
NXT-G Programming

Workshop for FLL Coaches

Developed by Tony Ayad

Updated by LeRoy Nelson

California - Los Angeles Region FLL

September 2012

Outline

• Purpose:

• This workshop is intended for FIRST® LEGO® League (FLL®) coaches who are
interested in learning about LEGO® MINDSTORMS® NXT and the NXT-G
programming language.

• Basic Programming Agenda (Introductory Workshop)

• NXT Controller (aka: the “brick”)

• Blocks

• The NXT-G Interface

• The MOVE, MOTOR & RESET Blocks

• Turns - there is more than one way to turn

• Geometry and Math for the Robot

• Resources

• Advanced Programming (for Advanced Workshop)

• Light Sensors

• Program Control (WAIT, LOOP, SWITCH Blocks)

• Math (VARIABLES, MATH and COMPARE Blocks)

• My Block

• Touch Sensors

208/31/12 Basic Programming - Tony Ayad

NXT Controller – The robot’s “brain”

aka: the “Brick”

BA C

3 Output ports used for the motors

USB

Use this button to turn on

the NXT and select the shown option

SELECT menu option (left) SELECT menu option (right)

Menu Level Back (off)

Icons representing menu options

08/31/12 3Basic Programming - Tony Ayad

Name

1 2 3 44 sensor Input ports used to attach sensors

Light Sensor Touch Sensor

The USB port is used to connect to

The PC so you can download the

Programs into NXT Controller

FLL Robot Configuration

• For FLL Competition you are allowed:

• 1 NXT Brick [or the discontinued RCX yellow Brick]

• Up to 3 motors; two for moving; the third is for the arm

• Any number of LEGO-manufactured MINDSTORMS type
sensors: touch, light, color, rotation or ultrasonic
[However, you only have 4 sensor ports on the NXT!]

• You can use as many non-electric LEGO pieces as you need

• You may NOT use ANYTHING that is not made by LEGO

• Instructing the robot to move and turn is accomplished by the
NXT Motors, which rotate in a predetermined direction.

• All examples used in this document assume the robot
configuration with motors mounted as shown.

08/31/12 Basic Programming - Tony Ayad 4

B - Motor

C - Motor

Clockwise

LEGO® MINDSTORMS ® Education NXT Software

• The FLL Robot Set includes the LEGO MINDSTORMS Education NXT Software

• The current NXT-G software version is V.2.1.6

• This icon-based easy-to-use software is based on LabVIEW®

• LabVIEW is powerful system design software for engineering and science

• The Education version includes Robot Educator step-by-step guide

• 46 tutorials from beginner to advanced levels

• The Education version also includes data logging functionality

• Collect and analyze data from sensors

• Includes comprehensive digital user manual

• Includes team license

08/31/12 Basic Programming - Tony Ayad 5

Programming the NXT Robot

• NXT software uses different programming “BLOCKS”.
Here are some of the most commonly used blocks.

Programming Block?
It is a specific step or action the robot will perform.

08/31/12 6Basic Programming - Tony Ayad

LEGO MINDSTORMS NXT Interface

Programming

Palette menu.

Each option has

a set of program

blocks; move the

mouse over it to

see the available

blocks

Your Program. You can add and

configure “blocks” to instruct actions

such as moving forward or turning

Brick controller used to

download programs to

the NXT brick

Palette selector

Program name

708/31/12

Program BLOCK:

a programming

instruction for the

robot

Basic Programming - Tony Ayad

Sequence beam is where the blocks

are placed and it is in the order in

which they will be run.

LEGO MINDSTORMS NXT Interface

Pan tool to move the

display. You can also use

the left or right arrows

to move the display

808/31/12 Basic Programming - Tony Ayad

Comment tool allows

you to create new

comment boxes.

Use these to describe

what the robot is

doing on the field for

each step of the

program.

