Εξισώσεις τρίτου βαθμού: Μέρος Β’

1

Συγγραφέας: dkonas | Κατηγορία Μαθηματικά Κατεύθυνσης | , στις 26-08-2012

«Ποιητικές» … Τομές

Οι αρχαίοι Έλληνες,  στην προσπάθειά τους να επιλύσουν το Δήλιο πρόβλημα, ανακάλυψαν μεθόδους, έτσι, ώστε να κατασκευάζουν δύο μέσους αναλόγους μεταξύ δύο τμημάτων.

Οι δύο μέσοι ανάλογοι παρίσταναν τις ακμές δύο κύβων, όπου ο πρώτος έχει όγκο ίσο με το ορθογώνιο παραλληλεπίπεδο, που έχει βάση τετράγωνο πλευράς όσο το πρώτο τμήμα και ύψος όσο το δεύτερο τμήμα, ενώ ο δεύτερος έχει όγκο ίσο με το ορθογώνιο παραλληλεπίπεδο, που έχει βάση τετράγωνο πλευράς όσο το δεύτερο τμήμα και ύψος όσο το πρώτο τμήμα.

Με σύγχρονη ορολογία, αυτό σημαίνει ότι, αν \alpha και \beta είναι δεδομένα τμήματα, τότε, μπορούσαν να κατασκευαστούν, όχι, όμως, με χρήση, αποκλειστικά, κανόνα και διαβήτη, \kappa, \lambda, τέτοια, ώστε,

    \[\dfrac{\alpha }{\kappa}=\dfrac{\kappa}{\lambda}=\dfrac{\lambda}{\beta },\]

απ’ όπου έπεται ότι,

    \[\kappa^{3}=\alpha ^{2}\beta\,\,\,\,\kappa\alpha\iota\,\,\,\,\lambda^{3}=\alpha \beta ^{2}.\]

Όπως απέδειξε ο Μέναιχμος, θα μπορούσαν να χρησιμοποιηθούν, για τον σκοπό αυτό, μια παραβολή και μια υπερβολή ή, εναλλακτικά, δύο παραβολές. Αλληλεπιδράστε με το ακόλουθο γραφικό,

για να δείτε τον τρόπο του Μέναιχμου για την κατασκευή των \kappa, \lambda, με χρήση της τομής δύο παραβολών. Όπως θα διαπιστώσετε, αρκεί η γεωμετρική κατασκευή του μέσου αναλόγου δύο τμημάτων για τον σχεδιασμό των παραβολών.

Ο Πέρσης φιλόσοφος, μαθηματικός, αστρονόμος και ποιητής Ομάρ Καγιάμ (1048–1131), αναγνώρισε, στις μεθόδους του Μέναιχμου, τη στρατηγική με την οποία θα μπορούσαν να αξιοποιηθούν, γενικότερα, οι κωνικές τομές στην επίλυση εξισώσεων τρίτου βαθμού. Στο βιβλίο του «Πραγματεία στην Απόδειξη Προβλημάτων Άλγεβρας», επιλύονται 19 τύποι εξισώσεων τρίτου βαθμού, με τρόπους που προϊκονομούν τη γέννηση της Αναλυτικής Γεωμετρίας.

Ακολουθεί μια αντιπροσωπευτική επιλογή ορισμένων από τους τύπους των εξισώσεων, που επιλύονται στο βιβλίο του, καθώς και των αντίστοιχων μεθόδων επίλυσής τους. Παράλληλα, θα αναδειχθεί η διαδικασία με την οποία θα μπορούσε να αντιμετωπιστεί μια οποιαδήποτε τριτοβάθμια εξίσωση. Προς τούτο, επιστρατεύονται, από τη σύγχρονη Άλγεβρα, ο τωρινός συμβολισμός, η χρήση του 0 και των αρνητικών αριθμών, όπως, επίσης, ορισμένες στοιχειώδης, πλέον, ιδιότητες των πράξεων.

