
ΟΛΟΚΛΗΡΩΜΕΝΗ ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΠΡΟΣ ΤΗ ΣΥΝΕΧΕΙΑ 

ΥΠΟ∆ΕΙΓΜΑ 1: Να µελετηθεί ως προς τη συνέχεια η συνάρτηση: 
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1. Πρώτα βρίσκουµε το πεδίο ορισµού της συνάρτησης: α) στο διάστηµα ( )2,−∞−  

η συνάρτηση έχει τη µορφή  
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x , δηλ. είναι ρητή και, ως τέτοια, είναι ορισµένη και συνεχής σ’ όλο το 

διάστηµα, εκτός των σηµείων όπου µηδενίζεται ο παρονοµαστής. Βρίσκουµε τα 
σηµεία αυτά λύνοντας την εξίσωση  0822 =−− xx . Είναι 

( ) ( ) 3632481424 22 =+=−⋅⋅−−=−=∆ αγβ . Οι ρίζες είναι 
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x , από τις οποίες όµως καµµία δεν ανήκει 

στο διάστηµα ( )2,−∞− . Άρα η f ορίζεται και είναι συνεχής στο ( )2,−∞− .  

β) Στο διάστηµα ( )+∞− ,2  η f έχει τη µορφή kx +3 , δηλ. είναι πολυωνυμική, άρα ορισμένη 

και συνεχής σ’ όλο το ℜ , άρα και στο ( )+∞− ,2 .  

2. Μελετάµε τη συνέχεια στο σηµείο 20 −=x . Ξέρουµε ότι για να είναι συνεχής πρέπει 

( ) ( ) ( )2limlim
22

−==
−− −→−→

fxfxf
xx

 (1). Έχουµε: 
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( ) kk +−=+− 623  και ( ) ( ) kkf +−=+−=− 6232 . Άρα η (1) .862 =⇔+−=⇔ kk  

Άρα: 1. Για 8=k  η f είναι συνεχής και στο 20 −=x , δηλ. συνεχής σε όλο το ℜ  

2. Για 8≠k  η f παρουσιάζει ασυνέχεια στο 20 −=x . 


