Δύο επίπεδα και μια ελαστική κρούση

Σε μη λείο οριζόντιο επίπεδο (1) ηρεμούν δύο σώματα Α και Β, όπου το δεύτερο είναι δεμένο στο άκρο οριζόντιου ελατηρίου σταθεράς k=20Ν/m, Συνέχεια του άρθρου ‘Δύο επίπεδα και μια ελαστική κρούση’ »

Μια μεταβαλλόμενη κίνηση και μια κρούση

Το σώμα Σ μάζας m1=1kg ηρεμεί σε λείο οριζόντιο επίπεδο στη θέση Α, απέχοντας κατά (ΑΒ)= 3m από μια σφαίρα που κρέμεται στο άκρο κατακόρυφου Συνέχεια του άρθρου ‘Μια μεταβαλλόμενη κίνηση και μια κρούση’ »

Μια χορδή με σταθερό το ένα της άκρο

Το πρόβλημα της δημιουργίας στάσιμου κύματος, πάνω σε μια χορδή με πακτωμένο το ένα της άκρο, όταν το άλλο άκρο τίθεται σε εγκάρσια ταλάντωση, είναι ίσως ένα από τα θέματα που μας έχουν απασχολήσει περισσότερο τα χρόνια ύπαρξης του δικτύου μας. Με πάμπολλες μελέτες αλλά κυρίως συζητήσεις και αντεγκλήσεις. Δημιουργείται πάντα στάσιμο κύμα ή όχι; Είναι σωστές οι εξισώσεις του σχολικού ή χρειάζονται τροποποιήσεις; Τι δημιουργείται στη θέση της πηγής; Δεσμός ή κοιλία; Ή κάτι άλλο; Συνέχεια του άρθρου ‘Μια χορδή με σταθερό το ένα της άκρο’ »

Μήκος φρεναρίσματος και απόσταση ασφαλείας

Πολύ συχνά γινόμαστε μάρτυρες τροχαίων ατυχημάτων, που οφείλονται σε διάφορους λόγους. Ένα πολύ μεγάλο ποσοστό όμως οφείλεται στο ότι ο οδηγός δεν καταφέρνει να σταματήσει το αυτοκίνητό του, σε περίπτωση που συναντήσει κάποιο κίνδυνο. Φρενάρει μεν, αλλά δεν προλαβαίνει να σταματήσει είτε επειδή η απόσταση που τον χωρίζει από ένα εμπόδιο είναι πολύ μικρή είτε γιατί η ταχύτητά του είναι αρκετά μεγάλη. Ας μελετήσουμε λοιπόν αναλυτικότερα την απόσταση που θα διανύσει ένα αυτοκίνητο από τη στιγμή που αρχίζει να φρενάρει, μέχρι να σταματήσει. Συνέχεια του άρθρου ‘Μήκος φρεναρίσματος και απόσταση ασφαλείας’ »

Τριβή ολίσθησης και αρμονική ταλάντωση

Μια ομογενής σανίδα ΑΒ μήκους l και μάζας Μ=4kg ηρεμεί σε λείο οριζόντιο επίπεδο, δεμένη στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=40Ν/m. Τοποθετείται πάνω στη σανίδα, στο άκρο της Α, ένα σώμα Σ, μάζας m=2kg, το οποίο εμφανίζει με τη σανίδα συντελεστή τριβής ολίσθησης μ=0,4. Σε μια στιγμή t=0, το σώμα Σ δέχεται στιγμιαίο κατάλληλο κτύπημα, με αποτέλεσμα να αποκτήσει ταχύτητα υο=6m/s και να κινηθεί κατά μήκος της σανίδας, εγκαταλείποντάς την, μετά από λίγο, από το άκρο της Β, με ταχύτητα υ1=2m/s, όπως στο σχήμα. Συνέχεια του άρθρου ‘Τριβή ολίσθησης και αρμονική ταλάντωση’ »

Παράλληλες δυνάμεις,  η άνωση και η πλεύση.

Ας δούμε τώρα αν μια ισορροπία είναι ευσταθής ή όχι.