Αρχικά, ας θεωρηθεί η απλούστερη δυνατή μορφή εξίσωσης τρίτου βαθμού, δηλαδή, μια εξίσωση της μορφής,

    \[x^{3}=\beta,\,\,\,\,\beta>0.\]

«Αναζήτηση ενός κύβου ίσου μ’ έναν αριθμό», όπως θα έγραφε ο Πέρσης μαθηματικός.

«Ανάγκη συσχέτισης του αριθμού μ’ ένα (τρισδιάστατο) σχήμα», όπως θα μηχανευόταν ο Πέρσης φιλόσοφος.

Η παραπάνω εξίσωση γράφεται,

    \[x^{3}=1^{2}\beta }.\]

Έτσι, από γεωμετρική σκοπιά, αυτό που αναζητείται ισούται με την ακμή ενός κύβου με όγκο όσο ένα ορθογώνιο παραλληλεπίπεδο με βάση τετράγωνο πλευράς 1 και ύψος \beta. Με άλλα λόγια, το x δεν είναι τίποτε άλλο, παρά ο πρώτος από τους δύο μέσους αναλόγους που μπορούν να κατασκευαστούν μεταξύ των τμημάτων 1 και \beta. Εφαρμογή των μεθόδων των Ελλήνων, λοιπόν. Ιδιαίτερα, αυτών του Μέναιχμου.

Συνέχεια με την εξίσωση,

    \[x^{3}+\alpha x=\beta, \,\,\,\,\alpha,\beta >0.\]

Όπως θα έγραφε ο Ομάρ Καγιάμ, «ένας κύβος και πλευρές ίσες με έναν αριθμό».

Η εξίσωση γίνεται,

    \[x^{3}=-\alpha x+\beta .\]

Συνεπακόλουθα, θα ήταν χρήσιμο το β΄ μέλος της εξίσωσης να μετατραπεί, έτσι, ώστε, κατά απόλυτη τιμή, τουλάχιστον, να παριστάνει τον όγκο ενός ορθογώνιου παραλληλεπιπέδου τετραγωνικής βάσης.

Πράγματι, ο Ομάρ Καγιάμ θεώρησε ένα τετράγωνο εμβαδού \alpha και ένα ορθογώνιο παραλληλεπίπεδο με βάση το προηγούμενο τετράγωνο και όγκο \beta. Οπότε, συμβολίζοντας με AB την πλευρά του τετραγώνου και με B\Gamma το ύψος του παραλληλεπιπέδου, η εξίσωση μετασχηματίζεται ως εξής,

    \[x^{3}=-AB^{2} x+AB^{2}B\Gamma ,\]

δηλαδή,

    \[x^{3}=AB^{2}(B\Gamma -x).\]

Μ’ αυτόν τον τρόπο, η επίλυσή της ανάγεται στην αναζήτηση x,y, τέτοιων, ώστε,

    \[\dfrac{AB }{x}=\dfrac{x}{y}=\dfrac{y}{B\Gamma -x}.\]

Τελικά, το x μπορεί να προσδιορίστεί ως τετμημένη του σημείου τομής της παραβολής,

    \[\dfrac{AB }{x}=\dfrac{x}{y},\]

με τον κύκλο,

    \[\dfrac{x}{y}=\dfrac{y}{B\Gamma -x}.\]

Βασικές γνώσεις Αναλυτικής Γεωμετρίας επαρκούν, έτσι, ώστε να επαληθευτεί ότι οι προηγούμενες εξισώσεις παριστάνουν τις συγκεκριμένες κωνικές τομές. Βέβαια, οι γνώσεις αυτές δεν υπήρχαν την εποχή του Ομάρ Καγιάμ, ωστόσο, τα x, y, που εμφανίζονται σε καθεμία από τις παραπάνω αναλογίες, μπορούσαν, επεκτείνοντας τις μεθόδους του Μέναιχμου, να απεικονιστούν χάρη στη γνωστή κατασκευή του μέσου αναλόγου δύο τμημάτων. Από την ισότητα,

    \[\dfrac{AB }{x}=\dfrac{x}{y},\]

προκύπτει ότι το x είναι το μέσο ανάλογο των AB,\,y και από την ισότητα,

    \[\dfrac{x}{y}=\dfrac{y}{B\Gamma -x},\]

ότι το y είναι το μέσο ανάλογο των x,\,B\Gamma -x.

