Αυγ 30

Ένα σύστημα για Β΄ Θέμα.

Σε λείο οριζόντιο επίπεδο ηρεμεί μια μακριά σανίδα ΑΒ μάζας Μ=3m, ενώ πάνω της ισορροπεί ένα μικρό σώμα Σ, μάζας m. Σε μια στιγμή κτυπώντας το σώμα Σ, του προσδίδουμε αρχική ταχύτητα υο κατά μήκος της ράβδου, προς το άκρο της Β. Παρατηρούμε ότι το σώμα Σ κινείται κατά μήκος της ράβδου, χωρίς να την εγκαταλείπει.

i)  Μεταξύ του σώματος Σ και της σανίδας αναπτύσσεται ή όχι τριβή; Να δικαιολογήσετε αναλυτικά την άποψή σας.
ii)  Να σχεδιάσετε (σε ξεχωριστά σχήματα) τις δυνάμεις που ασκούνται στο σώμα Σ και στη σανίδα, εξηγώντας
αν το σύστημα σανίδα-σώμα Σ, είναι ή όχι μονωμένο.
iii) Η τελική ταχύτητα του σώματος Σ έχει μέτρο:
α) u=0,   β) u=υ0/4,   γ)  u=υ0/3,  δ) u=υ0/2.
Να δικαιολογήσετε την απάντησή σας.
ή
Ένα σύστημα για Β΄ Θέμα.

 

Αυγ 25

Ενέργειες ταλάντωσης, μετά από κρούσεις.

Το σώμα Σ, μάζας Μ=1kg ηρεμεί σε λείο οριζόντιο επίπεδο, δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=40Ν/m. Το σώμα Β, μάζας m=0,5kg κινείται με ταχύτητα υ2=3m/s, πάνω στον άξονα του ελατηρίου, με κατεύθυνση προς το Σ. Εκτρέπουμε το Σ προς τα αριστερά, συσπειρώνοντας το ελατήριο κατά Δℓ=0,2m και σε μια στιγμή t0=0, όπου η απόσταση των δύο σωμάτων είναι d, το αφήνουμε να ταλαντωθεί. Τα δυο σώματα συγκρούονται κεντρικά και ελαστικά τη χρονική στιγμή t1=0,5s.
i) Να υπολογιστεί η αρχική απόσταση d μεταξύ των δύο σωμάτων.
ii) Να βρεθεί η ενέργεια ταλάντωσης του σώματος Σ, μετά την κρούση.
iii)Επαναλαμβάνουμε το πείραμα, αλλά τώρα αφήνουμε άλλη στιγμή το σώμα Σ να ταλαντωθεί, με αποτέλεσμα ελάχιστα πριν την κρούση, να έχει ταχύτητα υ1=0,6m/s, με φορά προς τα δεξιά. Πόση θα είναι τώρα η ενέργεια ταλάντωσης του σώματος Σ, μετά την κρούση;
vi)  Ποιες οι δυνατές τιμές (αλγεβρικές) της ταχύτητας του σώματος Β, μετά την κρούση για διαφορετικές θέσεις κρούσης;
v) Να υπολογιστούν η μέγιστη και η ελάχιστη ενέργεια ταλάντωσης, την οποία μπορεί να αποκτήσει το Σ, μετά από ανάλογες κρούσεις με το σώμα Β, θεωρώντας πάντα σταθερή την ταχύτητα υ2 του σώματος Β, πριν την κρούση.
Δίνεται π2≈10.
ή

Αυγ 20

Μια ταλάντωση και ένα διάγραμμα ταχύτητας.

