Δυο σώματα σε ελεύθερη πτώση και ένα διάγραμμα

 

Το διάγραμμα θέσης – χρόνου αναφέρεται σε δύο μικρές σφαίρες Σ1 και Σ2, με μάζες m1 και m2 > m1 που βρίσκονται στο ίδιο κατακόρυφο επίπεδο και αφήνονται να εκτελέσουν ελεύθερη πτώση, απουσία αέρα, παράλληλα σε έναν κατακόρυφο άξονα Ψ΄Ψ, με θετική φορά προς τα κάτω. Η επιτάχυνση της βαρύτητας έχει μέτρο g = 10m/s2.

α) Ποιες είναι οι αρχικές συνθήκες (t01, ψ01t02, ψ02) εκτέλεσης του πειράματος; Σχεδιάστε έναν βαθμολογημένο άξονα Ψ΄Ψ, και τοποθετήστε σχετικά με αυτόν τις σφαίρες τη χρονική στιγμή t = 0, σχεδιάζοντας και τις δυνάμεις, που ασκούνται.
β) Γράψτε τις εξισώσεις θέσης – χρόνου των σφαιρών στο S.I.
γ) Τι εκφράζουν οι συντεταγμένες του σημείου τομής Α των δύο γραφικών παραστάσεων; Υπολογίστε τις τιμές tm και ψm.
δ) Να γράψετε τη χρονική εξίσωση που δίνει κάθε στιγμή την απόσταση των δύο σφαιρών και να κάνετε την αντίστοιχη γραφική παράσταση σε βαθμολογημένους άξονες.
στ) Πότε η απόσταση των σφαιρών θα γίνει d = 20m;

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Ο κακός λύκος και το κατσικάκι με αλγεβρικές τιμές

Μια άσκηση, του Θοδωρή Παπασγουρίδη.

Ο κακός λύκος είναι πολύ πεινασμένος. Για καλή του τύχη βλέπει ένα άτακτο κατσικάκι που έχει φύγει από τη μαμά του. Δυστυχώς όμως για το λύκο, τη στιγμή που βλέπει το κατσικάκι και το κατσικάκι βλέπει το λύκο. Ο λύκος, το κατσικάκι και το μαντρί βρίσκονται στην ίδια ευθεία. Το μαντρί βρίσκεται ανάμεσα στο λύκο και το κατσικάκι. Ο λύκος απέχει d1 = 120m από το μαντρί ενώ το κατσικάκι d2 = 75m. Ο πεινασμένος λύκος ακαριαία μόλις βλέπει το κατσικάκι αρχίζει να τρέχει προς αυτό, τη χρονική στιγμή t01 = 0. Ο λύκος μπορεί να αναπτύξει σταθερή επιτάχυνση α1=3m/s2 για χρονικό διάστημα Δt1=4s. Στη συνέχεια μπορεί να κινείται με σταθερή ταχύτητα ίση με αυτή που ανέπτυξε στο χρονικό διάστημα Δt1=4s. Το κατσικάκι σάστισε και για 2s έμεινε ακίνητο από το φόβο του. Τελικά αποφάσισε να τρέξει προς το μαντρί.

Θεωρείστε έναν άξονα x΄x με αρχή το σημείο που βρίσκεται ο λύκος τη χρονική στιγμή t = 0 και θετική φορά από το λύκο προς το κατσικάκι.

α) Τι κίνηση εκτελεί κάθε ζώο;

β) Ποια χρονική στιγμή θα φτάσει ο λύκος στο μαντρί;

γ) Ποια είναι η ελάχιστη τιμή του μέτρου της επιτάχυνσης, που πρέπει να αναπτύξει το κατσικάκι, ώστε να φτάσει έγκαιρα στο μαντρί και ο λύκος να μείνει νηστικός;

δ) Με ποια αλγεβρική τιμή ταχύτητας φτάνει το κατσικάκι στο μαντρί;

ε) Να κάνετε σε βαθμολογημένα συστήματα αξόνων, τα διαγράμματα των αλγεβρικών τιμών επιτάχυνσης – χρόνου, θέσης – χρόνου και ταχύτητας – χρόνου για τα δυο ζώα.