Ο Πέρσης μαθηματικός θεώρησε, για την πρώτη ισότητα, μεταβλητό το y και κατασκεύαζε, με τη βοήθειά του, κάθε φορά, το x, ενώ, ενέργησε αντίστροφα για τη δεύτερη ισότητα. Με τη βοήθεια του ακόλουθου γραφικού, με το οποίο μπορείτε να αλληλεπιδράσετε, μπορεί να γίνει αντιληπτό πως ακριβώς σχηματίζονται οι παραπάνω κωνικές τομές.

Αντίστοιχα, η εξίσωση,

    \[x^{3}+\beta=\alpha x, \,\,\,\,\alpha,\beta >0,\]

γράφεται,

    \[x^{3}=\alpha x -\beta,\]

ή, αν AB, B{\it}\Gamma, όπως παραπάνω,

    \[x^{3}=AB^{2}(x -B\Gamma),\]

οπότε, αναζητούνται x,y, τέτοια, ώστε,

    \[\dfrac{AB }{x}=\dfrac{x}{y}=\dfrac{y}{x-B\Gamma }.\]

Άρα, το x είναι η τετμημένη του σημείου τομής της παραβολής,

    \[\dfrac{AB }{x}=\dfrac{x}{y},\]

με την υπερβολή,

    \[\dfrac{x}{y}=\dfrac{y}{x-B\Gamma}.\]

Κι εδώ, η επαλήθευση μπορεί να γίνει με χρήση μεθόδων της Αναλυτικής Γεωμετρίας ή με τη βοήθεια του ακόλουθου γραφικού,

το οποίο, όπως προηγουμένως, αξιοποιεί, με δυναμικό τρόπο, τη γεωμετρική κατασκευή του μέσου αναλόγου δύο τμημάτων, καθώς αυτά μεταβάλλονται. Προφανώς, ο δεύτερος τρόπος προσιδιάζει, καλύτερα, στην προσέγγιση του Ομάρ Καγιάμ.

Είναι δυνατό, συνθέτοντας τις διάφορες, κατά περίπτωση, μεθόδους του Ομάρ Καγιάμ, να επιλυθεί, γενικότερα, μια οποιαδήποτε εξίσωση τρίτου βαθμού της μορφής,

    \[ x^{3}=\alpha x+\beta,\,\,\,\,\alpha,\beta \in \mathbb{R}.\]

Για να κατανοήσετε, καλύτερα, τον τρόπο, μπορείτε να αλληλεπιδράσετε με το ακόλουθο γραφικό.


Τέλος, η γενική μορφή εξίσωσης τρίτου βαθμού,

    \[\alpha x^{3}+\beta x^{2}+\gamma x+\delta =0,\,\,\,\,\alpha\neq0, \]

μπορεί να μετασχηματιστεί στην προηγούμενη μορφή, συμπληρώνοντας το α΄ μέλος της σε τέλειο κύβο. Πραγματικά, διαδοχικά, ισχύει,

    \[\alpha x^{3}+\beta x^{2}+\gamma x+\delta =0 \]

    \[x^{3}+\dfrac{\beta }{\alpha }x^{2}+\dfrac{\gamma }{\alpha }x+\dfrac{\delta }{\alpha }=0\]

    \[x^{3}+3\dfrac{\beta }{3\alpha }x^{2}+3\left( \dfrac{\beta }{3\alpha }\right) ^{2}x+\left( \dfrac{\gamma }{\alpha }-3\left( \dfrac{\beta }{3\alpha }\right) ^{2}\right) x+\dfrac{\delta }{\alpha }=0\]

