«

»

Μαΐ 10

Κεφ. 64 – Βρίσκω το εμβαδό κυκλικού δίσκου .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Εμβαδόν  κυκλικού δίσκου ( Δες πως το εμβαδό κυκλικού δίσκου μετασχηματίζεται σε εμβαδό ορθογωνίου.) Διάβασε παρακάτω την επεξήγηση :

Έχουμε μάθει να βρίσκουμε το εμβαδόν διαφόρων επιπέδων σχημάτων όπως του τετραγώνου, ορθογωνίου, παραλληλογράμμου, τριγώνου και τραπεζίου. Μάθαμε επίσης ότι αν ένα σχήμα δεν είναι κάποιο από αυτά τότε ,το χωρίζουμε σε κομμάτια,βρίσκουμε το εμβαδόν κάθε κομματιού και μετά τα προσθέτουμε. Για να υπολογίσουμε το εμβαδόν του κυκλικού δίσκου ,θα τον χωρίσουμε σε κομμάτια, αλλά αντί να βρούμε το εμβαδόν κάθε κομματιού θα τα τοποθετήσουμε κατάλληλα ώστε να σχηματισθεί ένα ορθογώνιο του οποίου το εμβαδόν θα είναι ίσο με το εμβαδόν του κυκλικού δίσκου, αφού θα αποτελούνται από τα ίδια κομμάτια. Μετά θα βρούμε το εμβαδόν του ορθογωνίου και έτσι θα έχουμε υπολογίσει και το εμβαδόν του κυκλικού δίσκου.
Χωρίζουμε τον κυκλικό δίσκο π.χ. σε 6 ίσα μέρη και τα τοποθετούμε το ένα δίπλα στο άλλο, όπως φαίνεται στο παρακάτω σχήμα.

Παρατηρούμε ότι η μορφή του σχήματος που προκύπτει, μοιάζει με ορθογώνιο.

Αν χωρίσουμε τον κυκλικό δίσκο σε περισσότερα ίσα μέρη και τα τοποθετήσουμε, όπως και προηγουμένως , βλέπουμε ότι η μορφή του σχήματος που προκύπτει μοιάζει περισσότερο με ορθογώνιο.
Αν συνεχίσουμε τη διαδικασία αυτή, αυξάνοντας συνεχώς το πλήθος των ίσων μερών στα οποία διαιρείται ο κυκλικός δίσκος, καταλαβαίνουμε ότι το σχήμα που σχηματίζεται θα προσεγγίζει ολοένα και περισσότερο ένα ορθογώνιο, με βάση το μισό του μήκους του κύκλου (δηλ. πρ) και ύψος την ακτίνα ρ του κύκλου αυτού.

 

Επομένως το εμβαδόν του ορθογωνίου θα είναι

Ε = βάση .ύψος = πρ∙ρ=πρ2
Από τα παραπάνω συμπεραίνουμε ότι, το εμβαδόν κυκλικού δίσκου με ακτίνα ρ είναι
Ε=πρ2

Πηγή : http://egpaid.blogspot.com/

 

Λύσεις ασκήσεων κεφ. 65ο

 

 

Αφήστε μια απάντηση

Top
 
Μετάβαση σε γραμμή εργαλείων