Pointer tool to

select objects by

clicking the mouse

Steps to add a Programming Block

1. Click and hold block with left mouse
button to drag it

2. Drag the block to place it
on the sequence beam

3. When you see the white bar,
release the mouse (this is the
location for placing the block)

4. Update the options of
the selected block in its

control panel

08/31/12 Basic Programming - Tony Ayad 9

Control Panel

Your First Program

1. Click on the new program icon

2. Drag and drop MOVE block on the sequence beam

3. Enter the MOVE block options

4. Click on the download button and wait for
the beep

5. On the NXT, press the Orange button

• My Files

• Software Files

• Untitled-1

• Press the orange button twice to run

08/31/12 Basic Programming - Tony Ayad 10

Where are the programs stored?

• Once you install the Mindstorms software,
it will create a “Lego Creations”
and other subdirectories in your
Documents Folder as shown.

• All the programs will be created in the
“Default” Folder

• All My Blocks will be created in the
“My Blocks” folder

• Save programs with descriptive names

• Backup all your programs at the end of
each session

• Use the Print command to print copies of
your best programs to show the Judges at
tournaments

08/31/12 Basic Programming - Tony Ayad 11

Robot Actions

• For FIRST LEGO League, the NXT robot
usually has two Motors to control the
movement of the robot:

• Move Forward or Backwards (mostly
using the MOVE block)

• Turn Left or Right, using either the
left or right motors (always use the
MOTOR block)

• Spin Left or Right using both motors
which are moving in opposite
direction (always use the MOTOR
block).

• The Arm is usually the third motor,
which is used to manipulate mission
models by scooping, pushing, pulling or
turning actions.

08/31/12 Basic Programming - Tony Ayad 12

The arm is used to manipulate objects

(always use the A port)

NXT Motors and control BLOCKS

• NXT Motors have a built-in rotation sensors that continuously measure and
monitor the number of degrees / rotations while it is moving forward or
backwards.

• You can manipulate the motors using the MOTOR, MOVE and ROTATION
SENSOR Blocks

MOTOR BLOCK

• Controls one motor

• No Synchronization

• No Acceleration

MOVE BLOCK

• Controls 2 motors

• Synchronize motor movement

to ensure robot moves straight

• Automatically corrects errors

• Applies power gradually

(accelerate)

• Slows down (decelerate)

ROTATION SENSOR BLOCK

• Counts the number of

motor degrees (one full

rotation is 360 degrees)

that your motor turns.

• Used to reset the rotation

counter to 0.

1308/31/12 Basic Programming - Tony Ayad

The MOVE Block – explained

Duration: used to specify the interval

in: Degrees, time (seconds), or rotations

(one rotation = 360 degrees).

Port: Select motors to

move. These correspond to

the ports on the NXT brick

Power: Amount of power

to use to control the

motor. The default is 75%.

Direction:

the direction

in which you

want to turn

the motor -

forward (up)

or backwards

(down).

Next Action: instructs the motor

to either brake or coast at the end

of the action.

NOTE: “brake” will provide a more

accurate travel distance, while

coast will cause motor/robot to

“roll” to a stop as the power is cut

off and therefore overshoot the

target.

Steering: instructs the robot to apply more

power to one of the motors to control turns.

NOTE: This is useful for rotating the robot in

place, or when you wish to make “tight”

turns.

BEWARE that using steering may not be

consistent at low power!!!

IT IS UNRELIABLE, SO AVOID USING IT.

1408/31/12 Basic Programming - Tony Ayad

Control Panel

The MOTOR block

• The MOTOR block controls a single motor with slightly different configuration
options than the MOVE block.

• The MOTOR block is ideal for controlling the robot’s arm, and for controlled turns

08/31/12 Basic Programming - Tony Ayad 15

Port: Select motor
Power: Increases power

if resistance is met

Wait: check the box so other blocks

in the program can proceed while

the motor completes its action

Action: there are three options:

Constant: power is consistent for the duration

Ramp UP: slowly increase speed until desired power is reached

Ramp Down: slowly decrease speed until it reaches zero power.

ROTATION SENSOR block

• The NXT's motor has a built-in rotation sensor counter that tracks the exact
number of degrees as the motor spins. The information is available through the
ROTATION SENSOR block. You can reset rotation sensor counter to zero,
or read the information in the rotation sensor counter.