    \[x^{3}+3\dfrac{\beta }{3\alpha }x^{2}+3\left( \dfrac{\beta }{3\alpha }\right) ^{2}x+\left( \dfrac{\beta }{3\alpha }\right) ^{3}+\left( \dfrac{\gamma }{\alpha }-3\left( \dfrac{\beta }{3\alpha }\right) ^{2}\right) x+\dfrac{\delta }{\alpha }-\left( \dfrac{\beta }{3\alpha }\right) ^{3}=0\]

    \[\left( x+\dfrac{\beta }{3\alpha }\right) ^{3}=\left( 3\left( \dfrac{\beta }{3\alpha }\right) ^{2}-\dfrac{\gamma }{\alpha }\right) x+\left( \dfrac{\beta }{3\alpha }\right) ^{3}-\dfrac{\delta }{\alpha }\]

    \[\left( x+\dfrac{\beta }{3\alpha }\right) ^{3}=\dfrac{\beta ^{2}-3\alpha \gamma }{3\alpha ^{2}} x+\dfrac{\beta ^{3}-27\delta \alpha ^{2}}{27\alpha ^{3}}\]

    \[\left( x+\dfrac{\beta }{3\alpha }\right) ^{3}=\dfrac{\beta ^{2}-3\alpha \gamma }{3\alpha ^{2}} \left( x+\dfrac{\beta }{3\alpha }\right) +\dfrac{\beta ^{3}-27\delta \alpha ^{2}}{27\alpha ^{3}}-\dfrac{\beta }{3\alpha }\dfrac{\beta ^{2}-3\alpha \gamma }{3\alpha ^{2}}\]

    \[\left( x+\dfrac{\beta }{3\alpha }\right) ^{3}=\dfrac{\beta ^{2}-3\alpha \gamma }{3\alpha ^{2}}\left( x+\dfrac{\beta }{3\alpha }\right) +\dfrac{-2\beta ^{3}-27\delta \alpha ^{2}+9\alpha \beta \gamma }{27\alpha ^{3}}.\]

Η τελευταία εξίσωση είναι της μορφής,

    \[y^{3}=\alpha ^{\prime }y+\beta ^{\prime },\]

όπου,

    \[y=x+\dfrac{\beta }{3\alpha },\,\,\,\,\alpha ^{\prime }=\dfrac{\beta ^{2}-3\alpha \gamma }{3\alpha ^{2}},\,\,\,\,\beta ^{\prime }=\dfrac{-2\beta ^{3}-27\delta \alpha ^{2}+9\alpha \beta \gamma }{27\alpha ^{3}}.\]

Όμως, η Άλγεβρα δε θα περιοριζόταν σε βοηθητικό ρόλο για πάρα πολύ ακόμη. Μέσα στο εννοιολογικό της πλαίσιο, θα τεθεί το πρόβλημα της εύρεσης τύπων που να επιλύουν μια οποιαδήποτε τριτοβάθμια εξίσωση και οι μέθοδοί της θα οδηγήσουν τις εξελίξεις.

Έτσι, το 1500, περίπου, στην Ιταλία, εγκαινιάζεται μία νέα φάση στο πρόβλημα με συναρπαστικές και αναπάντεχες προεκτάσεις για την Άλγεβρα και τα Μαθηματικά γενικότερα.

Αναφορές

  1. Henderson D.W., Geometric Solutions of quadratic and Cubic Equations, Department of Mathematics, Cornell University.
  2. O’Connor J. J. and Robertson E. F., Doubling the cube, School of Mathematics and Statistics University of St Andrews, Scotland , 1999.

Εξισώσεις τρίτου βαθμού: Μέρος Α’

0

Συγγραφέας: dkonas | Κατηγορία Γεωμετρία | , στις 23-08-2012

Η «εξίσωση» ενός χρησμού

Η αρχή της ιστορίας των εξισώσεων τρίτου βαθμού βρίσκεται στην καρδιά ενός φημισμένου προβλήματος των αρχαίων ελληνικών μαθηματικών.