Τα ζώα θεωρούνται υλικά σημεία.

Απάντηση 

Απάντηση %ce%b1%ce%b1%ce%b1%ce%b11

Μήκος φρεναρίσματος και απόσταση ασφαλείας

Του Διονύση Μάργαρη

Πολύ συχνά γινόμαστε μάρτυρες τροχαίων ατυχημάτων, που οφείλονται σε διάφορους λόγους. Ένα πολύ μεγάλο ποσοστό όμως οφείλεται στο ότι ο οδηγός δεν καταφέρνει να σταματήσει το αυτοκίνητό του, σε περίπτωση που συναντήσει κάποιο κίνδυνο.Φρενάρει μεν, αλλά δεν προλαβαίνει να σταματήσει είτε επειδή η απόσταση που τον χωρίζει από ένα εμπόδιο είναι πολύ μικρή είτε γιατί η ταχύτητά του είναι αρκετά μεγάλη. Ας μελετήσουμε λοιπόν αναλυτικότερα την απόσταση που θα διανύσει ένα αυτοκίνητο από τη στιγμή που αρχίζει να φρενάρει, μέχρι να σταματήσει.

Έστω λοιπόν ένα αυτοκίνητο που κινείται σε οριζόντιο δρόμο με ταχύτητα Uο και σε μια στιγμή φρενάρει ώστε να μπλοκάρει του τροχούς και να μην στρέφονται.

Παίρνουμε τις δυνάμεις που ασκούνται στο αυτοκίνητο. Αυτές είναι το βάρος του, η κάθετη αντίδραση του επιπέδου και η τριβή ολίσθησης.

Διαβάστε τη συνέχεια

ή

Μήκος φρεναρίσματος και απόσταση ασφαλείας

Διαγώνισμα στο έργο – ενέργεια 2022

Του Αποστόλη Παπάζογλου

ΘΕΜΑ A

Στις προτάσεις Α1 έως και Α4 να επιλέξετε τη σωστή απάντηση

Α1. Για να εκτελεί έργο μια δύναμη που ασκείται σε ένα σώμα, πρέπει:

α. το σώμα να παραμένει ακίνητο

β. η δύναμη να είναι κάθετη στη μετατόπιση του σώματος

γ. η δύναμη να μετατοπίζει το σημείο εφαρμογής της

δ. η δύναμη να είναι κάθετη στην ταχύτητα του σώματος

(5 μονάδες)

Α2. Ένα σώμα εκτελεί ευθύγραμμη ομαλή κίνηση. Το συνολικό έργο των δυνάμεων που ασκούνται στο σώμα:

α. είναι ίσο με μηδέν

β. είναι θετικό

γ. είναι αρνητικό

δ. είναι θετικό ή αρνητικό, ανάλογα με την τιμή της ταχύτητας του σώματος

(5 μονάδες)

Α3. Το έργο μιας δύναμης εκφράζει:

α. μεταβίβαση ενέργειας από ένα σώμα σε άλλο

β. μετατροπή ενέργειας από μια μορφή σε άλλες

γ. είτε το (α) είτε το (β)

δ. τίποτε από τα παραπάνω

(5 μονάδες)

