Δυο τετράγωνα πλαίσια συνδέονται ανάποδα

Στο σχήμα φαίνονται δύο τετράγωνα συρμάτινα πλαίσια Π1, Π2 με πλευρές α και b αντίστοιχα, συνδεδεμένα μεταξύ τους, που παρουσιάζουν αντίσταση ανά μονάδα μήκους R*. Ένα ομογενές μαγνητικό πεδίο έντασης Β εφαρμόζεται με τις δυναμικές του γραμμές κάθετες στο επίπεδο των πλαισίων και το μέτρο της έντασης να μεταβάλλεται σύμφωνα με τη σχέση Β = 4kt (S.I.), όπου k = 2Τ/s. Θεωρούμε το εμβαδικό διάνυσμα n, ομόρροπο του B.

α) Σχεδιάστε στο σχήμα την πολικότητα της ΗΕΔ επαγωγής που αναπτύσσεται σε κάθε πλαίσιο, δικαιολογώντας τη φορά της.

β) Υπολογίστε την ένταση του επαγωγικού ρεύματος στο κύκλωμα και δικαιολογείστε τη φορά του.

γ) Κάποιος ισχυρίζεται ότι οι δύο ΗΕΔ προσφέρουν ενέργεια στο ηλεκτρικό ρεύμα. Συμφωνείτε ή διαφωνείτε; Δικαιολογείστε την απάντησή σας.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Δύο κέρματα σε επαφή

Δύο κέρματα (α) και (β) των δύο ευρώ ηρεμούν πάνω σε οριζόντιο δάπεδο.

Τα επίπεδα των νομισμάτων είναι οριζόντια και  τα νομίσματα εφάπτονται το ένα στο άλλο όπως στο σχήμα 1.
Κρατάμε το κέρμα (α)  ακίνητο και αρχίζουμε να περιστρέφουμε το (β) αριστερόστροφα έτσι ώστε να κυλίεται χωρίς να ολισθαίνει παραμένοντας σε επαφή με το (α) και το κέντρο του Κ να εκτελεί κυκλική κίνηση με κέντρο το κέντρο του νομίσματος (α).

Όταν το κέντρο (Κ) του (β) έχει μισή περιστροφή, η σχετική θέση των δύο νομισμάτων θα είναι

Α) Όπως στο σχήμα 2

Β) Όπως στο σχήμα 3

Γ) Όπως στο σχήμα 4

Να επιλέξετε τον σωστό σχήμα δικαιολογώντας την επιλογή σας.

Η συνέχεια σε  ή σε 

Τραβήξτε το πλαίσιο από το μαγνητικό πεδίο

πλαισιοΠάνω σε ένα οριζόντιο τραπέζι ηρεμεί ένα ορθογώνιο συρμάτινο πλαίσιο, διαστάσεων α = 0,4m και β = 0,6m. Η μάζα του πλαισίου είναι m = 100g και ο συντελεστής τριβής ολίσθησης που εμφανίζει με το τραπέζι είναι μ = 0,5.

α) Ποιο είναι το μέτρο της οριζόντιας δύναμης , που απαιτείται για να κινείται το πλαίσιο με σταθερή ταχύτητα μέτρου υ = 2m/s;

Δημιουργούμε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης Β = 0,75Τ έτσι ώστε κάποιο μέρος του πλαισίου να βρίσκεται μέσα σε αυτό, όπως φαίνεται το σχήμα. Θέλουμε να εξάγουμε το πλαίσιο από το μαγνητικό πεδίο με την ίδια σταθερή ταχύτητα μέτρου υ.

β) Εξηγείστε γιατί θα απαιτηθεί δύναμη μέτρου F2 > F1 .

γ) Αν το πλαίσιο παρουσιάζει αντίσταση ανά μονάδα μήκους R* = 0,5Ω/m, βρείτε την αλγεβρική τιμή του επαγωγικού ρεύματος, που διαρρέει το πλαίσιο και εξηγείστε το πρόσημο που προκύπτει.

δ) Υπολογίστε το μέτρο F2 της απαιτούμενης δύναμης.

ε) Να βρείτε όλους τους μετασχηματισμούς της ενέργειας ανά μονάδα χρόνου και να επαληθεύσετε την Διατήρηση της Ενέργειας.

Θεωρείστε το εμβαδικό διάνυσμα του πλαισίου, ομόρροπο της έντασης του μαγνητικού πεδίου και g = 10m/s2.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Αρμονικές σε χορδή κιθάρας

Χτυπάμε με την πένα μας την δεύτερη από πάνω χορδή μιας κιθάρας, η οποία είναι κουρδισμένη στη νότα Λα. Ακούγεται ένας ήχος.

i) Που οφείλεται ο ήχος που φτάνει στο αυτί μας;

ii) Το διπλανό διάγραμμα δείχνει την απομάκρυνση σε συνάρτηση με το χρόνο ενός σημείου του τυμπάνου μας (κυματομορφή ήχου).1

Παρατηρείστε ότι είναι περιοδική αλλά όχι αρμονική. Μπορείτε να το εξηγήσετε;

iii) Αν απαντήσατε στα προηγούμενα ερωτήματα, μπορείτε τώρα να καταλάβετε αν στη χορδή:

α) Δημιουργείται ένα στάσιμο κύμα με δυο δεσμούς στα ακίνητα άκρα της χορδής.

