Περί Μαθηματικών…

Το παράδοξο των γενεθλίων

Το παράδοξο των γενεθλίων στη θεωρία πιθανοτήτων αναφέρεται σε ένα πρόβλημα το οποίο κατά την κοινή λογική έχει μια απίθανη απάντηση. Μία από τις μορφές του προβλήματος είναι: Σε μία ομάδα 23 ατόμων τι πιθανότητα υπάρχει δύο από αυτά τα άτομα να έχουν την ίδια ημέρα γενέθλια; Η “πιθανά προφανής” απάντηση είναι 23/365=0,063 δηλαδή έξι τοις εκατό. Η μαθηματική λύση όμως μας δίνει 50%!

Ακόμα πιο εντυπωσιακά το ποσοστό γίνεται 99% με μόνο 57 άτομα ενώ είναι 100% με 367 άτομα, συμπεριλαμβανομένων και αυτών που έχουν γεννηθεί στις 29 Φεβρουαρίου!

Πως υπολογίζουμε την πιθανότητα

Άν η πιθανότητα εύρεσης δύο ατόμων που έχουν την ίδια μέρα γενέθλια σε μια ομάδα 23 ατόμων είναι P(A) είναι πιο εύκολο να υπολογίσουμε την αντίστροφη πιθανότητα P(A‘) να μην υπάρχουν, δηλαδή, δύο άτομα που να έχουν την ίδια μέρα γενέθλια. Καθώς ειναι αντίστροφες ισχύει P(A‘) = 1 − P(A).

Όταν δύο γεγονότα είναι ανεξάρτητα το ένα από το άλλο τότε η πιθανότητα να ισχύουν είναι το γινόμενo των διαφορετικών πιθανοτήτων. Επομένως η πιθανότητα P(A‘) για 23 άτομα είναι P(1) × P(2) × P(3) × … × P(23).

Για ένα άτομο η πιθανότητα είναι P(1)=365/365=1 δηλαδή 100%. Για το δεύτερο άτομο η πιθανότητα να μην έχει ίδια ημέρα γενέθλια με το πρώτο είναι P(2)=364/365. Για το τρίτο άτομο είναι P(3)=363/365.

Συνεχίζοντας την ανάλυση βρίσκουμε ότι:

    P(A‘) = 365/365 × 364/365 × 363/365 × 362/365 × … × 343/365

από αυτό συνεπάγεται ότι:

     P(A‘) = 0.49270276

επομένως:

     P(A) = 1 − 0.49270276 = 0.507297 (50.7297%)