Η συνέχεια σε word

και σε pdf

Η τριβή ολίσθησης επιταχύνει το σώμα

Πάνω σε λείο οριζόντιο επίπεδο ηρεμεί το σύστημα των σωμάτων Σ1(σανίδα) και Σ2(κύβος) του σχήματος, με μάζες m1 = 3kg και m2 = 2kg αντίστοιχα, όπως φαίνεται στο σχήμα 1. Ασκούμε στο Σ1 οριζόντια δύναμη και μελετάμε τη συμπεριφορά του συστήματος.Α) Αν μεταξύ των σωμάτων δεν εμφανίζεται τριβή, τι κίνηση θα εκτελέσει κάθε σώμα;
Β) Αν μεταξύ των σωμάτων υπάρχει τριβή, με συντελεστές τριβής μ = μσ = 0,3 ποια είναι η μέγιστη τιμή της κοινής επιτάχυνσης των δύο σωμάτων ώστε να μην υπάρξει ολίσθηση του σώματος Σ2, πάνω στο Σ1; Ποια είναι η αντίστοιχη μέγιστη τιμή στο μέτρο F της ασκούμενης δύναμης;
Γ) Επαναλαμβάνουμε το πείραμα, με μέτρο δύναμης F = 18N.
α) Τι κίνηση θα εκτελέσει κάθε σώμα;
β) Ποια θα είναι τα μέτρα των επιταχύνσεων των σωμάτων;
γ) Να κάνετε στους ίδιους βαθμολογημένους άξονες, τις γραφικές παραστάσεις μετατόπισης – χρόνου για τα δύο σώματα από t0 = 0, μέχρι t = 2s.
δ) Πόσο είναι το ελάχιστο μήκος της σανίδας Σ1, ώστε το σώμα Σ2 να παραμείνει πάνω της, μέχρι τη χρονική στιγμή t = 2s, αν η αρχική θέση του Σ2 είναι αυτή του σχήματος 1; Δίνεται η πλευρά του κύβου d = 0,5m.
Δίνεται g = 10m/s2.

Απάντηση(Word)-Κατεβάστε το για σωστή εμφάνιση

Απάντηση (Pdf)

Μια σταθερή και μια κινητή τροχαλία

Η τροχαλία είναι μια απλή μηχανή, που μπορεί να βοηθήσει μια εργασία, με την αλλαγή διεύθυνσης ή της μείωσης του μέτρου της απαιτούμενης δύναμης. Χρησιμοποιώντας τη σταθερή (πάγια) τροχαλία Ρ1, την κινητή τροχαλία Ρ2 και δυο νήματα, πετυχαίνουμε αντίστοιχα τα παραπάνω. Το νήμα ν1 δένεται στο σώμα Α, περνάει από το αυλάκι της σταθερής τροχαλίας Ρ1, τυλίγεται γύρω από το αυλάκι της κινητής τροχαλίας Ρ2 και καταλήγει στον άξονα της σταθερής τροχαλίας Ρ1, σε ακλόνητο σημείο,  όπως φαίνεται στο παρακάτω σχήμα.
Το νήμα ν2 δένεται στο σώμα Σ και καταλήγει στον άξονα της κινητής τροχαλίας Ρ2.
Με αυτή τη διάταξη θέλουμε να σύρουμε το σώμα Σ, μάζας mΣ = 400kg πάνω στο κεκλιμένο επίπεδο, γωνίας κλίσης  θ με ημθ = 0,6 και συνθ = 0,8. Το αντίβαρο Α που θα χρησιμοποιήσουμε έχει μάζα mΑ = 300kgοι τροχαλίες είναι αμελητέας μάζας, δεν εμφανίζονται τριβές στους άξονές τους, τα νήματα αβαρή, μη εκτατά και δε γλιστράνε στα αυλάκια των τροχαλιών. Ο συντελεστής τριβής ολίσθησης μεταξύ του σώματος Σ και του κεκλιμένου επιπέδου είναι μ = 0,5 και η επιτάχυνση της βαρύτητας g = 10m/s2.
i) Αν το αντίβαρο Α κατέλθει κατά Δxτο σώμα Σ μετατοπίζεται κατά
α) Δx                β) Δx/2             γ) x
Βρείτε και δικαιολογείστε τη σωστή απάντηση.
ii) Αν η επιτάχυνση με την οποία κατέρχεται το Α έχει μέτρο α, το σώμα Σ αποκτά επιτάχυνση μέτρου
α) α                  β)                 γ) α/2
Βρείτε και δικαιολογείστε τη σωστή απάντηση.
iii) Υπολογίστε το μέτρο της επιτάχυνσης κάθε σώματος.
iv) Ποιο είναι το μέτρο της τάσης κάθε νήματος;
v) Αν το σώμα Α απέχει αρχικά από το οριζόντιο έδαφος απόσταση h = 5mποιο θα είναι το μέτρο της ταχύτητας με την οποία θα χτυπήσει στο έδαφος;