Το Δήλιο πρόβλημα, ή, αλλιώς, ο «διπλασιασμός» του κύβου, δηλαδή, η κατασκευή ενός κύβου με διπλάσιο όγκο από ένα δεδομένο κύβο, ήταν ένα γεωμετρικό πρόβλημα με, κάπως, ασαφή και μυστηριώδη προέλευση. Σύμφωνα με την εκδοχή που έδωσε ο μαθηματικός, φιλόσοφος και σχολιαστής των αρχαίων ελληνικών μαθηματικών Θέων ο Σμυρναίος (τέλος 1ου – αρχές 2ου αιώνα μ.Χ.), τέθηκε διά μέσου ενός χρησμού.

Το 430 π.Χ., περίπου, ο θεός Απόλλωνας διαμηνούσε στους κατοίκους της Δήλου, σύμφωνα με τον χρησμό, ότι για να απαλλαγούν από τον λοιμό, που μάστιζε την πόλη τους, θα έπρεπε να «διπλασιάσουν» τον κυβικό βωμό του στο νησί.

Οι κάτοικοι, λόγω των δυσκολιών που συνάντησαν στην προσπάθειά τους να ικανοποιήσουν το αίτημα του θεού, ζήτησαν τη βοήθεια του Πλάτωνα. Ο Πλάτωνας τούς επισήμανε ότι ο θεός ήθελε, περισσότερο από το να «διπλασιαστεί» ο βωμός του ναού του, να τους δώσει, μ’ αυτόν τον τρόπο, ένα μάθημα για την παραμέληση των Μαθηματικών και, ιδιαίτερα, για την περιφρόνηση της Γεωμετρίας.

Ωστόσο, είναι πιθανό το πρόβλημα να ήταν γνωστό νωρίτερα. Για την επίλυσή του, αρκεί, φυσικά, να κατασκευαζόταν η ακμή του ζητούμενου κύβου, δηλαδή, με σημερινό συμβολισμό, η λύση της τριτοβάθμιας εξίσωσης,

    \[x^3=2\alpha^3,\]

όπου \alpha παριστάνει την ακμή του δεδομένου κύβου.

Όμως, η παραπάνω αλγεβρική έκφραση του προβλήματος είναι μεταγενέστερη. Οι προσπάθειες επίλυσής του, από τους αρχαίους Έλληνες μαθηματικούς, πραγματοποιήθηκαν μέσα στο γεωμετρικό πλαίσιο της εποχής το οποίο, τελικά, εμπλούτισαν με νέες καμπύλες και ιδιοφυείς – ακόμη και τριών διαστάσεων – μηχανικές κατασκευές.

Αναζητήθηκε, επισταμένα, κατασκευή με κανόνα και διαβήτη, χωρίς, φυσικά, επιτυχία, αφού, όπως απέδειξε το 1837 ο Γάλλος μαθηματικός Pierre Wantzel, κάτι τέτοιο είναι αδύνατο.

Ο Ιπποκράτης ο Χίος (περίπου 470 – 410 π.Χ.) ανήγαγε το πρόβλημα στην εύρεση δύο μέσων αναλόγων μεταξύ του τμήματος της ακμής του δεδομένου κύβου και του διπλάσιου αυτού του τμήματος. Με σύγχρονη ορολογία, αυτό σημαίνει να βρεθούν \kappa, \lambda, τέτοια, ώστε,

    \[$\dfrac{\alpha }{\kappa}=\dfrac{\kappa}{\lambda}=\dfrac{\lambda}{2\alpha }.$\]

Το \kappa είναι η ζητούμενη ακμή, διότι, συνδυάζοντας, κατάλληλα, τις τελευταίες ισότητες, προκύπτει ότι,

    \[$\kappa^{3}=2\alpha^{3}.$\]

Δεν είναι σίγουρο τι οδήγησε τον Ιπποκράτη σ’ αυτήν τη διαπίστωση. Μοιάζει, όμως,  λογικό να υποτεθεί ότι γνώριζε το πρόβλημα «διπλασιασμού» του τετραγώνου. Διότι ο «διπλασιαμός» του τετραγώνου ισοδυναμεί με το πρόβλημα εύρεσης του μέσου αναλόγου μεταξύ του τμήματος της πλευράς του τετραγώνου και του διπλάσιου αυτού του τμήματος. Παρεμπιπτόντως, το τετράγωνο με πλευρά τη διαγώνιο ενός δεδομένου τετραγώνου έχει διπλάσιο εμβαδό από το δεδομένο τετράγωνο.

