Μια σφαίρα σε κεκλιμένο επίπεδο

Μια ομογενής σφαίρα μάζας m=14kg και ακτίνας R=0,1m, αφήνεται να κινηθεί στο σημείο Α  του κεκλιμένου επιπέδου του σχήματος και τη στιγμή t1, περνά με ταχύτητα κέντρου μάζας υ1=5m/s από τη θέση Β, όπου διαφοροποιείται η φύση του επιπέδου (διαφορετικός συντελεστής τριβής…), φτάνοντας στη συνέχεια στη θέση Γ, με αντίστοιχη ταχύτητα υ2=10m/s. (Στο σχήμα, βλέπετε με μπλε γραμμή το πρώτο μέρος του κεκλιμένου επιπέδου και με κόκκινη, το υπόλοιπο).

i) Αν στο πρώτο τμήμα του επιπέδου, από τη θέση Α μέχρι τη θέση Β η σφαίρα κυλίεται (χωρίς να ολισθαίνει), να βρεθεί η κατακόρυφη απόσταση h1, μεταξύ των δύο θέσεων.

ii) Αν η κατακόρυφη απόσταση μεταξύ των σημείων Β και Γ είναι h2=3,75m, να υπολογιστεί η αύξηση της κινητικής ενέργειας της σφαίρας μεταξύ των δύο αυτών θέσεων.

iii) Αν η κλίση του κεκλιμένου επιπέδου είναι θ=30°, να βρεθεί ο ρυθμός μεταβολής της στροφορμής της σφαίρας ως προς τον άξονα περιστροφής της, που περνά από το κέντρο της Ο, για την κίνηση:

 α) Από το Α στο Β,

β) Από το Β στο Γ.

iv) Να υπολογιστεί η στροφορμή της σφαίρας, ως προς τον ίδιο άξονα, τις χρονικές στιγμές:

 α) t2=t1-1s  και β)  t3=t1+1s

Δίνεται g=10m/s2 και η ροπή αδράνειας της σφαίρας ως προς μια διάμετρό της Ι=(2/5)mR2.

Απάντηση:

ή

%ce%b1%ce%b1%ce%b1%ce%b11 Μια σφαίρα σε κεκλιμένο επίπεδο
%ce%b1%ce%b1%ce%b1%ce%b13 Μια σφαίρα σε κεκλιμένο επίπεδο

 

Αφήστε μια απάντηση