Απάντηση(Word) (Κατεβάστε το για σωστή προβολή)

Απάντηση(Pdf)

Η γωνία απόκλισης του εκκρεμούς και η επιτάχυνση

Θέλουμε να μετρήσουμε την επιτάχυνση του συστήματος των σωμάτων Σ1 και Σ2, που ηρεμούν πάνω σε οριζόντιο πάγκο, μεγάλου μήκους. Το Σ1 συνδέεται με το Σ2 μέσω νήματος μη εκτατού αμελητέας μάζας, που διέρχεται από το αυλάκι αβαρούς τροχαλίας. Το Σ2 περιλαμβάνει και εκκρεμές, με ελαφριά μπαλίτσα Μ και το στήριγμα Σ του εκκρεμούς αμελητέας μάζας. Αφήνουμε το σύστημα ελεύθερο και πριν το Σ2 φτάσει στην άκρη του πάγκου, φωτογραφίζουμε τη διάταξη και παίρνουμε το στιγμιότυπο του σχήματος. Τριβές δεν υπάρχουν και g = 10m/s2.
α) Ποια σχέση έχει το μέτρο α της επιτάχυνσης με τη γωνία θ, που σχηματίζει το νήμα με την κατακόρυφο;
β) Αν οι μάζες των σωμάτων Σ1 και Σ2 είναι αντίστοιχα m1 = 2kg, m2 = 8kg, ποια είναι η γωνία θ;
γ) Υπολογίστε το μέτρο της τάσης του νήματος, που συνδέει τα σώματα Σ1 και Σ2 και τη μετατόπιση του Σ2 κατά τη διάρκεια του 6ου δευτερολέπτου.
δ) Αν μπορούμε να μεταβάλλουμε τις μάζες m1 και m2 ποια είναι η μέγιστη γωνία θ που μπορούμε να επιτύχουμε; Εξηγείστε πως πρέπει να επιλέξουμε τότε τις μάζες.

Απάντηση(Word) (Κατεβάστε το για να φαίνεται σωστά)

Απάντηση (Pdf)

Δυο σώματα επιταχύνονται

 

Δυο σώματα Α και Β με μάζες m1=2kg και m2=3kg αντίστοιχα, ηρεμούν σε λείο οριζόντιο επίπεδο, δεμένα στα άκρα ενός ιδανικού ελατηρίου, με φυσικό μήκος ℓ0=60cm. Σε μια στιγμή ασκούμε στο Α, μια οριζόντια δύναμη F=4Ν, όπως στο σχήμα, με αποτέλεσμα το ελατήριο να επιμηκύνεται και κάποια στιγμή t1 το σώμα Α έχει επιτάχυνση α1=0,5m/s2.

  1. Να υπολογιστεί η δύναμη που το ελατήριο ασκεί στο σώμα Α την παραπάνω στιγμή t1.
  2. Ποια η αντίστοιχη επιτάχυνση του Β σώματος, τη στιγμή αυτή;
  3. Αν τη στιγμή t1 το ελατήριο έχει μήκος ℓ=75cm, να υπολογιστεί η σταθερά του ελατηρίου k.
  4. Την παραπάνω στιγμή το Α σώμα, έχοντας ταχύτητα υ1=0,6m/s λύνεται από το ελατήριο, να υπολογιστεί η ταχύτητά του τη χρονική στιγμή t2=t1+1,2s.

Απάντηση:

ή

Και ένα σχετικό i.p. ΕΔΩ. (Έβαλα έναν παρατηρητή στο Α για να φαίνεται και η ταλάντωση).

Kατηγορίες

Πρόσφατα άρθρα

Σαν σήμερα

30/5/1941: Δύο 19χρονοι φοιτητές, ο Μανώλης Γλέζος και ο Απόστολος Σάντας, με μία παράτολμη ενέργειά τους, κατεβάζουν από την Ακρόπολη τη γερμανική σημαία και αναρτούν την ελληνική.
   - Σχετικές αναρτήσεις

Αλλαγή μεγέθους γραμματοσειράς
Αντίθεση
Μετάβαση σε γραμμή εργαλείων