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ABSTRACT 
The friction coefficient f in the Darcy – Weisbach equation for the linear losses of liquid flow 
under pressure in a closed cylindrical pipe, is approached by explicit relations that deviate 
from the Colebrook – White values up to 4% for certain Reynolds numbers’ or relative 
roughness values. In the present paper we propose a relation, slightly more complex than the 
existing ones, which provides results that fall within the ±1% interval with respect to the 
implicit Colebrook – White equation, for all examined Reynolds numbers’ and relative 
roughness values. All possible combinations of ten relative roughness values, from 10-5 to 
0.05, as well as nineteen Reynolds numbers, from 4.103 to 108 were considered. 
 
1. INTRODUCTION 
 
The well-known Darcy-Weisbach equation that gives the linear friction losses in the case of 
liquid flow under pressure in a closed pipe: 
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includes friction factor f, which is historically determined by the Moody diagram [1]. As the 
use of the diagram is not very convenient for the determination of large numbers of friction 
coefficient values, many relationships were developed in order to facilitate the process. For 
very low values of the relative roughness, Nikuradse’s implicit equation: 
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and Colebrook’s explicit equation [2]: 
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were in use for decades. In the opposite case, of large relative roughness values, the Von 
Karman relation holds: 
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where e is the absolute roughness and D the pipe’s internal diameter. Colebrook equation [2], 
also known as the Colebrook – White equation is used worldwide covering the whole range of 
Reynolds numbers and relative roughness: 
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but as its implicit scheme makes iterations necessary, many other equations were developed, 
which provide the determination of f explicitly. As will be shown in the following, these 
equations provide f with a precision ranging from 1% to more than 4% for some Reynolds 
numbers or relative roughness values. Obtaining a relation that would provide the friction 
coefficient with a higher accuracy, would be of interest, especially in cases of a large number 
of pipes, as, for example, in the process of the optimization of a large water supply network.  
 
In the present paper, we propose a relation that fits values of the friction coefficient as given 
by the Colebrook-White equation for a wide range of Reynolds numbers and relative 
roughness. In the following, we remind the existing explicit relations, we propose a new 
relation and we compare relative errors. 
 
2. THE EXISTING EXPLICIT RELATIONS 
 
Among the various explicit equations used to approximate the friction coefficient, the 
Haaland equation is one of the mostly used [3]: 
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which can be re-written as: 
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In order to check the accuracy of the values obtained for the friction coefficient by eq. (7) 
with respect to the values derived from eq. (5) after 10 iterations, we considered 10 values of 
the relative roughness (e/D) and 19 values of the Reynolds number Re, in all possible 
combinations. These Re and (e/D) values can be seen in table 1. For each pair of (e/D,Re) we 
calculated the relative error:  
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All errors referred to in the present, are relative errors, with respect to the Colebrook equation. 
That is, whenever “error” is referred in the following graphs, it is as follows: The values of f, 
were calculated from the Colebrook equation, after 10 successive approximations, resulting to 
a difference between successive values of less than 10-6. The values of f were found and 
compared with values of the other equations mentioned in the following.  
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TABLE 1. Relative roughness and Reynolds number values used to check the accuracy of 

various relations. 
e/D Re 

0.000001 4000 
0.000005 8000 
0.00001 1.104

0.00005 2.104

0.0001 4.104

0.0005 8.104

0.001 1.105

0.005 2.105

0.01 4.105

0.05 8.105

 1.106

 2.106

 4.106

 8.106

 1.107

 2.107

 4.107

 8.107

 108

 
 
Figure 1 shows the relative error when using the Haaland relation (equation 7). The relative 
error exceeds 1% for some relative roughness values in medium Re values (between 2.104 and 
106). 
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Figure 1. The relative error using the Haaland equation. 
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The second equation examined was the Swamme - Jain equation [4]: 
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which was proven to provide results that differ from those of Colebrook up to 3% (figure 2). 
The error is lower than 1% for all roughness values, only when Re>8.104.  In general, when 
relative roughness exceeds 10-3 and Reynolds number is inferior to 105, the Swamme - Jain 
equation overestimates f as much as 3% with respect to the Colebrook formula. Moreover, it 
seems in figure 2 that the relative error follows an exponential pattern with respect to 
Reynolds number. 
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 Figure 2. The relative error using the Swamme-Jain equation. 

 
There have been more recent attempts for an accurate, explicit relation. Sonnad and Goudar 
[5, 6] presented an equation more complex than the Haaland equation, which was questioned 
as for its results, in the sense that the maximum error is restricted to a relatively small area 
characterized by low Re and small (e/D) [7]. 
 
Clamond [8], presented an algorithm with much more accurate results, but with the need of 
much more demanding computations. Very accurate results are also given by the method of 
Serghides [9], which nevertheless, demands a lot of computing, and more than one equation.  
Chen [10], proposed the following equation for all values of Re and (e/D): 
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This equation restricts errors from -0.22% to +0.47%, but it involves the dual appearance of 
both (e/D) and Re.  
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3. THE NEW EXPLICIT RELATION 

 
In an attempt to find an explicit relationship for the friction factor f of the Darcy-Weisbach 
equation that should be accurate and as simple as possible at the same time, we noticed that 
error values tended to “bend” to negative values in an exponential way for Re lower than 106. 
In order to cope with that, we used a relation of the following form: 
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where the four parameters αi, were to be determined.  
 
We optimized the above-mentioned parameters, by imposing in parallel that the error values 
of f for low Re and high relative roughness should be lower than 0.8%. This gave equation 
(12), where all error values, for any roughness and any Re examined, are lower than 0.8%.  
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 Figure 3. The relative error using the proposed equation. 

 
As can be seen in figure 3, with the exception of very rough pipes ((e/D)>0.01) and low Re, 
errors remain within the range +0.2% to -0.6%. The only disadvantage, is the number of 
parameters in the nominator of the equation. 
 
Figure 4 shows contour lines of f, according to equation (12), for the whole range of the 
parameters. Logarithms in this graph are decimal. 
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Figure 4. The friction coefficient in turbulent flow (Re > 4000), according to eq. 12.  

 
 
4. DISCUSSION – CONCLUSIONS 
 
In order to check out the regions where the results of our proposed equation (eq. 12) deviate 
the most from the respective values of Colebrook, we plotted the relative error as defined in 
eq. 8, in figure 5. 
 
It is seen there that this error exceeds 0.5% in two regions: one in the upper left corner of the 
graph, where Re>107 and (e/D)<10-5, and one in the lower right corner of the graph, where 
Re<104 and (e/D) is close to 0.01. And even in these cases, the error remains at values lower 
than 0.8%.  
 
The proposed equation is much less complex than Chen’s equation (eq. 10), which also gives 
very good results. And it is much less complex than the algorithms of Serghides and 
Clamond. For this reason we believe that it can be used in order to facilitate calculations in 
cases where the estimation of a large number of friction coefficients is needed. 
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 Figure 5. The relative error using the proposed equation. 

 
Considering that the proposed equation is not significantly more complex than the existing 
ones, we suggest it can be used in order to facilitate friction coefficient calculations with 
better accuracy than with the existing relations. 
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