08/31/12 Basic Programming - Tony Ayad 16

Port: identify the NXT port

where the motor is

connected

Action: you can either read

the value of the sensor or

reset it to zero

Compare: select arrow which identifies the direction that motor is spinning.

Note: There is an advanced feature with the rotation sensor that allows you

to compare the degrees or rotation to a specified value and provide a “True”

or “False” response. This will be covered in the advanced workshop.

More about Motors – Accumulated Errors

• As the motors move, the rotation sensors of the motors keeps tracks the number of
degrees between moves and makes corrections to correct “accumulated error”

• Example:

• Note that the fourth MOVE was adjusted by the NXT to correct the accumulated error

• While this might be a helpful feature, it often causes undesirable results in FLL
programs

Block Specified
Duration

Actual
Duration

Accumulated error

Move #1, Coast 200 degrees 220 degrees 20 degrees

Wait, 1 second

Move #2, Coast 200 degrees 230 degrees 50 degrees

Wait, 1 second

Move #3, Coast 200 degrees 210 degrees 60 degrees

Wait, 1 second

Move #4, Brake 200 degrees 140 degrees 0 degrees

TOTAL 800 degrees 800 degrees

1708/31/12 Basic Programming - Tony Ayad

How to correct the accumulated error?

• First, the Rotation Sensor block allows you to set the rotation counters to zero

• To stop automatic error correction, use the RESET block

Port: select the ports for which

you would like to turn off the

auto error correction

TIP: use the RESET block before each

move or motor block!

1808/31/12 Basic Programming - Tony Ayad

Turn vs. Spin

• There are two ways in which you can make the robot turn

• Make ONLY one motor move, or

• Using both motors moving in opposite direction, and this is
referred to as “spinning"

• One Motor move:

• Right Turn – Use motor block and select the “B” motor

• In this case the robot’s right wheel will be stationary and the
left wheel will move.

• Turning with two motors in opposite direction

• To turn the robot right (spin clockwise), use the MOTOR
blocks where the the “C” motor will turn counter clockwise
and “B” motor will turn clockwise.

08/31/12 Basic Programming - Tony Ayad 19

B

C brake

Right

B

C Backward

Forward

TIP: for turning in a tight spot, use the two motors.

Turns Continued

• To make 180 degree right turn using a single motor

• To make 180 degree right turn using two motors (spin in place)

• Note that the distance travelled by the two wheels is shorter (exactly half) when
using two motors.

08/31/12 Basic Programming - Tony Ayad 20

B

Start Position End Position

Start Position End Position

C

B

C

C

B

C

B

08/31/12 Basic Programming - Tony Ayad 21

Geometry and Math

Fun way to see that what is learned in school can be applied to the
FIRST LEGO League’s robots.

Note: it may be a stretch for younger teams that have not covered
these concepts in school.

Circumference = π x Diameter

Inches to Motor Degrees

08/31/12 Basic Programming - Tony Ayad 22

• The Circumference of the robot’s wheel determines the number of inches it will travel in 1 rotation

• Circumference of wheel = π x Diameter

• Degrees traveled per inch = 360 / circumference of wheel

3.2 inches

1.2 inches

2.2 inches

1 Rotation = 10 inches

1 Rotation = 7 inches

1 Rotation = 3.8 inches

• Circumference of wheel = π x Diameter = 3.14 x 3.2 = 10.0 inches

• Degrees traveled per inch = 360 / 10.0 = 36 motor degrees

• Circumference of wheel = π x Diameter = 3.14 x 2.2 = 6.9 inches

• Degrees traveled per inch = 360 / 6.9 = 52 motor degrees

• Circumference of wheel = π x Diameter = 3.14 x 1.2 = 3.8 inches

• Degrees traveled per inch = 360 / 3.8 = 95 motor degrees

You can use a ruler or measuring tape to plan missions…

Measuring turn travel distance – More Geometry!

• When the robot turns using one motor, it will make a circle whose Radius is the
distance between the wheels

• If the robot is using the wheel whose diameter is 2.2 inches
and therefore its circumference is 7 inches, how many wheel rotations
will it take to make a complete robot turn rotation (34.5 inches)?

