the interventions mainly referred to automation of labor, giving general answers such as "robots", "phones" and "machines", when asked to provide some examples of ML applications. However, they seem to have gained a better understanding of ML, since they gave varying and wider scope answers such as "social media apps", "medical cases", "self-driving cars" and the "for you page", after the intervention. After completing the scenario, they also managed to detect the non-ML applications, such as the calculator, traffic lights, or old Nokia phones. Before the intervention students also gave general answers when asked about the importance of ML, such as "it can make life easier", or "make certain jobs easier", "improve efficiency and improve safety", limiting heir answers to the loss of job positions and the danger of computers controlling humans when asked about possible moral issues raising from the use of AI. After the intervention they widen their answers and become more aware of algorithmic bias cases and several moral issues such as discrimination, lack of responsibility, access to personal data etc. Finally, they gain knowledge on why and how a system can be biased ("errors in a computer system that create unfair outcomes", "privileging one category over another"), understanding the human responsibility in properly feeding the system with data.

Overall, the results coming from the data collected were interesting and encouraging. Students from all countries seemed to shift on a better and more precise understanding of the AI and ML technologies and the general purposes of the scenario were accomplished in most cases. The answers did not seem to differ among students with different nationality or class settings. All students gave similar answers, guided from the expected learning outcomes and accomplishing the scenarios' purposes. According to the teacher's feedback, most students found the scenario interesting and intriguing, and they enjoyed employing such a current and engaging subject. Students were more than willing to discuss and reflect on issues generating from the AI field, such as algorithmic bias and ethics, feeding fruitful discussions and many issues of concern on the digital age. They also improved their ability to think computationally, in the process of trying to solve problems of real life. The certain scenario is fully recommended for the introduction of AI and ML in secondary education.

Computational Thinking at School

Erasmus+ KA201 Project: 2019-1-EL01-KA201-062883