Ισορροπίες με τριβές και κρούση.

Πάνω σε ένα μη λείο οριζόντιο επίπεδο, ηρεμεί ένα σώμα Σ1 μάζας m1=2kg, δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=20Ν/m, το οποίο έχει επιμηκύνει κατά x1=0,2m. Ένα δεύτερο σώμα Σ2 μάζας m2=1kg κινείται κατά μήκος του άξονα του ελατηρίου με κατεύθυνση προς το σώμα Σ1, με το οποίο μετά από λίγο συγκρούεται μετωπικά και ελαστικά. Τα δυο σώματα παρουσιάζουν τον ίδιο συντελεστή τριβής ολίσθησης με το επίπεδο μ=0,65. Μετά την κρούση το Σ1 διανύει απόσταση (ΑΒ)= s=0,6m, μέχρι να μηδενιστεί η ταχύτητά του, στη θέση Β.

i) Να υπολογιστεί η τριβή που ασκείται στο σώμα Σ1, στη θέση Α, πριν την κρούση.

ii) Να βρεθεί η ταχύτητα την οποία αποκτά το σώμα Σ1, αμέσως μετά την κρούση, καθώς και η αντίστοιχη επιτάχυνσή του.

iii) Τι ποσοστό της κινητικής ενέργειας του Σ2 ελάχιστα πριν την κρούση, μεταφέρεται στο σώμα Σ1;

iv) Να βρεθεί η τελική απόσταση μεταξύ των δύο σωμάτων, μετά την ακινητοποίησή τους.

Δίνεται g=10m/s2.

Απάντηση:

ή

%ce%b1%ce%b1%ce%b1%ce%b11 Ισορροπίες με τριβές και κρούση.
%ce%b1%ce%b1%ce%b1%ce%b13 Ισορροπίες με τριβές και κρούση.

Αφήστε μια απάντηση