Παράδειγμα 5ο:

Στην επιφάνεια ενός υγρού ισορροπεί μια ανομοιογενής σφαίρα κέντρου μάζας C, μισοβυθυσμένη και έστω Κ, το κέντρο άνωσης. Η παραπάνω ισορροπία είναι ευσταθής, ασταθής ή αδιάφορη; Συνέχεια του άρθρου ‘Παράλληλες δυνάμεις,  η άνωση και η πλεύση.’ »

Μια οριζόντια βολή μέσα στον αέρα

Μια μπάλα μάζας m=0,4kg εκτοξεύεται οριζόντια, από ορισμένο ύψος, με αρχική ταχύτητα υο=5m/s. Κατά τη διάρκεια της κίνησής της, δέχεται δύναμη αντίστασης από τον αέρα, της μορφής , (δύναμη αντίθετης κατεύθυνσης από την ταχύτητα και μέτρου ανάλογου προς το μέτρο της ταχύτητας). Μετά από λίγο η μπάλα περνά από μια θέση Α, η Συνέχεια του άρθρου ‘Μια οριζόντια βολή μέσα στον αέρα’ »

Πληροφορίες από ένα διάγραμμα ταχύτητας

Ένα σώμα Σ1 μάζας m1=1kg εκτελεί ΑΑΤ δεμένο στο άκρο οριζόντιου ελατηρίου, σε λείο οριζόντιο επίπεδο. Τη στιγμή t1 το σώμα Σ1 συγκρούεται μετωπικά με δεύτερο σώμα Σ2, το οποίο κινείται στο ίδιο οριζόντιο επίπεδο. Στο σχήμα δίνεται το διάγραμμα της ταχύτητας του Σ1 σε συνάρτηση με το χρόνο, θεωρώντας την προς τα δεξιά κατεύθυνση ως θετική. Αντλώντας στοιχεία από το διάγραμμα αυτό, να απαντήσετε στις ακόλουθες ερωτήσεις: Συνέχεια του άρθρου ‘Πληροφορίες από ένα διάγραμμα ταχύτητας’ »

Μια κρούση στη διάρκεια μιας οριζόντιας βολής

Από μια θέση Ο, σε ορισμένο ύψος από το έδαφος, εκτοξεύεται οριζόντια μια σφαίρα μάζας m=1kg με ταχύτητα υο=1m/s. Η σφαίρα στην πορεία της και αφού μετατοπισθεί κατακόρυφα κατά h=0,2m, συναντά μια πλάκα Σ μάζας Μ=2kg. Η πλάκα πριν την κρούση ταλαντώνεται κατακόρυφα με πλάτος Α1=0,3m, στο πάνω άκρο ιδανικού ελατηρίου, με φυσικό μήκος lο=1,2m και σταθερά k=25N/m. Η κρούση είναι ελαστική, χωρίς να εμφανιστούν τριβές στη διάρκειά της. Μετά από λίγο, η σφαίρα φτάνει στο σημείο Μ, στο ίδιο οριζόντιο επίπεδο με το σημείο εκτόξευσης Ο, έχοντας οριζόντια ταχύτητα μέτρου υΜ. Συνέχεια του άρθρου ‘Μια κρούση στη διάρκεια μιας οριζόντιας βολής’ »

Στη διάρκεια της ταλάντωσης έχουμε μια κρούση

Ένα σώμα Σ μάζας Μ=3kg ταλαντώνεται σε λείο οριζόντιο επίπεδο, δεμένο στο άκρο οριζόντιου ελατηρίου, σταθεράς k=375Ν/m, γύρω από μια θέση ισορροπίας Ο, όπως στο σχήμα, έχοντας ενέργεια ταλάντωσης Ε1=7,5J. Μια  σφαίρα μάζας m=1kg είναι δεμένη στο άκρο νήματος μήκους Συνέχεια του άρθρου ‘Στη διάρκεια της ταλάντωσης έχουμε μια κρούση’ »

Η απομάκρυνση στις ταλαντώσεις

ΚαταγραφήΈνα σώμα ηρεμεί σε λείο οριζόντιο επίπεδο, δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου, στη θέση Ο, όπως στο (α) σχήμα.

i) Να εξηγήσετε γιατί το ελατήριο έχει το φυσικό μήκος του.

ii) Εκτρέπουμε το σώμα προς τα δεξιά κατά d και αφήνοντάς το, αυτό εκτελεί απλή αρμονική ταλάντωση. Στο (γ) σχήμα φαίνεται το σώμα σε μια τυχαία θέση. Γράφοντας την εξίσωση της απομάκρυνσης x=Α∙ημ(ωt+φ0), ποια ακριβώς είναι η απομάκρυνση x; Να σχεδιαστεί το διάνυσμά της πάνω στο σχήμα. Συνέχεια του άρθρου ‘Η απομάκρυνση στις ταλαντώσεις’ »

Δύο  ελαστικές κρούσεις

Μια σφαίρα μάζας m=0,5kg ηρεμεί στο κάτω άκρο κατακόρυφου νήματος μήκους l=1,25m, (θέση 1), το άλλο άκρο του οποίου έχει προσδεθεί σε σταθερό σημείο Ο. Ένα σώμα Σ μάζας m1=2,5kg κινείται με σταθερή ταχύτητα υ0 σε λείο οριζόντιο επίπεδο και Συνέχεια του άρθρου ‘Δύο  ελαστικές κρούσεις’ »