Ένα σώμα Σ ηρεμεί στο κάτω άκρο ενός κατακόρυφου ελατηρίου. Ανεβάζουμε το σώμα κατακόρυφα κατά 0,4m, μέχρι τη θέση Ρ που το ελατήριο αποκτά το φυσικό μήκος του και το αφήνουμε να κινηθεί, ξαναπιάνοντάς το τη στιγμή που μηδενίζεται ξανά η ταχύτητά του. Στο διάγραμμα δίνεται η ταχύτητά του σε συνάρτηση με το χρόνο, θεωρώντας την προς τα κάτω κατεύθυνση ως θετική.
Να δικαιολογήσετε τις παρακάτω προτάσεις.
i)  Η αρχική επιτάχυνση του σώματος είναι ίση με την επιτάχυνση της βαρύτητας g.
ii) Τη χρονική στιγμή t2 το σώμα έχει επιτάχυνση -g.
iii) Η αρχική φάση της απομάκρυνσης της ταλάντωσης είναι φ0 =3π/2.
iv) Ισχύει t2-t1 = 0,1π (s), όπου  τη στιγμή t1 η ταχύτητα είναι μέγιστη.
v) Η μέγιστη δύναμη που ασκεί το σώμα Σ στο ελατήριο είναι διπλάσια του βάρους του.
Δίνεται g=10m/s2 .
ή
Μια ταλάντωση και ένα διάγραμμα ταχύτητας.

Αυγ 16

Η ορμή και η ενέργεια ταλάντωσης σε μια πλαστική κρούση.

Το σώμα Σ ταλαντώνεται σε λείο οριζόντιο επίπεδο, δεμένο στο άκρο ιδανικού ελατηρίου µε πλάτος Α και περίοδο Τ. Το σώμα Β πέφτει ελεύθερα και σε μια στιγμή συγκρούεται πλαστικά με το Σ. Το σύστημα συνεχίζει να ταλαντώνεται και μετά την κρούση.
Ποιες προτάσεις είναι σωστές και ποιες λανθασμένες:
i)   Η θέση ισορροπίας της ταλάντωσης παρέμεινε η ίδια.
ii)  Η ορμή του συστήματος των δύο σωμάτων παραμένει σταθερή στη διάρκεια της κρούσης.
iii) Η ορμή του συστήματος στην οριζόντια διεύθυνση, ελάχιστα πριν την κρούση, είναι ίση με την ορμή ελάχιστα μετά την κρούση.
iv) Η περίοδος της ταλάντωσης αυξήθηκε μετά την κρούση.
v)  Γενικά η ενέργεια της ταλάντωσης μειώνεται, αλλά υπάρχει περίπτωση και να παραμείνει σταθερή.
ή
Η ορμή και η ενέργεια ταλάντωσης σε μια πλαστική κρούση.

Αυγ 10

Εσωτερικές δυνάμεις και ροπές.

Μια ομογενής ράβδος μήκους ℓ=1m και μάζας Μ =6kg μπορεί να στρέφεται, χωρίς τριβές, σε κατακόρυφο επίπεδο, γύρω από σταθερό οριζόντιο άξονα ο οποίος περνά από το άκρο της Ο. Στο άλλο άκρο της ράβδου προσκολλάται μια στεφάνη Σ, μάζας m=0,6kg και ακτίνας R=1m, οπότε έτσι δημιουργούμε ένα στερεό s. Φέρνουμε το στερεό σε θέση τέτοια, ώστε η ράβδος να είναι οριζόντια και το αφήνουμε να κινηθεί.
i) Να υπολογίσετε τη ροπή αδράνειας του στερεού s, ως προς τον άξονα περιστροφής του.
ii) Να βρεθεί η αρχική γωνιακή επιτάχυνση του στερεού, καθώς και η αρχική επιτάχυνση του κέντρου Κ της στεφάνης.
iii) Να υπολογίσετε τη δύναμη που ασκείται στην στεφάνη από τη δοκό, στην παραπάνω θέση.
iv) Υποστηρίζεται ότι στη στεφάνη, εκτός της παραπάνω δύναμης ασκείται και κάποια επιπλέον ροπή από τη δοκό. Να εξετάσετε την ορθότητα ή μη της παραπάνω θέσης.
v) Να βρεθεί η δύναμη που ασκείται στο στερεό s από την άρθρωση, μόλις αφεθεί να κινηθεί.
vi) Να εξετάσετε αν η στεφάνη, πέρα από την άσκηση δύναμης, ασκεί επιπλέον και κάποια ροπή στη ράβδο.

Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα περιστροφής ο οποίος περνά από το μέσον της Ιcm=
1/12 Μℓ2 και g=10m/s2.