Note: it takes 4.9 wheel rotations to make a complete (360º turn)
(or 4.9 motor degrees to travel 1 degree of turn circle)

• Example: to make a 90º robot turn

• Motor Degrees = 90 X 4.9 = 441 Motor Degrees

08/31/12 Basic Programming - Tony Ayad 23

5.5 in

5.5 in

In this case, the radius is 5.5 inches

Circumference = π X C = 2 X π X R

= 2 X 3.14 x 5.5 = 34.5 inches

2.2 inches

Circumference of Robot Turn Circle Diameter X π

Circumference of Robot’s Wheel Diameter X π

11 X 3.14

2.2 X 3.14
= 4.9==

Programming Process

08/31/12 Basic Programming - Tony Ayad 24

• Analysis and Planning Steps

• Define the problem

• Brainstorm solutions and select one

• KEEP IT SIMPLE!

• Plan and create a flowchart and take measurements

• Programming suggestions

• Divide the program into small steps

• Program one step at a time

• Example: Move the robot to black line

• Once the step is consistently repeatable, go to the next step

• Whenever possible, reuse repeatable combinations of blocks using MY BLOCK

• Ask for help

• http://forums.usfirst.org/forumdisplay.php?f=24

• The questions should be generic and not specific to strategy

Tips

08/31/12 Basic Programming - Tony Ayad 25

• For moving straight, the MOVE block has a built-in PID (Proportional, Integral,
Derivative) controller to synchronize the movement of “B” & “C” motors. If one motor
falls behind, the MOVE block compensates by applying more power to that motor. The
MOVE block is ideal for moving the robot straight.

• For driving the robot, use the B & C motor ports; the A port should be used for the
robot’s arm.

• Using full motor power (100%) may cause erratic robot movement, use 75% or less.
• Conversely, too little power (below 25%) may cause the robot to stall.
• Brake at the end of each MOVE block to take advantage of the PID, which self corrects
to achieve more precise moves.

• Using Degrees is a more accurate way to move motors; using time, will be inconsistent
when the batteries become weak

• The MOVE block also keeps track of “errors” that accumulate in multiple blocks and
adjusts itself.

• Use the brake option and also use the RESET block.
• REMEMBER: the tradeoff between speed and accuracy!

Watch battery voltage
• If you are using the rechargeable Lithium Ion battery, stop programming and recharge it
when the it falls below 7.8 volts – the highest voltage is 8.3.

• If you use Alkaline batteries, replace them at 7.8 volts – their highest voltage is 9.4

08/31/12 Basic Programming - Tony Ayad 26

Finally, the NXT Programming Resources

• The most popular NXT programming tutorial http://www.ortop.org/NXT_Tutorial/

• Several other excellent NXT Programming tutorials are available on FLL Team Resources
http://www.firstlegoleague.org/challenge/teamresources

• Good books on NXT programming are available for beginners and more advanced:
• Laurens Valk. The LEGO MINDSTORMS NXT 2.0 Discovery Book: A Beginner's Guide to

Building and Programming Robots. San Francisco: No Starch Press, 2010.
• James Floyd Kelly. LEGO Mindstorms NXT-G Programming Guide, 2nd ed. Berkeley CA:
Apress, 2010.

• Download great worksheets for planning missions http://www.techbrick.com/

• FLL Forum where you can find answers to your questions from other coaches
http://forums.usfirst.org/forumdisplay.php?f=24

• Update the NXT firmware to the latest version (currently 1.31)
http://mindstorms.lego.com/en-us/support/files/Firmware.aspx

• Purchase or sell extra LEGO pieces www.bricklink.com

08/31/12 Advanced Programming - Tony Ayad 27

for the robot to know its location is to take advantage of the

Why light sensors?

One of the ways for the robot to know its location is to take advantage of the
markings on the field mat. Every year, the Robot Game’s mat has lines or
dark markings that can be detected by the light sensor.

In this section, we will cover the following

• How do light sensors work?

• How to calibrate lights sensors?

• How to install the light sensor calibration program?