β) Δημιουργούνται άπειρα στάσιμα κύματα με δεσμούς στα δύο ακίνητα άκρα της χορδής.

iv) Αν κάποιος ισχυριστεί ότι η συχνότητα του ήχου που εκπέμπει η χορδή είναι f = 440Hz, αφού το βρήκε σε πίνακες στο Internet, θα συμφωνούσατε μαζί του;

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Δυο θεματάκια εμπέδωσης του νόμου Ampere

ΘΕΜΑ 1ο
Ηλεκτρικό ρεύμα σταθερής έντασης Ι, διαρρέει τον ορθογώνιο βρόχο ΚΛΜΝ του σχήματος 1. Υπολογίστε το αλγεβρικό άθροισμα (κυκλοφορία) ΣΒidliσυνθi του μαγνητικού πεδίου στις τέσσερις κλειστές διαδρομές α, β, γ, δ.
Οι κουκίδες στο σχήμα δείχνουν τις πλευρές που περικλείουν αυτές οι διαδρομές. 

ΘΕΜΑ 2ο
Δίνονται οι ρευματοφόροι αγωγοί του σχήματος 2, που περικλείονται από τις κλειστές καμπύλες α, β, γ, δ και ε. Υπολογίστε το αλγεβρικό άθροισμα (κυκλοφορία) ΣΒidliσυνθi του μαγνητικού πεδίου στις πέντε αυτές κλειστές διαδρομές. Δίνεται μ0 = 4π∙10-7Ν/Α2
Οι κουκίδες στο σχήμα δείχνουν τα σημεία που τέμνουν οι ρευματοφόροι αγωγοί τις αντίστοιχες επιφάνειες που ορίζονται από τις καμπύλες.

Συνέχεια

Συνέχεια%ce%b1%ce%b1%ce%b1%ce%b11

Η γωνία θ στο νόμο Biot-Savart

Θεωρούμε έναν ευθύγραμμο αγωγό απείρου μήκους, να διαρρέεται από ρεύμα έντασης Ι και ένα τμήμα dl αυτού του αγωγού μήκους dl = 2μm, που το θεωρούμε στοιχειώδες, προσανατολισμένο κατά τη φορά του ρεύματος (σχήμα 1).

Συνέχεια 

Συνέχεια %ce%b1%ce%b1%ce%b1%ce%b11

Συμβολή μετά από ανάκλαση τετραγωνικού παλμού

1-272x115

Σε γραμμικό ελαστικό μέσο, διαδίδεται προς τα δεξιά, με ταχύτητα υδ = 10cm/s τετραγωνικός παλμός πλευράς α = 4cm, όπως στο σχήμα.

Η αρχή (μέτωπο) του παλμού, απέχει από τον τοίχο L = 20cm.

i) Βρείτε το σχήμα της χορδής τις χρονικές στιγμές

α) t1 = 2,1s

β) t2 = 2,3s

ii) Υπολογίστε επίσης τη μετατόπιση ενός υλικού σημείου Σ του μέσου, που βρίσκεται 3cm αριστερά του τοίχου, τις παραπάνω χρονικές στιγμές.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Ας ανακαλύψουμε την αρχική φάση ενός κύματος

Ένα εγκάρσιο κύμα, που διαδίδεται στη διεύθυνση ενός άξονα Χ΄Χ, κατά τη θετική φορά, έχει την πηγή του κάπου στον αρνητικό ημιάξονα. Το κύμα αναγκάζει το σημείο Σ(x =0,1m), να ταλαντώνεται με χρονική εξίσωση

yΣ = -0,4∙ημ(2πt), t ≥ 0s   (S.I.)

Η εξίσωση του κύματος μπορεί να είναι

y = A∙ημ(ωt ± 10πx + θ), (S.I.)

όπου θ μια γωνία σε rad.

i) Υπολογίστε το πλάτος, το μήκος κύματος, την περίοδο και την ταχύτητα διάδοσης του κύματος.

ii) Να κάνετε τη γραφική παράσταση της yΣ → t σε βαθμολογημένους άξονες.

iii) Ποιο από τα παρακάτω στιγμιότυπα αντιστοιχεί στο κύμα που περιγράφεται από την εκφώνηση; Δικαιολογείστε την απάντησή σας.κυμα

iv) Βρείτε τη γωνία θ, που περιέχεται στη φάση της εξίσωσης του κύματος.

v) Να γράψετε την εξίσωση του κύματος.

vi) Να σχεδιάσετε το στιγμιότυπο του κύματος τη χρονική στιγμή t1 = 5s, στην περιοχή ≥ -0,2m.

vii) Η αρχική φάση του κύματος είναι

α) φ0 = 0 rad                 β) φ0 = 2π rad               γ) φ0 = π rad

Δικαιολογείστε την απάντησή σας.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Η εξίσωση x = f(t) μιας παλινδρομικής κίνησης

Υλικό σημείο μάζας m = 1kg, εκτελεί αρμονική ταλάντωση με εξίσωση x = 0,5∙ημ(10t) (S.I.)