ή
Εσωτερικές δυνάμεις και ροπές.

Αυγ 07

Μια απλή ή μήπως σύνθετη κίνηση;

Μια ομογενής ράβδος μάζας 3kg και μήκους 0,6m, μπορεί να στρέφεται σε κατακόρυφο επίπεδο, γύρω από σταθερό οριζόντιο άξονα, ο οποίος περνά από το ένα της άκρο Ο, χωρίς τριβές. Η ράβδος φέρεται σε οριζόντια θέση και αφήνεται να κινηθεί.
Η κίνηση που θα πραγματοποιήσει θα είναι απλή ή σύνθετη;
Δυο μαθητές, ο Αντώνης (Α) και ο Βασίλης (Β), διαφωνούν και προσπαθώντας να διαπιστώσουν το σωστό και το λάθος, αναλαμβάνουν να απαντήσουν  στα
ακόλουθα ερωτήματα, για τη στιγμή που η ράβδος βρίσκεται σε μια θέση, όπως στο
σχήμα, σχηματίζοντας γωνία θ=30° με την οριζόντια θέση:
i)  Ποια η γωνιακή ταχύτητα της ράβδου;
ii) Ποια είναι η επιτάχυνση του κέντρου μάζας Κ (η κάθετη στη ράβδο) και ποια η γωνιακή επιτάχυνση της ράβδου;
iii) Πόση είναι η στροφορμή και ποιος ο ρυθμός μεταβολής της στροφορμής κατά (ως προς) τον οριζόντιο άξονα περιστροφής της στο Ο;
iv) Πόση είναι η στροφορμή και ποιος ο ρυθμός μεταβολής της στροφορμής κατά (ως προς) τον οριζόντιο άξονα ο οποίος περνά από το μέσον της K;
Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ι= Μl2/12 και g=10m/s2.
ή
Μια απλή ή μήπως σύνθετη κίνηση;

Αυγ 03

Η ράβδος και η σημειακή μάζα.

Μια ομογενής ράβδος μήκους ℓ=1,5m και μάζας m=3kg μπορεί να στρέφεται σε κατακόρυφο επίπεδο, γύρω από σταθερό οριζόντιο άξονα ο οποίος περνά από το άκρο της Ο. Στο άλλο άκρο της ράβδου δένουμε ένα σώμα Σ, της ίδιας μάζας m με τη ράβδο και αμελητέων διαστάσεων (υλικό σημείο), οπότε έτσι δημιουργούμε ένα στερεό s. Φέρνουμε το στερεό στη θέση (1) ώστε η ράβδος να είναι οριζόντια και το αφήνουμε να κινηθεί.
i) Να υπολογίσετε τη ροπή αδράνειας του στερεού s, ως προς τον άξονα περιστροφής του.
ii) Να βρεθεί η αρχική γωνιακή επιτάχυνση του στερεού, καθώς και η δύναμη F που ασκείται στο σώμα Σ από τη ράβδο, αμέσως μόλις αφεθεί το σύστημα ελεύθερο να κινηθεί.
iii) Μετά από λίγο, η ράβδος σχηματίζει με την οριζόντια διεύθυνση γωνία θ, όπου ημθ=0,6, ευρισκόμενη στη θέση (2). Για τη θέση αυτή ζητούνται:
α) Η κινητική ενέργεια του στερεού s.
β) Η στροφορμή και ο ρυθμός μεταβολής του σώματος Σ, κατά (ως προς) τον άξονα περιστροφής στο Ο.
γ) Ο ρυθμός μεταβολής της κινητικής ενέργειας του στερεού s.
iv) Να υπολογιστεί το έργο της δύναμης F (που ασκεί η σανίδα στο σώμα Σ), από την θέση (1) μέχρι τη θέση (2).
Δίνεται η ροπή αδράνειας της ράβδου ως προς τον άξονα περιστροφής της στο Ο, Ι1= 1/3 mℓ2
και g=10m/s2.
 ή

Παλαιότερα άρθρα «

Top
Μετάβαση σε γραμμή εργαλείων