Ακολουθεί μια προσπάθεια απόδοσης του συλλογισμού του Ιπποκράτη σε μια γλώσσα περισσότερο οικεία προς εκείνη την εποχή, μια γλώσσα γεωμετρική. Βέβαια, για λόγους συντομίας στην έκφραση και μόνο, διατηρούνται ορισμένοι αλγεβρικοί συμβολισμοί. Θεωρείται, επίσης, γνωστή η γεωμετρική κατασκευή του μέσου αναλόγου δύο ευθύγραμμων τμημάτων.

Το παραλληλεπίδο που σχηματίζουν δύο κύβοι ίσοι με τον δεδομένο κύβο, όταν τοποθετηθούν, έτσι, ώστε να ταυτίζονται δύο έδρες τους, έχει όγκο ίσο με τον όγκο κάθε παραλληλεπιπέδου το οποίο έχει εμβαδόν βάσης 2\alpha^{2} και ύψος \alpha.

Στο παρακάτω γραφικό,

Doubling_The_Cube_01

με το οποίο, αφού πρώτα εγκαταστήσετε το Cabri 3D plugin, μπορείτε να αλληλεπιδράσετε, παριστάνεται μια «οικογένεια» ορθογώνιων παραλληλεπιπέδων, με ύψη \alpha, όπου οι διαστάσεις των βάσεών τους \kappa και \lambda μεταβάλλονται, ώστε το γινόμενό τους να παραμένει σταθερό, ίσο με 2\alpha^{2}.

(Για οδηγίες, σχετικές με τον χειρισμό στα σχήματα, πατήστε εδώ.)

Συνεπώς, τα τμήματα \lambda και \alpha είναι ανάλογα προς τα τμήματα 2\alpha και \kappa. (Συνθήκη 1).

(Βάσει αυτής της συνθήκης, άλλωστε, με χρήση όμοιων τριγώνων, κατασκευάστηκε το παραπάνω δυναμικό σχήμα.)

Επίσης, καθεμία από τις δύο διαστάσεις μπορεί να πάρει οποιαδήποτε θετική τιμή, επιλέγοντας, κατάλληλα, κάποιο «μέλος» της οικογένειας.

Κατά κάποιον τρόπο, στο «μπλε» παραλληλεπίπεδο, έχουν «απελευθερωθεί» το μήκος και το πλάτος του «πράσινου» παραλληλεπιπέδου, με μόνη δέσμευση αυτήν που απορρέει από τη Συνθήκη 1.

Αναλύοντας, λοιπόν, το πρόβλημα, ας υποτεθεί ότι η ζητούμενη ακμή, \beta, κατασκευάστηκε.

Φυσικά, ο κύβος ακμής \beta θα έχει ίσο όγκο και με καθένα από τα μέλη της προηγούμενης οικογένειας.

Προφανώς, κάποιο απ’ αυτά τα παραλληλεπίπεδα έχει μήκος \beta. Αν \gamma συμβολίζει το πλάτος του, τότε, κάθε πλαϊνή έδρα του έχει εμβαδό όσο το τετράγωνο πλευράς \beta.


Συνεπώς το \beta είναι μέσο ανάλογο των \alpha και \gamma.

Απαιτείται, λοιπόν, το \kappa να είναι μέσο ανάλογο των \alpha και \lambda. (Συνθήκη 2).