Α) Αν είναι απλή αρμονική ταλάντωση:

i) Βρείτε τις χρονικές εξισώσεις υ(t), a(t), ΣF(t), K(t), U(t), ET(t), PΣF(t)

ii) Να κάνετε τις γραφικές παραστάσεις

α) K(t), U(t), ET(t) σε ένα διάγραμμα και

β) σε ένα άλλο διάγραμμα την PΣF(t)

από t0 = 0s, ως t1 = π/5 s

iii) Υπολογίστε το έργο της συνισταμένης δύναμης από t0 = 0s, ως t1 = π/10 s

Β) Αν είναι εξαναγκασμένη αρμονική ταλάντωση με δύναμη απόσβεσης της μορφής
F = -2υ (S.I.) και γωνιακής ιδιοσυχνότητας ω0 = 8 rad/s:

Συνέχεια 

Συνέχεια %ce%b1%ce%b1%ce%b1%ce%b11

Δύο «ταλαντωτικά» θέματα για τη δική μας Τράπεζα

Θέμα Α

Ένα σώμα μάζας εκτελεί α.α.τ. σε οριζόντιο λείο δάπεδο και κατά τη διάρκεια της ταλάντωσης η μέγιστη επιτάχυνση που επιτυγχάνει έχει μέτρο amax. Αν το πλάτος της ταλάντωσης είναι Α, η ενέργεια της ταλάντωσης είναι:

α) Ε = ½ mamaxA           β) Ε = mamaxA               γ) Ε = ¼ mamaxA

Επιλέξτε τη σωστή απάντηση και δικαιολογείστε την επιλογή σας.

Θέμα Β

Ένα σώμα μάζας m = 0,25kg είναι στερεωμένο στην κορυφή ενός κατακόρυφου ελατηρίου που είναι αγκυρωμένο στο πάτωμα. Το φυσικό μήκος του ελατηρίου είναι l0 = 8cm και το μήκος του ελατηρίου όταν το σώμα βρίσκεται σε ισορροπία είναι l1 = 5,5cm. Όταν το σώμα ηρεμεί στη θέση ισορροπίας του, του δίνεται ένα απότομο χτύπημα προς τα κάτω με σφυρί, έτσι ώστε η αρχική του ταχύτητα να έχει μέτρο υ0 = 0,4m/s.

i) Σε ποιο μέγιστο ύψος πάνω από το δάπεδο υψώνεται κάθε φορά το σώμα; Το ελατήριο φτάνει στο φυσικό του μήκος κατά τη διάρκεια της ταλάντωσης; Ποια ελάχιστη αρχική ταχύτητα πρέπει να δοθεί στο σώμα ώστε το ελατήριο να φτάνει οριακά το φυσικό του μήκος;

ii) Πόσος χρόνος χρειάζεται για να φτάσει το σώμα στο μέγιστο ύψος του για πρώτη φορά;

iii) Να γράψετε τη χρονική εξίσωση της αλγεβρικής τιμής της δύναμης του ελατηρίου σε συνάρτηση με το χρόνο και να κάνετε την αντίστοιχη γραφική παράσταση για μια περίοδο.

iv) Να βρείτε σε συνάρτηση με την απομάκρυνση, τις εξισώσεις: Ενέργειας ταλάντωσης, Δυναμικής Ενέργειας ταλάντωσης, Κινητικής Ενέργειας, Βαρυτικής Δυναμικής Ενέργειας (με επίπεδο αναφοράς τη θέση ισορροπίας) και Δυναμικής Ενέργειας ελατηρίου.

v) Να κάνετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις Ενέργειας ταλάντωσης, Δυναμικής Ενέργειας ταλάντωσης, Κινητικής Ενέργειας, Βαρυτικής Δυναμικής Ενέργειας (με επίπεδο αναφοράς τη θέση ισορροπίας) και Δυναμικής Ενέργειας ελατηρίου, σε συνάρτηση με την απομάκρυνση. Δίνεται g = 10m/s2.

Συνέχεια στο γκισέ 

Συνέχεια στο γκισέ %ce%b1%ce%b1%ce%b1%ce%b11

Kατηγορίες

Πρόσφατα άρθρα

Σαν σήμερα

18/7/1922: Με απόφαση της ελληνικής κυβέρνησης, κηρύσσεται η αυτονομία της Μικράς Ασίας, μετά το ναυάγιο των διαπραγματεύσεων για την υπογραφή συμφωνίας ανακωχής μεταξύ Ελλάδας και Τουρκίας.

Άνοιγμα μενού
Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση
Μετάβαση σε γραμμή εργαλείων