Commonly used Programming Examples:
• Move until a dark line is encountered by the robot,
• Align the robot with a black line
• Follow a line

Advanced Programming

Light Sensors…

• The LIGHT SENSOR shines a light on the mat and reads the reflected brightness level
(intensity) level, i.e. dark or bright, to help the robot recognize its position and
through programming take action.

• The light sensor doesn't see colors, it only sees "level of brightness" or intensity

• Light intensity ranges from 0-100%

• On a bright (white) area of the mat the light intensity value will be above 50%

• On darker area (blue, black, green,…), the light intensity value will be below 50%

08/31/12 Advanced Programming - Tony Ayad 28

• To obtain more accurate readings, make sure the light sensor is close to the mat (less

than ½ inch) and shielded from bright external light sources (like the sun)

• Calibrate the sensor whenever light conditions change (see next slide)

Black
Violet

Dark Blue
Dark Red / Brown

70%

50%

20%

50%

70%

Calibrate Sensor

• The “Calibrate” program should be available on the NXT

• To use it:

1. Select My Files, then Software Files

2. Navigate back and forth using the left or right arrows until you encounter the Calibrate
program

3. Select the Calibrate program by pressing the orange button

4. Run the Calibrate program by pressing the orange button and follow the instructions.

• Once you see the menu, move the sensor over the
darkest spot on the mat (e.g., black line) and you’ll
notice the Min. Value changes. Press the enter key to select
the “Min Value” which is the darkest spot on the mat.

• Then move the sensor over the brightest spot (white area)
on the mat and press the enter button to capture the
“Max Value” which is the brightest spot on the mat.

08/31/12 Advanced Programming - Tony Ayad 29

If you use 2 light sensors, you do not need to calibrate both. The
calibration will apply to all light sensors attached to the NXT.

Installing the Light Sensor Calibration Program

• Ensure that the robot is connected to the PC

• In the Mindstorms Software, select “Tools”,
then “Calibrate Sensors”

• Select “Light Sensor” and choose the port
number to which the light sensor is connected
(in the example to the right, it is port 3)

• Press the Calibrate button to download the
“Calibrate” program into the NXT brick.

• After the program is downloaded, it will run
(see previous slide)

08/31/12 Advanced Programming - Tony Ayad 30

WAIT for light value block

• The WAIT block keeps checking for the specified light value and
when the condition is met, the next step in the program continues.

08/31/12 Advanced Programming - Tony Ayad 31

Port: identify the NXT port where the

light sensor is connected

FLL teams sometimes design Robots with light sensors to detect
dark blocks on the mat or for following a line.

If you check the “Generate Light”

checkbox, the light sensor will

turn on its own small light source;

use it always.

Enter value you would

like to test.

Select “>” greater than or “<“ less than.

Example: if you select “<“ and entered 50, and

the light sensor encounters a black block, the

result will be the test is “True”

Wait Block – Examples

08/31/12 Advanced Programming - Tony Ayad 32

Example 1:
Move until the robot detects a (black) dark line and stop

Example 2:
Align the robot with a black line

This program assumes the left light sensor will reach the black line first. The comment for

step 3 should say Stop “B” and “C”. The comment for step 4 should say Move “C” Unlimited.

“C” is the right motor. Both light sensors should end up near the edge of the black line.

08/31/12 Advanced Programming - Tony Ayad 33

Advanced Blocks and Example

• To create a line follower program you will need to use the light sensor and
repeatedly check the light value and adjust the robot’s position

• LOOP Block

• COMPARE Block – Line follower examples

• Additional Blocks
• VARIABLE
• MATH
• COMPARE

• Data Hubs

The LOOP Block

08/31/12 Advanced Programming - Tony Ayad 34

• Sometimes, there are actions that you want to repeat. The LOOP block allows you to repeat
those actions until an end condition is met (or becomes TRUE).

• Example: make the robot move around a box and return to its starting position

Warning: Deleting the LOOP block will also delete all the blocks within the
loop. You can move the blocks out of the loop, then delete it.