Εύκολα, αποδεικνύεται ότι το συμπέρασμα του Ιπποκράτη ισοδυναμεί με την ταυτόχρονη ισχύ των Συνθηκών 1 και 2.

Αλληλεπιδρώντας με το παρακάτω γραφικό,

Doubling_The_Cube_02Cabri 3D plugin

μπορείτε να προσπαθήσετε να ικανοποιήσετε ταυτόχρονα τις δύο συνθήκες, συνθέτοντας τη λύση στο πρόβλημα του διπλασιασμού του κύβου.

Θα ανακαλύψετε τον έναν απ’ τους δύο τρόπους, που έδωσε ο Μέναιχμος (περίπου 380 π.Χ. – 320 π.Χ.), για την εύρεση των τιμών των \kappa και \lambda, χρησιμοποιώντας την τομή δύο νέων, για εκείνη την εποχή, καμπυλών: μιας παραβολής και μιας υπερβολής.

Ο Μέναιχμος έδωσε και δεύτερο τρόπο λύσης στο πρόβλημα, χρησιμοποιώντας, αυτή τη φορά, την τομή δύο παραβολών.

Πραγματικά, λόγω της Συνθήκης 1, τα τμήματα \lambda και \alpha είναι ανάλογα προς τα τμήματα 2\alpha και \kappa, ενώ, λόγω της Συνθήκης 2, τα τμήματα \alpha και \kappa είναι ανάλογα προς τα τμήματα \kappa και \lambda. Επομένως, τα τμήματα \lambda και \kappa είναι ανάλογα προς τα τμήματα 2\alpha και \lambda.

Αυτό σημαίνει ότι το \lambda είναι μέσο ανάλογο των 2\alpha και \kappa. (Συνθήκη 3.)

Ο δεύτερος τρόπος του Μέναιχμου συνθέτει τις Συνθήκες 2 και 3.

Άλλοι αρχαίοι Έλληνες μαθηματικοί, ανάμεσά τους ο Αρχύτας, ο Απολλώνιος, ο Διοκλής, ο Ερατοσθένης, ο Εύδοξος κι ο Νικομήδης, έδωσαν διαφορετικές λύσεις στο πρόβλημα. Όλες αυτές οι μέθοδοι οδηγούν, τροποντινά, στη γεωμετρική κατασκευή της λύσης μιας εξίσωσης τρίτου βαθμού.

Ας σημειωθεί, τέλος, ότι το πρόβλημα διερευνήθηκε και επιλύθηκε, από τους αρχαίους Έλληνες, σε μια γενικότερη μορφή, στην οποία, πάλι, αναζητούνταν δύο μέσοι ανάλογοι, όχι, όμως, μεταξύ ενός τμήματος και του διπλάσιου αυτού του τμήματος, αλλά μεταξύ δύο τμημάτων. Οι δύο μέσοι ανάλογοι παρίσταναν τις ακμές δύο κύβων, όπου ο πρώτος έχει όγκο ίσο με το ορθογώνιο παραλληλεπίπεδο, που έχει βάση τετράγωνο πλευράς όσο το πρώτο τμήμα και ύψος όσο το δεύτερο τμήμα, ενώ ο δεύτερος έχει όγκο ίσο με το ορθογώνιο παραλληλεπίπεδο, που έχει βάση τετράγωνο πλευράς όσο το δεύτερο τμήμα και ύψος όσο το πρώτο τμήμα.

Χρόνια αργότερα, ο Πέρσης φιλόσοφος, μαθηματικός, αστρονόμος και ποιητής Ομάρ Καγιάμ (1048–1131), θα γενικεύσει τις μεθόδους των Ελλήνων για την επίλυση διάφορων τύπων εξισώσεων τρίτου βαθμού.

Αναφορές

  1. Henderson D.W., Geometric Solutions of quadratic and Cubic Equations, Department of Mathematics, Cornell University.
  2. O’Connor J. J. and Robertson E. F., Doubling the cube, School of Mathematics and Statistics University of St Andrews, Scotland , 1999.