To move along the box sides, it takes 8 blocks as follows:

Using the LOOP block, only

SWITCH block

• The SWITCH block will check for a condition and will take different action
if the condition is true and another action if the condition is false

08/31/12 Advanced Programming - Tony Ayad 35

CB

Loop for 5 seconds

08/31/12 Advanced Programming - Tony Ayad 36

VARIABLE block
• The variable block is a “bucket” where you can
store information and retrieve it at a later time.

• There are three types: Number, Text, and Logic

MATH block
• The math block allows the addition, subtraction,
multiplication or division of two numbers.

COMPARE block
• The compare block allows you to determine if
one number is greater than, less than or equal
to another number.

Inputs
pass

through to
outputs

Output result

Output result (True or False)

Advanced Blocks

Inputs
pass

through to
outputs

VARIABLES – how to create your own variables

• To create your own variables

1. Select “Edit” Menu and "Define Variables" option

2. Type the name of the variable, then select its type.

08/31/12 Advanced Programming - Tony Ayad 37

Data Hubs and Data Wires

• Data Hub is another way of providing
input data into a Block.

• Most blocks have a tab at the bottom and
when clicked the block expands to show
its data "hubs"

• The MOVE block has several data
hubs that correspond to its input fields

• Data wires connect data hubs; you
create a data wire by “drawing it out” of a
block’s data hub.

08/31/12 Advanced Programming - Tony Ayad 38

Power

Direction

Duration degrees

Next Action (brake or coast)

Steering

Left Motor

Right Motor

Other Motor

Data Wire

Variable, Math Blocks Examples

• Earlier, we learned that for each inch of robot movement, 50 motor degrees are required. In this
example, we will make the robot move 12 inches; convert the inches into motor degrees

08/31/12 Advanced Programming - Tony Ayad 39

The result is available

through this output hub

The value is supplied to

the “duration” input hub

08/31/12 Advanced Programming - Tony Ayad 40

Now for the best part of NXT-G: My Block

In the previous example, we programmed the robot to move forward 12
inches, what if we wanted to use this and specify different distances?

NXT-G allows you to create your own block and it is called My Block!

What are the typical commands?

• NXT-G blocks are hardware-component focused (MOVE, MOTOR, SENSOR, etc.)

• MyBlock allows the creation of meaningful actions such as Turn Left, Spin Left, Move
Forward, Arm Up, Follow Line, etc.

• Command names should be self explanatory so any team member can understand
and debug programs

• Which program is easier to read?

08/31/12 Advanced Programming - Tony Ayad 41

My Block

• My Block is a combination one or more blocks that are grouped into a single "Block".
Once created, it can be used in many programs. My Block can be used in the following
ways:

1. Minimize the coding, if certain actions are repeated in multiple programs.
Often, you need to repeat certain steps, for example, different programs may
require the robot to back into the wall to re-orient itself. This process can be
placed into a My Block

2. Divide a program into smaller manageable pieces

3. Reduce the amount of memory used

4. Clarify the action taken in programs by creating self explanatory My Blocks

• Example 1: your program already includes 22 MOVE, MOTOR, LOOP blocks and you’re
not finished. It is time to consider breaking up the program into “chunks”, i.e., My
Blocks.

• Example 2: For turning left or right you use the MOTOR block. When someone is
reviewing the program, they can’t tell which way the robot is turning if you are only
using MOTOR block. Solution: create a “Turn Left” My Block to make it easy to
understand the program.

• Example 3: One you’ve fine-tuned a perfect 90 degree turn, you can create your own
My Blocks for the perfect 90-degree left and right turns.

08/31/12 Advanced Programming - Tony Ayad 42

My Block Example – Moving Forward using inches

• Objective:

• Build a move My Block that takes
one input called duration which
represents the number of inches

1. Select the Math & Move blocks

2. Select Edit and “Make A New My Block”

3. Type My Block Name “MBMove” and press finish button.

08/31/12 Advanced Programming - Tony Ayad 43

Using My Block

• Once you’ve created My Block, it will
become available on the custom pallet

1. Select the custom pallet

2. Move the mouse over the
top "My Blocks" icon

3. Drag and drop the My Block
named "MBMove" into the program

• When you click on the My Block "MBMove"
you’ll see its control with the input value
named inches. You can enter the value into
this field.

08/31/12 Advanced Programming - Tony Ayad 44

More My Block Examples

• Reset

• Move Forward

• Move Back

• Turn Left

• Turn Right

• Spin Left

• Spin Right

• Curve Forward

• Curve Back

• Line Follower

• Align Robot With Black Line

• Square to Wall

08/31/12 Advanced Programming - Tony Ayad 45

My Block Tips

• Use My Block to break down a large program into two or more My Blocks

• If you create a My Block with one input and decided later to add another input, you’ll
have to start over

• If you create a My Block with two inputs and decided later to remove one, you cannot
delete the extra input; either start over, or ignore the extra input.

• You can rename a data port by double clicking its text label inside the My Block.

• The order of the inputs and outputs is unpredictable.

• Do not use Save As to create new My Blocks, instead, use the file system to
create a copy and edit that one

• If you move a My Block between computers, the program that uses the My Block
may not work!

08/31/12 Advanced Programming - Tony Ayad 46

08/31/12 Advanced Programming - Tony Ayad 47

Touch Sensor

• WAIT block for touch sensor and example

• TOUCH SENSOR block

• LIGHT SENSOR block

• ROTATION SENSOR block

• The difference between WAIT blocks (orange) and SENSOR blocks
(yellow)

• Advance Line Follower My Block example using Rotation Sensor and
compare block

Wait Block - Touch Sensor example

08/31/12 Advanced Programming - Tony Ayad 48

Wait for Touch
Example: stop when the touch sensor is pressed

Sensors

08/31/12 Advanced Programming - Tony Ayad 49

Light Sensor Block
This sensor detects ambient (surrounding) light. For example, you might program your robot to move

forward and stop whenever the light level falls below 50%.

Touch Sensor Block
This block checks a touch sensor’s condition (pressed, released or bumped) at a specific point in the

program. It sends out its finding as a logic signal (true or false) through a data wire.

Rotation Sensor Block
This block counts the number of degrees (one full rotation is 360 degrees) that your motor turns.

Through data wires, this block can send out the current number of degrees to be used. The rotation

sensor can also be used to reset the rotation counter to 0.

TOUCH SENSOR block

• The touch sensor is used to detect conditions to help the robot recognize its
position and through programming take action. The touch sensor recognizes
these three conditions:

• Pressed = pushed in and stays pushed in

• Released = not pushed in

• Bumped = Pushed and then released

Beware of using “bumped” condition within a loop; it may happen so fast that your
program may not catch it!!!

• Note: Using this block, and “reading” whether the action is met (true or false)
will be covered in detail later.

08/31/12 Advanced Programming - Tony Ayad 50

Port: identify the NXT port where

the touch sensor is connected

Action: select the desired action

(pressed, released or bumped).

FLL teams sometimes design Robots with touch sensors to detect if the FLL teams sometimes design Robots with touch sensors to detect if the
robot hits an object (e.g., wall) then stop. This is a common way to
align the robot with one of the table’s walls.

LIGHT SENSOR block

• The LIGHT SENSOR block is used to READ the detected light intensity level, i.e.
dark or bright.

08/31/12 Advanced Programming - Tony Ayad 51

Port: identify the NXT port where the

light sensor is connected

If you check the “Generate Light” checkbox, the light sensor

will turn on its own small light source; use it always.

Enter value you would like to test.

Select “>” greater than or “<“ less than.

Example: if you select “<“ and entered 50, and

the light sensor encounters a black block, the

result will be the test is “True”

Advanced Line Follower Example

• The COMPARE block can determine if a number is greater than (>), less
than (<) or equal to (=) another number. Similar to the MATH block, the
input A and B values can be typed in or supplied by data wires.

• Example: You are using a light sensor, and want to follow a black line for
1200 degrees.

08/31/12 Advanced Programming - Tony Ayad 52

CB

Challenges

08/31/12 Advanced Programming - Tony Ayad 53

• What is the fastest way to follow the line to the “T” end?

• A move My Block that can move forward or back at a different power level

• Simultaneously move and raise or lower the arm

• A My Block that moves a certain number of inches as input

• A My Block to turns left using turn angle degrees as input

